\propto SVM for Learning with Label Proportions Supplementary Material¹

Felix X. Yu[†]
Dong Liu[†]
Sanjiv Kumar[§]
Tony Jebara[†]
Shih-Fu Chang[†]

YUXINNAN@EE.COLUMBIA.EDU DONGLIU@EE.COLUMBIA.EDU SANJIVK@GOOGLE.COM JEBARA@CS.COLUMBIA.EDU SFCHANG@CS.COLUMBIA.EDU

[†]Columbia University, New York, NY 10027

1. Supplement for alter- \propto SVM

1.1. Proof of Proposition 1

Proof 1 We consider the k-th bag in this proof.

We first note that the influence of y_i , $\forall i \in \mathcal{B}_k$ to the first term of the objective function, $\sum_{i \in \mathcal{B}_k} L(y_i, \mathbf{w}^T \varphi(\mathbf{x}_i) + b)$, is independent.

Without loss of generality, we assume $\mathcal{B}_k = \{1 \cdots | \mathcal{B}_k | \}$. Also without loss of generality, we assume δ_i 's are already in sorted order, i.e. $\delta_1 \geq \delta_2 \geq ... \geq \delta_{|\mathcal{B}_k|}$.

Define $\{i|y_i=1, i \in \mathcal{B}_k\} = \mathcal{B}_k^+$, and $\{i|y_i=-1, i \in \mathcal{B}_k\} = \mathcal{B}_k^-$. In order to satisfy the label proportion, the number of elements in $\{y_i|i \in \mathcal{B}_k\}$ to be flipped is $\theta|\mathcal{B}_k|$. We are to solve the following optimization problem.

$$\max_{\mathcal{B}_k^+} \quad \sum_{i \in \mathcal{B}_k^+} \delta_i - \sum_{i \in \mathcal{B}_k^-} \delta_i, \quad s.t. \quad |\mathcal{B}_k^+| = \theta |\mathcal{B}_k|.$$

What we need to prove is that $\mathcal{B}_k^+ = \{1, 2, ..., \theta | \mathcal{B}_k | \}$ is optimal.

Assume, on the contrary, there exists \mathcal{B}_{k}^{+*} , and \mathcal{B}_{k}^{-*} , $|\mathcal{B}_{k}^{+*}| = \theta |\mathcal{B}_{k}|$, $\mathcal{B}_{k}^{+*} \neq \{1, 2, ..., \theta |\mathcal{B}_{k}|\}$, $\mathcal{B}_{k}^{+*} \cup \mathcal{B}_{k}^{-*} = \mathcal{B}_{k}$, $\mathcal{B}_{k}^{+*} \cap \mathcal{B}_{k}^{-*} = \emptyset$, such that $\left(\sum_{i \in \mathcal{B}_{k}^{+*}} \delta_{i} - \sum_{i \in \mathcal{B}_{k}^{-*}} \delta_{i}\right) - \left(\sum_{i=1}^{\theta |\mathcal{B}_{k}|} \delta_{i} - \sum_{i=\theta |\mathcal{B}_{k}|+1} \delta_{i}\right) > 0$

However, $\sum_{i \in \mathcal{B}_k^{+*}} \delta_i - \sum_{i=1}^{\theta |\mathcal{B}_k|} \delta_i \leq 0$, $\sum_{i=\theta |\mathcal{B}_k|+1}^{|\mathcal{B}_k|} \delta_i - \sum_{i \in \mathcal{B}_k^{-*}} \delta_i \leq 0$. A contradiction.

1.2. Proof of Proposition 2

Proof 2 As described in the paper, the influences of the bags in the objective function (6) are independent, and for the k-th bag, the algorithm takes $\mathcal{O}(|\mathcal{B}_k|\log(|\mathcal{B}_k|))$, $\forall k=1\cdots K$.

Overall, the complexity is $\mathcal{O}(\sum_{k=1}^{K} |\mathcal{B}_k| \log(|\mathcal{B}_k|))$.

We know that $\sum_{k=1}^{K} |\mathcal{B}_k| = N$, $J = \max_{k=1...K} |\mathcal{B}_k|$.

$$\sum_{k=1}^{K} |\mathcal{B}_k| \log(|\mathcal{B}_k|) \le \sum_{k=1}^{K} |\mathcal{B}_k| \log(J) = N \log(J).$$

[§]Google Research, New York, NY 10011

¹This article is the supplementary material of (Yu et al., 2013)

1.3. Justification of The Annealing Loop

We use an annealing loop for alter- \propto SVM to alleviate the local minima issues. To justify the requirement of the annealing loop, we keep repeating the alter- \propto SVM algorithm with/without the annealing loop, with different random initializations, on the same dataset. We record the smallest objective value found so far. As shown in Figure 1, alter- \propto SVM without the annealing loop fails to find a low objective value within a reasonably amount of time, while alter- \propto SVM with annealing loop can find a near-optimal solution really fast in about 3 seconds (a few runs). Similar results can be found on other datasets, and other bag sizes. In the experiment section we empirically choose to initialize alter- \propto SVM 10 times, which gives us quite stable results.

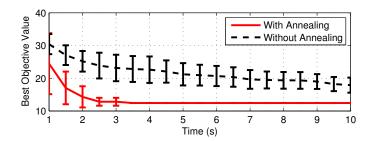


Figure 1. The smallest objective value with/without the annealing loop. The above results are based on experiments on the vote dataset with bag size of 32, linear kernel, C = 1, $C_p = 10$.

Due to the usefulness of annealing for \propto SVM, deterministic annealing (Sindhwani et al., 2006) can be explored to further improve the algorithm.

2. Supplement for conv- \propto SVM

2.1. Proof of Proposition 3

Proof 3 The proof is identical to the proof of Proposition 2, except that we need to consider d dimensions of x, independently.

3. Additional Experiment Results

We show additional experiment results in Table 1 and Table 2.

References

Sindhwani, V., Keerthi, S.S., and Chapelle, O. Deterministic annealing for semi-supervised kernel machines. In *Proceedings of the 23rd International Conference on Machine learning*, pp. 841–848, 2006.

Yu, F.X., Liu, D., Kumar, S., Jebara, T., and Chang, S.-F. ∝SVM for learning with label proportions. In Proceedings of the 30rd International Conference on Machine learning, 2013.

Dataset	Method	2	4	8	16	32	64
heart-c	MeanMap	79.69 ± 2.67	77.57 ± 1.27	78.09 ± 1.29	74.89 ± 2.08	74.47 ± 2.48	76.51 ± 2.18
	InvCal	79.81 ± 1.30	78.52 ± 0.66	76.50 ± 2.61	75.91 ± 2.21	72.36 ± 2.77	73.94 ± 1.68
	alter-∝SVM	$81.39{\pm}1.19$	$79.93{\pm}0.81$	$79.61 {\pm} 1.22$	74.72 ± 3.01	76.00 ± 1.97	$78.11{\pm}2.81$
	conv-∝SVM	78.99 ± 1.03	75.59 ± 2.64	77.91 ± 0.98	$77.29 {\pm} 0.48$	$77.99{\pm}1.78$	76.71 ± 1.88
breast-cancer	MeanMap	96.49 ± 0.01	96.34 ± 0.18	96.21 ± 0.20	96.20 ± 0.34	96.35 ± 0.36	96.56 ± 0.55
	InvCal	96.02 ± 0.22	96.11 ± 0.61	95.81 ± 0.23	95.61 ± 0.29	95.61 ± 0.12	94.49 ± 1.00
	alter-∝SVM	$96.90{\pm}0.20$	$96.87{\pm}0.13$	$96.81 {\pm} 0.36$	$96.76 {\pm} 0.28$	$96.82{\pm}0.50$	$96.84{\pm}0.41$
	conv-∝SVM	93.88 ± 0.16	93.86 ± 0.11	93.82 ± 0.06	95.13 ± 0.33	95.63 ± 0.44	96.12 ± 0.11
credit-a	MeanMap	85.42 ± 0.22	84.79 ± 0.70	83.26 ± 1.58	81.32 ± 1.03	$81.18{\pm}2.92$	79.24 ± 4.79
	InvCal	85.51 ± 0.00	85.40 ± 0.41	84.52 ± 0.73	82.69 ± 3.20	79.23 ± 4.31	77.99 ± 5.68
	alter-∝SVM	$85.54{\pm}0.12$	$85.51 {\pm} 0.33$	$85.37 {\pm} 0.34$	$83.59{\pm}3.17$	80.98 ± 4.68	80.16 ± 4.79
	conv-∝SVM	85.51 ± 0.00	85.24 ± 0.41	82.69 ± 0.90	81.77 ± 1.38	80.13±1.45	$80.79{\pm}1.38$
breast-w	MeanMap	96.11±0.06	95.97 ± 0.25	96.13 ± 0.16	96.26 ± 0.32	95.96 ± 0.42	95.80 ± 0.92
	InvCal	95.88 ± 0.33	95.65 ± 0.36	95.53 ± 0.24	95.39 ± 0.57	95.23 ± 0.52	94.31 ± 0.77
	alter-∝SVM	$96.71 {\pm} 0.29$	$96.77{\pm}0.13$	$96.59 {\pm} 0.24$	$96.41{\pm}0.50$	$96.41{\pm}0.21$	$96.25{\pm}0.49$
	conv-∝SVM	92.27 ± 0.27	92.25 ± 0.16	92.32 ± 0.13	94.03 ± 0.18	94.60 ± 0.10	94.57 ± 0.21
a1a	MeanMap	81.76±0.89	81.60 ± 0.47	$80.02{\pm}0.59$	77.04 ± 1.30	73.19 ± 2.48	72.58 ± 0.95
	InvCal	81.86 ± 0.20	81.35 ± 0.70	78.34 ± 0.70	$77.69{\pm}1.36$	73.13 ± 4.86	73.30 ± 1.71
	alter-∝SVM	$82.63{\pm}0.36$	$81.72 {\pm} 0.58$	80.00 ± 1.46	76.48 ± 1.08	$76.38{\pm}1.31$	$76.09{\pm}0.88$
	conv-∝SVM	75.63 ± 0.33	75.39 ± 0.01	75.39 ± 0.01	75.40 ± 0.02	75.37 ± 0.04	75.37 ± 0.05
dna-3	MeanMap	87.57±0.74	83.95 ± 1.34	80.22 ± 0.65	79.14 ± 2.39	75.21 ± 0.89	74.99 ± 1.53
	InvCal	91.77 ± 0.42	89.38 ± 0.41	87.98 ± 0.83	84.28 ± 1.63	79.65 ± 3.55	75.22 ± 5.64
	alter-∝SVM	$93.21{\pm}0.33$	$92.83{\pm}0.40$	$91.80{\pm}0.52$	$88.77{\pm}1.10$	$86.94{\pm}0.41$	$86.39{\pm}1.70$
	conv-∝SVM	91.72 ± 0.26	87.93 ± 1.32	80.13 ± 2.39	73.93 ± 0.46	73.38 ± 0.56	72.87 ± 0.79
satimage-3	MeanMap	94.44 ± 0.25	93.90 ± 0.30	93.66 ± 0.49	$92.39{\pm}1.64$	89.26 ± 0.20	88.77±0.45
	InvCal	94.12 ± 0.33	94.25 ± 0.25	94.08 ± 0.18	93.66 ± 0.31	93.41 ± 0.52	92.34 ± 0.56
	alter-∝SVM	$95.13{\pm}0.27$	$95.11 {\pm} 0.32$	$95.09{\pm}0.26$	$94.89{\pm}0.15$	$94.54{\pm}0.22$	$94.46{\pm}0.44$
	conv-∝SVM	88.44 ± 0.45	87.18 ± 0.36	86.41 ± 0.47	90.66 ± 0.53	93.17 ± 0.62	93.26 ± 0.51

 $Table\ 1.\ Additional\ experiments.\ Accuracy\ with\ linear\ kernel,\ with\ bag\ size\ 2,\ 4,\ 8,\ 16,\ 32,\ 64.$

Dataset	Method	2	4	8	16	32	64
heart-c	MeanMap	79.98±1.02	79.02 ± 2.23	78.47 ± 2.59	75.94 ± 2.30	74.47 ± 2.79	76.27 ± 2.92
	InvCal	$81.98{\pm}1.05$	$80.04{\pm}1.41$	78.15 ± 3.50	75.77 ± 2.77	71.30 ± 3.36	72.98 ± 3.35
	alter-∝SVM	81.85 ± 0.74	79.70 ± 0.17	$78.62 {\pm} 1.65$	74.06 ± 0.48	74.07 ± 2.29	73.52 ± 1.95
	conv-∝SVM	81.37 ± 0.69	78.97 ± 0.86	77.98 ± 1.02	$76.84 {\pm} 1.41$	$77.12{\pm}0.87$	$77.13{\pm}2.39$
breast-cancer	MeanMap	96.69 ± 0.17	96.72 ± 0.22	96.84 ± 0.29	96.60 ± 0.21	96.67 ± 0.18	96.78 ± 0.09
	InvCal	97.07 ± 0.18	97.10 ± 0.22	97.02 ± 0.18	97.08 ± 0.25	96.51 ± 0.25	96.09 ± 0.66
	alter-∝SVM	$97.19 {\pm} 0.12$	$97.10 {\pm} 0.12$	$97.19 {\pm} 0.12$	$97.23{\pm}0.25$	$97.09{\pm}0.15$	$97.23{\pm}0.36$
	conv-∝SVM	96.84 ± 0.17	97.01 ± 0.08	96.84 ± 0.13	96.99 ± 0.12	96.94 ± 0.34	97.13 ± 0.39
credit-a	MeanMap	85.86 ± 0.81	85.04 ± 0.73	84.96 ± 1.25	83.26 ± 1.52	81.14±3.84	76.65 ± 7.00
	InvCal	$86.26{\pm}0.65$	85.62 ± 0.12	85.41 ± 0.44	83.79 ± 0.54	82.21±5.15	76.90 ± 6.65
	alter-∝SVM	86.26 ± 0.71	$86.09{\pm}0.63$	$85.88{\pm}0.22$	$84.86{\pm}2.19$	80.89 ± 3.74	80.75 ± 1.33
	conv-∝SVM	85.80 ± 0.58	85.94 ± 0.34	84.26 ± 0.68	83.65 ± 0.95	$82.39{\pm}0.78$	$81.56{\pm}0.61$
breast-w	MeanMap	96.42 ± 0.18	96.45 ± 0.27	96.20 ± 0.27	96.14 ± 0.46	$94.91{\pm}1.02$	94.53 ± 1.24
	InvCal	96.85 ± 0.23	96.91 ± 0.13	96.77 ± 0.22	96.75 ± 0.22	96.65 ± 0.29	94.58 ± 1.76
	alter-∝SVM	$96.97{\pm}0.07$	$97.00{\pm}0.18$	$96.94{\pm}0.07$	$96.87{\pm}0.15$	$96.88{\pm}0.25$	$96.70 {\pm} 0.14$
	conv-∝SVM	96.71 ± 0.10	96.60 ± 0.06	96.57 ± 0.08	96.54 ± 0.19	96.77 ± 0.17	96.66 ± 0.14
ala	MeanMap	76.16 ± 0.33	75.86 ± 0.28	76.44 ± 1.26	76.48 ± 0.55	$75.95{\pm}1.06$	$77.03{\pm}1.71$
	InvCal	$82.31{\pm}0.09$	81.49 ± 0.49	$81.12{\pm}0.88$	$78.67{\pm}0.74$	75.53 ± 0.22	74.57 ± 1.05
	alter-∝SVM	82.22 ± 0.41	$81.80 {\pm} 0.68$	79.16 ± 1.51	75.77 ± 0.57	75.73 ± 1.80	75.36 ± 0.71
	conv-∝SVM	76.34 ± 0.61	75.39 ± 0.01	75.39 ± 0.01	75.40 ± 0.02	75.37 ± 0.04	75.37 ± 0.05
dna-3	MeanMap	90.99 ± 0.65	89.45 ± 1.12	88.01 ± 0.65	84.30 ± 1.36	79.59 ± 2.49	73.88 ± 4.89
	InvCal	93.23 ± 0.44	91.83 ± 0.63	89.49 ± 0.52	85.47 ± 1.33	78.26 ± 3.57	70.91 ± 3.00
	alter-∝SVM	$94.36{\pm}0.31$	$93.28{\pm}0.25$	$92.40{\pm}0.35$	$90.04{\pm}0.65$	$87.89{\pm}1.10$	$86.40{\pm}1.26$
	conv-∝SVM	91.75 ± 0.45	87.48 ± 2.02	80.41 ± 0.70	75.91 ± 0.29	75.37 ± 1.66	74.63 ± 0.21
satimage-3	MeanMap	95.67 ± 0.15	95.73 ± 0.25	95.36 ± 0.20	94.65 ± 0.49	$92.89{\pm}1.95$	92.05 ± 1.72
	InvCal	96.66 ± 0.19	96.39 ± 0.26	95.99 ± 0.24	95.32 ± 0.33	95.03 ± 0.27	94.07 ± 0.46
	alter-∝SVM	$96.68{\pm}0.32$	$96.54{\pm}0.24$	$96.16 {\pm} 0.41$	$95.71 {\pm} 0.28$	$95.16{\pm}0.17$	$95.05{\pm}0.23$
	conv-∝SVM	95.45 ± 0.13	95.34 ± 0.13	95.38 ± 0.49	94.69 ± 0.68	94.69 ± 0.57	94.14 ± 0.70

 $Table\ 2.\ Additional\ experiments.\ Accuracy\ with\ RBF\ kernel,\ with\ bag\ size\ 2,\ 4,\ 8,\ 16,\ 32,\ 64.$