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Abstract

This paper presents a new class of tensor fac-
torization called positive semidefinite tensor
factorization (PSDTF) that decomposes a set
of positive semidefinite (PSD) matrices into
the convex combinations of fewer PSD basis
matrices. PSDTF can be viewed as a natu-
ral extension of nonnegative matrix factoriza-
tion. One of the main problems of PSDTF is
that an appropriate number of bases should
be given in advance. To solve this problem,
we propose a nonparametric Bayesian model
based on a gamma process that can instanti-
ate only a limited number of necessary bases
from the infinitely many bases assumed to
exist. We derive a variational Bayesian algo-
rithm for closed-form posterior inference and
a multiplicative update rule for maximum-
likelihood estimation. We evaluated PSDTF
on both synthetic data and real music record-
ings to show its superiority.

1. Introduction

Matrix factorization (MF) has recently been an active
research topic in the field of machine learning. Given
a matrix X ∈ RM×N as observed data, the objective
is to find a low-rank approximation X ≈ AB where
A ∈ R

M×K , B ∈ R
K×N , and K � min{M,N}. This

problem often arises in many application fields. Can-
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didates of X include a user-item rating matrix in col-
laborative filtering (Salakhutdinov & Mnih, 2008), a
set of face images in image processing (Lee & Seung,
2000), and a time-frequency spectrogram in audio pro-
cessing (Smaragdis & Brown, 2003). Many variants of
MF have been proposed by using various measures on
the reconstruction error D(X|AB) and imposing con-
straints on A and B. In terms of probabilistic model-
ing, a specific model is defined by a likelihood function
p(X|A,B) and prior distributions p(A) and p(B).

One of the popular classes of MF is nonnegative matrix
factorization (NMF), in which all elements of A and B
must be no less than zero. This constraint reflects the
fact that some physical quantities, e.g., pixel bright-
ness and signal energy, cannot be negative. A typical
way to impose this constraint is to place element-wise
gamma priors on A and B (Cemgil, 2009). D(X|AB)
has often been defined in an element-wise manner by
using the Bregman divergence (Bregman, 1967), which
includes as special cases the Kullback-Leibler (KL) di-
vergence (Kullback & Leibler, 1951) and the Itakura-
Saito (IS) divergence (Itakura & Saito, 1968). The as-
sumption underlying the likelihood p(X|A,B) is that
each element ofX is independently Poisson distributed
in KL-NMF or independently exponentially distributed
in IS-NMF.

In audio analysis, IS-NMF is more suitable for decom-
posing a power spectrogram X over M frequency bins
and N frames as the product of sound-source power
spectra (K columns of A) and the corresponding tem-
poral activations (K rows of B) (Févotte et al., 2009).
IS-NMF is theoretically justified if the frequency bins
of source spectra are independent. Note that the au-
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Figure 1. Comparison between IS-NMF and LD-PSDTF.

dio signals of pitched instruments have clear periodici-
ties, i.e., those signals are highly autocorrelated at cer-
tain time lags. However, the short-term Fourier trans-
form (STFT) is unable to perfectly decorrelate the fre-
quency components forming harmonic structures. A
similar problem arises in electroencephalogram (EEG)
analysis (Lee et al., 2006), in which cross-correlations
between multichannel signals recorded at different po-
sitions of the head are usually ignored. This indicates
that it is not appropriate to place gamma priors on A
and define D(X|AB) in an element-wise manner.

To solve this problem, we propose a new class of tensor
factorization called positive semidefinite tensor factor-
ization (PSDTF). As NMF decomposesN nonnegative
vectors (a matrix) as the conic sums of K nonnegative
vectors, PSDTF decomposes N PSD matrices (a ten-
sor) as the conic sums of K PSD matrices. As shown
in Figure 1, each nonnegative vector is embeded into a
PSD matrix that represents the covariance structure of
the multivariate elements. We thus place matrix-wise
Wishart priors on the basis matrices. In this paper the
reconstruction error is defined by using a kind of the
Bregman matrix divergence called the log-determinant
(LD) divergence (Kulis et al., 2009), also in a matrix-
wise manner. This implies that each slice of the ob-
served tensor is assumed to have a Wishart likelihood.
Since the resulting LD-PSDTF is a natural extension
of IS-NMF, an inherited problem is that the number
of bases, K, should be given in advance.

To estimate an appropriate number of basis matri-
ces, we propose a nonparametric Bayesian model of
LD-PSDTF similar to one of IS-NMF (Hoffman et al.,
2010). Although the Wishart prior-Wishart likelihood
hierarchy does not satisfy the conjugacy condition, we
can derive an elegant variational algorithm for closed-
form posterior inference. A multiplicative update rule
can also be used for maximum-likelihood estimation.
In addition, we reveal that IS-NMF in the frequency
domain approximates LD-PSDTF in the time domain
that can consider periodic covariance structures of the
audio signals. This explains why IS-NMF works well
for music power-spectrogram decomposition.

2. Gamma Process Positive
Semidefinite Tensor Factorization

We propose a probabilistic model of positive semidefi-
nite tensor factorization (PSDTF) and derive its non-
parametric Bayesian extension that in theory allows
observed data (e.g., a music signal) to contain an in-
finite number of latent bases (e.g., sound sources) by
using the gamma process. An effective number of bases
required for representing the observed data can be ef-
ficiently estimated in a data-driven manner. We then
discuss how PSDTF is related to matrix factorization
and how it is applied to music signal analysis.

2.1. Problem Specification

We will formalize the problem. Suppose we have as ob-
served data a three-mode tensorX = [X1, · · · ,XN ] ∈
RM×M×N , where each slice Xn ∈ RM×M is a real
symmetric positive semidefinite (PSD) matrix. Al-
though PSDTF can be defined even if Xn ∈ CM×M

is a complex Hermitian PSD matrix, we focus on the
case of Xn ∈ RM×M for explanatory simplicity.

The goal of factorization is to approximate each PSD
matrix Xn by a convex combination of PSD matrices
{V k}Kk=1 (K bases) as follows:

Xn ≈
K∑

k=1

θkhknV k ≡ Y n, (1)

where θk ≥ 0 is a global weight shared over all N slices
and hkn ≥ 0 is a local weight specific to the n-th slice.
Eq. (1) can also be represented as X ≈∑K

k=1 θkhk ⊗
V k ≡ Y , where ⊗ indicates the Kronecker product.

To evaluate the reconstruction error between PSD ma-
trices Xn and Y n, we propose to use a Bregman ma-
trix divergence (Bregman, 1967) defined as follows:

Dφ(Xn|Y n)

= φ(Xn)− φ(Y n)− tr
(∇φ(Y n)

T (Xn − Y n)
)
, (2)

where φ is a strictly convex matrix function. In this
paper we focus on the log-determinant (LD) divergence
(φ(Z) = − log |Z|) (Kulis et al., 2009) given by

DLD(Xn|Y n)

= − log
∣∣XnY

−1
n

∣∣+ tr
(
XnY

−1
n

)−M. (3)

This divergence is always nonnegative and is zero if
and only if Xn = Y n holds. A well-known special case
when M = 1 is the Itakura-Saito (IS) divergence over
nonnegative numbers (Itakura & Saito, 1968) given by
DIS(x|y) = − log(x/y) + x/y − 1 and is often used
in signal processing. Sivalingam et al. (2010) formal-
ized a similar tensor factorization problem that uses
DLD(Y n|Xn) as a cost function.
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Our goal here is to estimate unknown variables θ =
[θ1, · · · , θK ]T ∈ RK , H = [h1, · · · ,hK ] ∈ RN×K , and
V = [V 1, · · · ,V K ] ∈ RM×M×K such that the cost
function C(X|Y ) =

∑
nDLD(Xn|Y n) is minimized.

Note that our model imposes the nonnegativity con-
straint on θ and H and the positive semidefiniteness
constraint on V . We call this model LD-PSDTF.

2.2. Probabilistic Formulation

We explain Bayesian treatment of LD-PSDTF defined
by Eq. (1) in terms of probabilistic modeling.

2.2.1. Formulating a Probabilistic Model

We first formulate a finite model based on a fixed num-
ber of bases by specifying prior distributions on θ, H ,
and V and a likelihood function of X. In this model
we assume θk = 1 because the effect of θk can be com-
pensated by adjusting the scale of hk.

Since hkn is nonnegative (hkn ≥ 0) and V k is PSD
(V k ≥ 0), a natural choice is to place gamma and
Wishart priors on hkn and V k as follows:

hkn ∼G(a0, b0), (4)

V k ∼W(ν0,V 0), (5)

where a0 and b0 are the shape and rate parameters of
the gamma distribution and ν0 and V 0 are the degree
of freedom (DOF) and scale matrix of the Wishart
distribution.

We then assume PSD matrices {νXn}Nn=1 to be inde-
pendently Wishart distributed as follows:

νXn

∣∣θ,H,V ∼ W
(
ν,

K∑
k=1

θkhknV k

)
, (6)

where ν is a DOF of the Wishart distribution. Note
that E[Xn] = Y n and M[Xn] =

ν−M−1
ν Y n, where M

means the mode. When ν 
 M , M[Xn] ≈ Y n holds.
When ν < M , Xn is rank deficient. If M = ν = 1,
the distribution reduces to an exponential distribution.
The log-likelihood of Xn is given by

log p(Xn|Y n) =C(ν) +
ν −M − 1

2
log |Xn|

−ν

2
log |Y n| − ν

2
tr
(
XnY

−1
n

)
, (7)

where C(ν) is a constant term depending only on ν and
the second term can also be considered to be constant
because Xn is the observed data. Therefore, the max-
imization of the likelihood p(X|Y ) =

∏
n p(Xn|Y n)

with respect to Y is equivalent to the minimization of
the cost function C(X|Y ) =

∑
nDLD(Xn|Y n) (com-

pare Eq. (7) with Eq. (3)).

Consequently, a Bayesian model of LD-PSDTF is de-
fined by Eqs. (4), (5), and (6). Given the data X, our
goal is to calculate a posterior distribution p(H,V |X)
over unknown variables H and V .

2.2.2. Taking the Infinite Limit

To overcome the limitation that the number of bases
K should be specified in advance, we leverage Bayesian
nonparametrics for taking the infinite limit of Eq. (6)
as K diverges to infinity. Given the data X, an effec-
tive number of bases should be estimated in a data-
driven manner. We thus aim to learn a sparse infinite-
dimensional weight vector θ = [θ1, · · · , θ∞]T as pro-
posed by Hoffman et al. (2010).

We place a gamma process (GaP) prior on θ in a so-
called weak-approximation manner as follows:

θk ∼ G(αc/K, α), (8)

where α and c are positive numbers, Eprior[θk] = c/K,
and Eprior[

∑
k θk] = c. When the truncation level K

goes to infinity, the vector θ approximates an infinite-
dimensional discrete measure G that is stochastically
drawn from the GaP over a space Θ as follows:

G ∼ GaP(α,G0), (9)

where α is called a concentration parameter and G0 a
base measure. In our model we assumed that G0 is a
uniform measure such that G0(Θ) = c. The effective
number of elements, K+, such that θk > ε for some
number ε > 0 is almost surely finite. If we set K to be
sufficiently larger than α, only a few of the K elements
of θ will be substantially greater than zero.

A nonparametric Bayesian model of GaP-LD-PSDTF
is defined by Eqs. (4), (5), (6), and (8) with a large
truncation level K. Given the data X, our goal is to
calculate a posterior distribution p(θ,H,V |X) and
estimate the value of K+ at the same time.

2.3. “Augmented” Matrix Factorization

We show here that LD-PSDTF naturally emerges from
the standard problem of matrix factorization. Suppose
we have a set of N samples X̂=[x̂1, · · · , x̂N ] ∈ RM×N

as observed data, where x̂n ∈ RM is a feature vector of
the n-th sample. Although the case of x̂n ∈ C

M can
be dealt with, as in Section 2.1 we here discuss the
case of x̂n ∈ RM . In signal processing, for example, a
local signal sn ∈ RM in the n-th short window (called
a frame) is often regarded as x̂n (Figure 2). Alterna-
tively, x̂n can be a complex spectrum cn = Fsn ∈ CM

at the n-th frame, where F ∈ CM×M is the unitary
discrete Fourier transform matrix.
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Figure 2. Different representations of a music audio signal.

The goal is to discover a limited number of bases hav-
ing characteristic structures (e.g., instrument sounds)

from the observed data X̂ (e.g., music audio signal),
i.e., to decompose each sample x̂n into a linear sum of
K variable bases {ŵkn}Kk=1 as follows:

x̂n =

K∑
k=1

x̂nk =

K∑
k=1

θ̂kĥknŵkn, (10)

where θ̂k is a global coefficient of the k-th basis, ĥkn is a
local coefficient of the k-th basis, and x̂nk = θ̂kĥknŵkn

is the k-th component in x̂n. Those variables are al-
lowed to take any real values. If we assume that ŵkn is
a fixed basis such that ŵkn is equal to ŵk for any n and
define some symbols as θ̂ = [θ̂1, · · · , θ̂K ]T ∈ RK , Ŵ =

[ŵ1, · · · , ŵk] ∈ R
M×K , and Ĥ = [ĥ1, · · · , ĥK ] ∈

RN×K , Eq. (10) can be simply written as follows:

X̂ = Ŵdiag(θ̂)Ĥ
T
, (11)

where diag(z) means a diagonal matrix having a vec-

tor z as its diagonal elements. If diag(θ̂) is an identity

matrix (θ̂ = 1), Eq. (11) reduces to the standard prob-

lem of matrix factorization given by X̂ = Ŵ Ĥ
T
. The

optimal values of θ̂, Ŵ , and Ĥ depend on what kinds
of constraints are placed on those variables.

2.3.1. Formulating a Probabilistic Model

We aim to formulate a Bayesian model of Eq. (10). A
key feature is to consider essential correlations between
M elements of basis ŵkn. A natural choice is to put a
multivariate Gaussian prior on ŵkn as follows:

ŵkn ∼ N (0, V̂ k), (12)

where V̂ k ∈ RM×M is a full covariance matrix. In
general, the Gaussian mean is set to a zero vector. For
example, an audio signal is recorded as real numbers
distributed on both sides of zero (see Figure 2).

The linear relationship x̂nk = θ̂kĥknŵkn and Eq. (12)
lead to a likelihood of x̂nk as follows:

x̂nk|θ̂, Ŵ , Ĥ ∼ N (0, θ̂2kĥ
2
knV̂ k). (13)

Then, using the reproducing property of the Gaussian
and the linear relationship x̂n =

∑K
k=1 x̂nk, we get a

likelihood of x̂n as follows:

x̂n|θ̂, Ŵ , Ĥ ∼ N
(
0,

K∑
k=1

θ̂2kĥ
2
knV̂ k

)
. (14)

If we assume that θk = θ̂2k ≥ 0, hkn = ĥ2
kn ≥ 0, V k =

V̂ k ≥ 0, and Xn = x̂nx̂
T
n ≥ 0, Eq. (14) recovers

Eq. (7) when ν = 1 except for constant terms. We can
put the same priors as Eqs. (4), (5), and (8).

This is a special case of the general LD-PSDTF model
in which each Xn is restricted to a rank-1 PSD matrix
(Xn= x̂nx̂

T
n ). In general, the DOF of X can be larger

thanMN because eachXn is allowed to take any PSD
matrix. In this section, the DOF of X is MN because
Xn is just an augmented representation of x̂n.

2.3.2. Estimating the Latent Components

In many applications such as source separation, latent
component x̂nk is of main interest. One might consider
it necessary to calculate x̂nk = θ̂kĥknŵkn. Instead,
marginalizing out ŵkn gives the posterior of x̂nk as a
Gaussian whose mean and covariance are

E[x̂nk|x̂n, θ,H ,V ] =Y nkY
−1
n x̂n, (15)

V[x̂nk|x̂n, θ,H ,V ] =Y nk − Y nkY
−1
n Y nk, (16)

where Y nk = θkhknV k and Y n =
∑K

k=1 Y nk are PSD
matrices. For a Bayesian treatment, we need to calcu-
late E[x̂nk|x̂n] and V[x̂nk|x̂n] by marginalizing out θ,
H , and V under a posterior over these variables, but
this is analytically intractable. One alternative is to
substitute maximum-a-posteriori (MAP) estimates of
θ, H , and V into Eqs. (15) and (16).

2.4. Fourier Trick

We here discuss the formulation of LD-PSDTF in the
frequency domain. Using Eq. (14), the complex spec-
trum F x̂n (linear transformation of x̂n) is found to be
complex-Gaussian distributed as follows:

F x̂n|θ̂, Ŵ , Ĥ ∼ Nc

(
0,

K∑
k=1

θ̂2kĥ
2
knF V̂ kF

H

)
. (17)

It is known that V̂ k can be diagonalized by using F
if V̂ k is strictly a circulant matrix. A trivial example
is a case that V̂ k is a scaled identity matrix, i.e., ŵkn

is stationary white Gaussian noise. If V̂ k is a periodic
kernel and its size M is much larger than its period,
V̂ k can be roughly viewed as a circulant matrix.

These facts justify IS-NMF for power-spectrogram de-
composition. Since music audio signals roughly consist
of pitched sounds and percussive sounds, it is reason-
able to approximate V̂ k as a convex combination of
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periodic kernels (for pitched sounds) and identity ma-
trices (for percussive sounds). In the frequency domain
LD-PSDTF thus reduces to IS-NMF discarding the
covariance between frequency bins, while in the time
domain the full covariance structure is still taken into
account. This approximation dramatically reduces the
computational cost of LD-PSDTF from O(M3NK) to
O(MNK) as suggested in (Liutkus et al., 2011).

3. Variational Inference

We explain an inference method for a Bayesian model
of GaP-LD-PSDTF defined by Eqs. (4), (5), (6), and
(8). Given the observed data X, our goal is to calcu-
late a posterior p(θ,H ,V |X) by using the Bayes rule
p(θ,H,V |X) = p(X, θ,H ,V )/p(X). Since p(X) is
analytically intractable, we use a variational Bayesian
(VB) method for approximating p(θ,H,V |X) by a
factorizable distribution q(θ,H ,V ) given by

q(θ,H ,V ) =

K∏
k=1

(
q(θk)

(
N∏

n=1

q(hkn)

)
q(V k)

)
. (18)

These factors can be alternately updated to monoton-
ically increase a log-evidence lower bound L given by

log p(X) ≥ E[log p(X|θ,H ,V )]

+ E[log p(θ)] + E[log p(H)] + E[log p(V )]

− E[log q(θ)]− E[log q(H)]− E[log q(V )] ≡ L. (19)

Since the first term is still intractable, we need to take
a further lower bound L′ such that L ≥ L′. Note that
L can be indirectly maximized by maximizing L′. The
updating formulas are

q(θ) ∝ p(θ) exp(Eq(H,V )[log q(X|θ,H ,V )]),

q(H) ∝ p(H) exp(Eq(θ,V )[log q(X|θ,H ,V )]), (20)

q(V ) ∝ p(V ) exp(Eq(θ,H)[log q(X|θ,H ,V )]),

where log q(X|θ,H ,V ) is a variational lower bound
of log p(X|θ,H ,V ), which is given by Eq. (23).

3.1. Log-Evidence Lower Bound

To derive the tractable bound L′, we focus on the con-
vexity and concavity of matrix-variate functions over
PSD matrices. For example, f(V ) = log |V | is con-
cave and g(V ) = tr(ZV −1) is convex for any PSD
matrix Z. Let M be the dimension of V .

We first calculate a tangent plane of f(V ) by using a
first-order Taylor expansion as follows:

log |V | ≤ log |Ω|+ tr(Ω−1V )−M, (21)

where Ω is an arbitrary PSD matrix (tangent point)
and the equality is satisfied when Ω = V .

We then use the following matrix inequality, proposed
by Sawada et al. (2012), regarding g(V ):

tr

(
Z
(∑K

k=1 V k

)−1
)
≤

K∑
k=1

tr
(
ΦkZΦT

k V
−1
k

)
, (22)

where {V k}Kk=1 is a set of arbitrary PSD matrices,
{Φk}Kk=1 is a set of auxiliary matrices that sum to the
identity matrix (i.e.,

∑
k Φk = I), and the equality is

satisfied when Φk = V k(
∑

k′ V k′)−1.

Using Eqs. (21) and (22), we can derive the tractable
lower bound of E[log p(X|θ,H ,V )] (the first term of
Eq. (19)). A term regarding Xn is bounded as follows:

E[log p(Xn|θ,H ,V )] (see Eq. (7)) (23)

= −ν

2
E[log |Y n|]− ν

2
E
[
tr
(
XnY

−1
n

)]
+ const.

≥ −ν

2
log |Ωn| − ν

2

∑
kE
[
tr
(
θkhknV kΩ

−1
n

)]
+

νM

2

− ν

2

∑
kE

[
tr
(
θ−1
k h−1

knV
−1
k ΦnkXnΦ

T
nk

)]
+ const.,

where Ωn is a PSD matrix and {Φnk}Kk=1 is a set of
auxiliary matrices that sum to an identity matrix. Let-
ting the partial derivatives of Eq. (23) equal to be zero,
we can obtain the optimal values of Ωn and {Φnk}Kk=1

that satisfy the equality as follows:

Ωn =
∑

kE[Y nk], (24)

Φnk =
(
E
[
Y −1

nk

])−1
(∑

k′
(
E
[
Y −1

nk′
])−1

)−1

. (25)

3.2. Variational Bayesian Update

Here we discuss the functional forms of q(θk), q(hkn),
and q(V k). A problem lies in the non-conjugacy of the
Bayesian model. Eq. (23) involves the expectations
both of the scalar variables and of their reciprocals.
This is, the sufficient statistics are x and x−1, although
those of the gamma prior are log(x) and x. This means
that the functional forms of q(θk) and q(hkn) are given
by the generalized inverse Gaussian (GIG) distribu-
tion, as shown in Hoffman et al. (2010). Note that the
GIG distribution is defined as

GIG(x|γ, ρ, τ ) = (ρ/τ )
γ
2

2Kγ(
√
ρτ )

xγ−1e−
1
2 (ρx+τx−1), (26)

where γ, ρ > 0, and τ > 0 are parameters and Kγ is
the modified Bessel function of the second kind. The
expectations E[x] and E[x−1] are given by

E[x] =

√
τKγ+1(

√
ρτ )√

ρKγ(
√
ρτ)

, E

[
1

x

]
=

√
ρKγ−1(

√
ρτ)√

τKγ(
√
ρτ)

. (27)

As to matrix variable V k, we found that the functional
form of q(V k) is given by the matrix GIG (MGIG) dis-
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tribution (Barndorff-Nielsen et al., 1982). The MGIG
distribution over PSD matrix X is defined as

MGIG(X|γ,R,T ) =
2γM

|T |γBγ(RT /4)
|X|γ−M+1

2

exp

(
−1

2
tr
(
RX + TX−1

))
, (28)

where γ is a real number, R,T > 0 are PSD matrices,
M is the size of X, and Bγ is the matrix Bessel func-
tion of the second kind (Herz, 1955). It includes the
Wishart distribution as a special case (Butler, 1998)
and its sufficient statistics are log |X|, X, and X−1.
To calculate E[X] and E[X−1], we use a Monte Carlo
method as described in the supplementary material.

Consequently, we can assume the following forms:

q(θk) =GIG(θk|γθ
k , ρ

θ
k, τ

θ
k ),

q(hkn) =GIG(hkn|γh
kn, ρ

h
kn, τ

h
kn), (29)

q(V k) =MGIG(V k|γV
k ,RV

k ,T
V
k ).

These parameters are iteratively updated as follows:

γθ
k = αc/K, ρθk = 2α+ ν

∑
ntr
(
E[hknV k]Ω

−1
n

)
,

τ θk = ν
∑

ntr
(
E
[
h−1
knV

−1
k

]
ΦnkXnΦ

T
nk

)
,

γh
kn = a0, ρhkn = 2b0 + νtr

(
E[θkV k]Ω

−1
n

)
,

τhkn = νtr
(
E
[
θ−1
k V −1

k

]
ΦnkXnΦ

T
nk

)
, (30)

γV
k = ν0/2, RV

k = V −1
0 + ν

∑
nE[θkhkn]Ω

−1
n ,

T V
k = ν

∑
nE
[
θ−1
k h−1

kn

]
ΦnkXnΦ

T
nk.

3.3. Multiplicative Update

The multiplicative update (MU) is a well-known opti-
mization technique often used for maximum-likelihood
estimation of NMF. To show a clear connection of LD-
PSDTF to IS-NMF, we derive closed-form MU rules
for calculating the point estimates of H and V . Note
that we assume θk = 1 and tr(V k) = 1 (unit trace)
to remove the scale arbitrariness. If tr(V k) = s, the
scale adjustments V k ← 1

sV k and hk ← shk do not
change the LD divergence DLD(Xn|Y n).

We aim to maximize the log-likelihood given by remov-
ing the expectation operators from Eq. (23). Letting
the partial derivative with respect to hkn equal to be
zero, we get the following update rule:

hkn ← hkn

√
tr
(
Y −1

n V kY
−1
n Xn

)
tr
(
Y −1

n V k

) . (31)

Then, letting the partial derivative with respect to V k

equal to be zero, we get the following equation:

V kP kV k = V old
k QkV

old
k , (32)

where P k and Qk are PSD matrices given by

P k =
N∑

n=1

hknY
−1
n , Qk =

N∑
n=1

hknY
−1
n XnY

−1
n . (33)

Sawada et al. (2012) derived a complicated solution of
Eq. (32), but we can solve it analytically by using the
Cholesky decomposition Qk = LkL

T
k , where Lk is a

lower triangular matrix. Finally, we get

V k ← V kLk(L
T
kV kP kV kLk)

− 1
2LT

k V k. (34)

When all the matrices are diagonal, Eqs. (31) and (34)
reduce to the one in IS-NMF (Nakano et al., 2010).

4. Related Work

We show that PSDTF has deep connections to nonneg-
ative matrix factorization (NMF), tensor factorization
(TF), and principal component analysis (PCA).

4.1. Nonnegative Matrix Factorization

PSDTF includes NMF as a special case. If we restrict
PSD matrices Xn and V k to diagonal matrices (i.e.,
Xn = diag(xn) and V k = diag(vk) for some nonneg-
ative vectors xn and vk) Eq. (1) can be written as

xn ≈
K∑

k=1

θkhknvk, (35)

where θk and hkn are nonnegative numbers. If θk = 1,
this model reduces to the basic formulation of NMF.
Févotte et al. (2009) showed that the IS divergence is
theoretically suitable for evaluating the reconstruction
error of Eq. (35) in the task of audio source separation.
Hoffman et al. (2010) proposed an infinite extension of
IS-NMF (GaP-IS-NMF) using a gamma process prior
on θ. GaP-LD-PSDTF can therefore be viewed as a
natural extension of GaP-IS-NMF.

An interesting finding is that the positive semidefinite-
ness (nonnegative definiteness) constraint on matrices
in PSDTF induces sparse decomposition like the non-
negativity constraint on vectors and scalars as in NMF.
Positive semidefiniteness can therefore be considered a
generalization of the nonnegativity concept.

4.2. Tensor Factorization

PSDTF is related to a variant of TF called canonical
polyadic (CP) decomposition (Carroll & Chang, 1970;
Harshman, 1970). If we restrict a PSD matrix V k to a
rank-1 matrix (i.e., V k = uku

T
k for some vector uk),

Eq. (1) can be written as

X ≈
K∑

k=1

θkhk ⊗ uk ⊗ uk. (36)
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This can be viewed as CP decomposition in which basis
vectors of the second mode, {uk}Kk=1, are constrained
to be equal to those of the third mode, and θk and hk

should be nonnegative. In addition, PSDTF uses the
LD divergence for evaluating the reconstruction error
while typical TF uses the Euclidean distance.

There are some other related models. Tucker decom-
position (Tucker, 1966) is a generalization of CP de-
composition and Xu et al. (2012) proposed its infinite
extension (K → ∞) based on the Gaussian or t pro-
cess. Shashua & Hazan (2005) proposed nonnegative
TF (NTF) that, like NMF, imposes a nonnegativity
constraint on all elements of factors. In this paper the
nonnegativity constraint on θk and hk, not on uk, led
to a new class of TF.

4.3. Principal Component Analysis

LD-PSDTF is related to a major class of matrix factor-
ization (MF) using the Gaussian distribution as a core
building block of probabilistic models. Let us recall
the MF model given by Eq. (11):

X̂ = Ŵ Ĥ
T

(37)

where X̂ ∈ R
M×N , Ŵ ∈ R

M×K , and Ĥ ∈ R
N×K (N

is the number of observations).

Several probabilistic models are obtained by putting
Gaussian priors in different ways. Placing an isotropic
Gaussian prior on N columns of Ĥ (latent-space co-
ordinates corresponding to the observations) leads to
probabilistic PCA (PPCA) (Bishop, 1999). If we put

an isotropic Gaussian prior on M rows of Ŵ (mapping
functions from the latent space to the observed space),
the resulting model is called dual PPCA. Marginaliz-
ing Ŵ out, we can formulate a Gaussian process la-
tent variable model (GPLVM) (Lawrence, 2003). PS-
DTF, on the other hand, puts a full-covariance Gaus-
sian prior on K columns of Ŵ . If we instead use a GP
prior, PSDTF given by Eq. (14) can be viewed as mul-
tiple kernel learning (MKL) (Lanckriet et al., 2004).

5. Evaluation

This section reports experiments to evaluate the per-
formance of LD-PSDTF.

5.1. Synthetic Data

We evaluated the capability of GaP-LD-PSDTF to dis-
cover basis PSD matrices {V k}K+

k=1 used for generating
an observed tensorX and to estimate the value ofK+.
In this experiment we use M = ν = 10, N = 2000, and
K+ = 6. The synthetic dataX was stochastically gen-

True positive semidefinite basis matrices (K=6)

Multiplicative update (Maximum-likelihood estimation for LD-PSDTF)

Variational Bayesian update (Bayesian inference for GaP-LD-PSDTF)

Figure 3. Experimental results for synthetic data.
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Figure 4. Brain activities discovered from EEG data.

erated according to the following process:

hkn ∼G(0.1, 0.1),
V k ∼W(10, I/10), (38)

νXn ∼W (ν,
∑

k hknV k) ,

To learn the GaP-LD-PSDTF model, we used the VB
algorithm with a truncation level K = 100, and hy-
perparameters α = c = 1, a0 = b0 = 0.1, ν0 = 10, and
V 0 = I/ν0. Since Monte Carlo simulation of E[V k]
and E[V −1

k ] was found to be often unreliable, we in-
stead calculated the maximum-a-posteriori estimates.
For maximum-likelihood estimation of the LD-PSDTF
model, we used the MU algorithm with K = 6. The
both methods were initialized randomly.

As shown in Figure 3, the experimental results showed
that the both models successfully discovered the cor-
rect basis matrices. The hyperparameters were not
sensitive to the results. In GaP-LD-PSDTF, the true
number of bases, K+ = 6, was correctly estimated.

5.2. EEG Data

We then tested LD-PSDTF on a popular EEG dataset
(Blankertz, 2001). We aimed to predict a left or right
hand movement (label -1 or 1) from 500 ms EEG sig-
nals recorded at 28 channels of the brain (M = 28)
with a sampling rate of 100 Hz. There were 416 trials
(N = 416) of which 100 belong to the test set. For each
trial we calculated a full-rank covariance matrix over
50 frames. The PSD basis matrices and their activa-
tions were estimated by using the MU algorithm with
K = 5 in an unsupervised manner. We used Fisher’s
LDA for binary classification of the K-dimensional ac-
tivations corresponding to the individual trials.
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The most significant principal component of each ba-
sis matrix is shown in Figure 4, in which each number
indicates the correlation between the ground-truth la-
bels and the estimated activations on the test set. The
accuracies of classification were 73% (K = 5) and 79%
(K = 10). The leftmost and rightmost bases with high
correlations are compatible with the well-known physi-
ological process called event-related desynchronization
(ERD). We consider these results promising.

Note that the best results from the competition were
obtained by combining the first-order features (later-
alized readiness potential: LRP) and the second-order
ones (ERD), whereas our method used only the latter.
Finding discriminative patterns without any supervi-
sion in this context is a highly nontrivial task, because
discriminative signals are much weaker than irrelevant
oscillatory activities (e.g., occipital alpha waves).

5.3. Music Data

We evaluated LD-PSDTF for music signal analysis.
As discussed in Section 2.4, LD-PSDTF formulated in
the time domain is equivalent to IS-NMF formulated
in the frequency domain if {V k}Kk=1 are circulant ma-
trices such as periodic kernels, identity matrices, and
their conic sums. Since this is a reasonable assumption
for music signals, we used the Fourier trick explained in
Section 2.4. We tested an infinite model with a trun-
cation level K = 100 and finite models (θk = 1) with
different K ranging from 1 to 100. For comparison, we
tested an infinite model of KL-NMF (GaP-KL-NMF)
and finite models with different K ranging from 1 to
100 for amplitude-spectrogram decomposition.

We used three songs (No.1, 2, and 3) from the “RWC
Music Database: Popular Music” (Goto et al., 2002).
The CD-quality audio signals were downsampled at 16
[kHz] and were analyzed by using short-time Fourier
transform with a window size of 128 [ms] and a shifting
interval of 64 [ms]. The size of X is specified as M =
2048, and N = 3237, 3447, and 3020, respectively. We
used the VB algorithm with hyperparameters α = 1,
c = 1, a0 = b0 = 0.1, ν0 = M , ν = 1, and V 0 = I/ν0.

The experimental results showed that in each song the
value of K+ chosen by GaP-LD-PSDTF was close to
the best value of K found by finite models (Figure 5).
This proves that GaP-LD-PSDTF has an ability of au-
tomatic model-order selection without expensive grid
search. Similar results were obtained in KL-NMF, but
GaP-LD-PSDTF achieved much higher log-evidence
lower bounds than GaP-KL-NMF did. This supports
the appropriateness of IS-NMF for music analysis. Ad-
ditional results of source separation with sound sam-
ples are given in the supplementary material.
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Figure 5. Experimental results for music recordings.

6. Conclusion

This paper presented positive semidefinite tensor fac-
torization (PSDTF) as a natural extension of nonneg-
ative matrix factorization (NMF). We used a Bregman
matrix divergence called the log-determinant (LD) di-
vergence as the reconstruction error. This LD-PSDTF
can be viewed as a natural extension of NMF based
on the Itakura-Saito (IS) divergence. We formulated a
nonparametric Bayesian model that allows an observed
tensor to contain an unbounded number of bases and
derived a variational Bayesian algorithm and a multi-
plicative update rule by using matrix inequalities. In
addition, we showed the effectiveness of the Fourier
trick, i.e., the frequency-domain formulation can dra-
matically reduce the computational cost in some ap-
plications such as music signal analysis.

One interesting open question is what kind of PSDTF
can be viewed as an extension of NMF based on the
Kullback-Leibler (KL) divergence. The von-Neumann
(vN) divergence (Tsuda et al., 2005) is well known as
another major type of the Bregman matrix divergence
that includes the KL divergence as a special case. Sub-
stituting φ(Z) = tr(Z logZ −Z) into Eq. (2), the vN
divergence is given by

DvN(Xn|Y n)

= tr (Xn logXn −Xn logY n −Xn + Y n) . (39)

The assumption underlying p(Xn|Y n), however, is not
obvious although the Bregman divergence must corre-
spond one-to-one to an exponential family. We plan to
investigate vN-PSDTF to formulate a Bayesian model.
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