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Abstract

Many semi-supervised clustering algorithm-
s have been proposed to improve the clus-
tering accuracy by effectively exploring the
available side information that is usually in
the form of pairwise constraints. However,
there are two main shortcomings of the ex-
isting semi-supervised clustering algorithms.
First, they have to deal with non-convex op-
timization problems, leading to clustering re-
sults that are sensitive to the initialization.
Second, none of these algorithms is equipped
with theoretical guarantee regarding the clus-
tering performance. We address these limi-
tations by developing a framework for semi-
supervised clustering based on input pattern
assisted matrix completion. The key idea is
to cast clustering into a matrix completion
problem, and solve it efficiently by exploiting
the correlation between input patterns and
cluster assignments. Our analysis shows that
under appropriate conditions, only O(log n)
pairwise constraints are needed to accurately
recover the true cluster partition. We verify
the effectiveness of the proposed algorithm
by comparing it to the state-of-the-art semi-
supervised clustering algorithms on several
benchmark datasets.

1. Introduction

Data clustering is an important task that has found nu-
merous applications in many domains, including com-
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puter vision (Frigui & Krishnapuram, 1999), informa-
tion retrieval (Bhatia & Deogun, 1998; Liu & Croft,
2004), recommender systems (Li & Kim, 2003), etc.
But, on the other hand, data clustering is also an ill-
posed problem due to its unsupervised nature (Jain,
2010). Semi-supervised clustering (Basu et al., 2002)
addresses this limitation by effectively exploring the
available side information that is often cast in the for-
m of pairwise constraints: must-links for pairs of data
points that belong to the same cluster and cannot-
links for pairs of data points that belong to different
clusters. The key idea of these algorithms is to search
for the optimal data partition that is consistent with
both the given pairwise constraints and the input data
points to be clustered.

Despite the progress, there are two main shortcom-
ings with the available semi-supervised clustering al-
gorithms. First, most semi-supervised clustering al-
gorithms have to deal with non-convex optimization
problems, leading to clustering results that are only
locally optimal and sensitive to the initialization. Sec-
ond, although many computational algorithms have
been proposed for semi-supervised learning, none of
them is equipped with a theoretical guarantee on clus-
tering performance. In particular, it is unknown how
the clustering performance is improved with increas-
ing number of pairwise constraints, an issue that is
usually referred to as sample complexity in supervised
learning (Bartlett, 1998).

In this work, we aim to address these limitations by
developing a new framework for semi-supervised learn-
ing based on the theory of matrix completion (Candès
& Tao, 2010). The proposed framework aims to re-
construct the pairwise similarity matrix, that gives 1
for any two data points in the same cluster and 0 oth-
erwise, based on the given constraints and the input
patterns of the objects to be clustered. The proposed
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framework results in a convex optimization problem
and, consequentially, globally optimal solutions. More
importantly, the proposed work is equipped with a
strong theoretical guarantee: with a high probabili-
ty, the proposed algorithm can accurately recover the
true data partition provided (i) the cluster member-
ship vectors can be well approximated by the top sin-
gular vectors of the data matrix, and (ii) the number of
pairwise constraints is sufficiently large. In particular,
we show that under appropriate conditions, the true
data partition can be perfectly recovered by the pro-
posed algorithm with O(rk log n) pairwise constraints,
where n is the number of data points to be clustered,
r is the number of clusters, and k is the number of
singular vectors used to approximate the cluster mem-
berships. The logarithmic dependence on n makes the
proposed algorithm particularly suitable for clustering
large data sets.

2. Related work

Most semi-supervised clustering algorithms can be
classified into two categories (Bilenko et al., 2004):
constrained clustering and distance metric based semi-
supervised clustering.

The key idea of constrained clustering is to directly
incorporate the pairwise constraints into the existing
clustering algorithms. The hard constrained cluster-
ing algorithms (Wagstaff et al., 2001; Shental et al.,
2003; Allab & Benabdeslem, 2011) only consider the
cluster assignments that are consistent with all the
pairwise constraints, while the soft constrained clus-
tering algorithms (Basu et al., 2004; Lu & Leen, 2004;
Basu et al., 2004; Lu & Leen, 2004; Law et al., 2005;
Davidson & Ravi, 2005; Law et al., 2005; Bekkerman
& Sahami, 2006) penalize the clustering results based
on the number of violated constraints.

The second group of semi-supervised clustering al-
gorithms is based on distance metric learning (Xing
et al., 2002). These algorithms first learn a distance
metric from the given pairwise constraints. It then
derives a linear transform from the learned distance
metric, and applies it to generate a new vector rep-
resentation for the data points to be clustered. The
final data partition is computed by applying the ex-
isting clustering algorithms to the transformed vector
representation. Various distance metric learning algo-
rithms have been applied to semi-supervised cluster-
ing (Xing et al., 2002; Bar-Hillel et al., 2005; Hoi et al.,
2006; Weinberger et al., 2006; Davis et al., 2007). Fi-
nally, several hybrid approaches have been developed
for semi-supervised clustering that aim to combine the
strength of constrained clustering with that of distance

metric learning (Bilenko et al., 2004; Basu et al., 2006).

Matrix completion (Candès & Tao, 2010) was orig-
inally proposed for collaborative filtering (Goldberg
et al., 1992), where the goal is to predict the ratings
of users for all the items given the ratings for a subset
of randomly sampled items. It was recently exploit-
ed for graph-based clustering (Jalali et al., 2011), en-
semble clustering (Yi et al., 2012c) and crowdsourced
clustering (Yi et al., 2012a). The key difference be-
tween this work and the existing studies of clustering
by matrix completion is that we explicitly incorporate
the input patterns of objects into matrix completion,
which not only improves the computational efficiency
but, more importantly, reduces the number of pairwise
constraints required for semi-supervised clustering. In
addition, we address semi-supervised clustering in this
work while the other studies focused on the standard
clustering problem.

3. Semi-supervised Clustering by Input
Pattern Assisted Matrix Completion

We first present a matrix completion based framework
for semi-supervised clustering. We then present the
proposed algorithm for semi-supervised clustering.

3.1. A Matrix Completion Framework for
Semi-supervised Clustering

Let D = {O1, . . . , On} be the set of n objects to be
clustered, and let X = (x1, . . . ,xn) be their feature
representation, where xi ∈ Rd is a vector of d dimen-
sions. Let M denote the set of must-link constraints
where (i, j) ∈ M implies that xi and xj should be in
the same cluster, and C denote the set of cannot-link
constraints, where (i, j) ∈ C implies that xi and xj
belong to different clusters. For the convenience of p-
resentation, we also define set Ω = M∪ C to include
all the pairwise constraints. Let r be the number of
clusters, and nmin be the size of the smallest cluster.
The objective of semi-supervised clustering is to par-
tition n data points into r clusters that are consistent
with (i) the pairwise constraints in M and C, and (ii)
the data matrix X such that data points with similar
input patterns are put into the same cluster.

Let ui ∈ {0, 1}n be the membership vector of the i-
th cluster, where ui,j = 1 if xj is assigned to the i-
th cluster and zero, otherwise. Define the pairwise
similarity matrix S ∈ {0,+1} as

S =

r∑
i=1

uiu
>
i

Evidently, Si,j = 1 if xi and xj are assigned to the
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same cluster, and zero, otherwise. It is easy to verify
the rank of matrix S is r. The given must-links in
M and cannot-links in C provide partial observations
for M , i.e. Si,j = 1 if (i, j) ∈ M and Si,j = 0 if
(i, j) ∈ C. Since finding the best data partition is
equivalent to recovering the binary similarity matrix S,
following (Jalali et al., 2011; Yi et al., 2012a), we cast
the semi-supervised clustering problem into a matrix
completion problem, i.e. filling out the missing entries
in binary similarity matrix S based on the pairwise
constraints in M and C (i.e. the partial observations
of S) and the data matrix X.

Similar to the standard theory for matrix comple-
tion (Candès & Tao, 2010), we can accurately recov-
er the binary similarity matrix S because S is of low
rank. We, however, note that the matrix completion
problem discussed in this work is different from the
previous studies of using matrix completion for clus-
tering (Jalali et al., 2011; Yi et al., 2012a) in that we
aim to complete the binary similarity matrix S by u-
tilizing both the observed entries in S and the input
patterns in X. It will be shown later, both theoreti-
cally and empirically, that by effectively exploring the
input patterns in X, the proposed algorithm is able
to reduce the sample complexity for matrix comple-
tion from O(n[log n]2) to O(log n), making it possible
to apply the proposed algorithm to cluster very large
data sets.

3.2. Input Pattern Assisted Matrix
Completion

In this subsection, we first present input pattern as-
sisted matrix completion for semi-supervised cluster-
ing. We then describe an efficient algorithm for solving
the related optimization problem.

In the standard matrix completion theory (Candès &
Tao, 2010), to reconstruct a matrix P of size n × n
from a subset of observed entries in ∆ ⊆ [n]× [n], we
solve the following optimization problem

min
P∈Rn×n

|P |tr s. t. R∆(P ) = R∆(S) (1)

where | · |tr is the trace norm, and R∆(S) : Rn×n 7→
Rn×n is a linear operator that maps a matrix S to a
new matrix R∆(S) given by

[R∆(S)]i,j =

{
Si,j (i, j) ∈ ∆
0 (i, j) /∈ ∆

According to (Candès & Tao, 2010), with a high prob-
ability, matrix P can be perfectly recovered by solving
the optimization problem in (1) if the number of ob-
served entries in ∆ is O(µ(P )2r(P )n[log n]2), where

r(P ) is the rank of P and µ(P ) is the coherence mea-
sure of P . In the case of binary similarity matrix S,
it is easy to verify that the coherence measure µ(S) is
bounded by

√
n/[nminr] and the rank of S equals to

the number of clusters r. As a result, the number of
pairwise constraints required for perfectly recovering
the binary similarity matrix S is O(κn[log n]2), where
κ = n/nmin. When data points are evenly distributed
over clusters, we observe that the number of pairwise
constraints required by matrix completion increases at
least linearly in the number of data points to be clus-
tered, making it unscalable to large data sets.

We address this limitation by developing a matrix
completion approach that explicitly incorporates the
data matrix X into the matrix completion process.
Let Z = (z1, . . . , zk) include the first k left singular
vectors of X, where k ≥ r. We make the following
crucial assumption about the relationship between X
and S:

A1 {ui}ri=1 lie in the subspace spanned by {zi}ki=1 ,

a similar assumption used by the spectral clustering
algorithm (Ng et al., 2001). Using assumption A1,
we can write S as S = ZMZ>, where M ∈ Rk×k.
Following the theory of matrix completion, we obtain
the optimal M by solving the following optimization
problem:

min
M∈Rk×k

|M |tr s. t. RΩ(ZMZ>) = RΩ(S) (2)

where Ω ⊆ [n]× [n] includes all the observed entries in
S derived from the pairwise constraints in M and C.

The following theorem shows the perfect recovery re-
sult for (2).

Theorem 1. Let µ(Z) be the coherence measure for
matrix Z given by

µ(Z) = max
1≤i≤n

n

k
|[ZZ>]i,i|2 (3)

Define

µ0 = max

(
µ(Z),

√
n

rnmin

)
. (4)

For fixed β > 2, define a and B as

a =
1

2
(1 + log2 k − log2 r) (5)

B =
512β

3
µ0rk lnn (6)

Then, under assumption A1 with a probability 1−4(a+
1)n−β+1 − 2an−β+2, M∗ = Z>SZ is the unique opti-
mizer to (2) provided |Ω| ≥ aB.



Semi-supervised Clustering by Input Pattern Assisted Pairwise Similarity Matrix Completion

Remark: Compared to the standard matrix comple-
tion theory, the sample complexity of input pattern as-
sisted matrix completion is reduced from O(rn[log n]2)
to O(k log n log k) if µ0 = O(1). Thus, if k = Ω(r) and
the number of clusters r is small, Theorem 1 implies
that O(lnn) pairwise constraints are needed in order
to obtain the perfect clustering result, provided as-
sumption A1 holds and the coherence measure µ0 is
small.

Evidently, A1 is a strong assumption that usually does
not hold in real world applications. We thus relax this
assumption by assuming that the cluster membership
vectors {ui}ri=1 can be well approximated by the top
k singular vectors of X. More specifically, we define
the projection operator Pk as Pk = ZZ>, and the
projection errors for the cluster membership vectors
as

E2 = max
1≤i≤r

1

n2
‖ui − Pkui‖2F (7)

Instead of assuming E = 0 as assumption A1, we as-
sume that E is small enough to allow for an accurate
recovery of the binary similarity matrix S. Under this
assumption, we modify the optimization problem in
(2) as follows

min
M∈Rk×k

|M |tr +
C

2

∥∥RΩ(ZMZ>)−RΩ(S)
∥∥2

F
(8)

where parameter C > 0 is introduced to balance the
tradeoff between finding the low rank matrix M and
fitting the observed pairwise constraints. The follow-
ing theorem shows that the binary similarity matrix S
can be accurately recovered by (8) if (i) the approx-
imation error E is small and (ii) |Ω|, the number of
pairwise constraints, is sufficiently large.

Theorem 2. Let M̂ be the optimal solution to (8) and

Ŝ = ZM̂Z be the reconstructed similarity matrix. For
a fixed β > 2, with a probability 1 − 4(a + 1)n−β+1 −
2an−β+2, we have

‖Ŝ − S‖F ≤ ν(k, r)E

where

ν(k, r) = 6
(√

2k + 4
√
r
) (

3 +
√
r
)

provided |Ω| ≥ aB and C ≥ 1/[
√
rE ]

As indicated by the above theorem, with a sufficiently
large number of pairwise constraints, we have ‖Ŝ −
S‖F ∝ E , implying a small difference between Ŝ and
S when the cluster membership vectors can be well
approximated by the top k singular vectors of X.

Algorithm 1 Efficient Stochastic Subgradient De-
scent for Solving the Optimization Problem (8)

1: Input:
• Z ∈ Rn×k: first k left singular vectors of X
• C > 0: loss function parameter
• r: number of clusters
• T : number of iterations
• ηt: step size

2: Initialization: U0 = 0k×r, Σ0 = 0r×r, V0 = 0k×r
3: for t = 0, . . . , T − 1 do
4: Generate a k × r probing matrix H
5: Set Ût+1 = [UtΣt, Bt], where Bt = (UtV

>
t + C ·

Z>(RΩ(ZMZ> − S))Z)H.
6: Set V̂t+1 = [Vt − ηtH]
7: QR factorization of Ût+1: Ût+1 = QURU
8: QR factorization of V̂t+1: V̂t+1 = QVRV
9: Compute K = RUR

>
V

10: SVD decomposition of K: K = M Σ̄t+1N
>

11: Set Ūt+1 = QUM and V̄t+1 = QVN
12: Ut+1 = Ūt+1(1:k,1:r)
13: Σt+1 = Σ̄t+1(1:r,1:r)
14: Vt+1 = V̄t+1(1:k,1:r)
15: M (t+1) = Π(Ut+1Σt+1V

>
t+1)

16: end for

Let M̂ be the optimal solution for (8). The estimat-

ed binary similarity matrix is given by Ŝ = ZM̂Z>.
Since |Ŝ − S|F is small and the eigenvectors of S cor-
respond to the cluster membership vectors, we expect
the first r eigenvectors of Ŝ reveal the clustering struc-
ture of the data. As a result, we apply the spectral
clustering algorithm to find the best data partition,
i.e. we first compute the top r eigenvectors of Ŝ, and
then run the k-means algorithm over the computed
eigenvectors. To improve the computational efficiency,
we apply the spectral clustering algorithm proposed
in (Chen et al., 2011) that reduces computational cost
by the matrix sparsification technique (von Luxburg,
2007) and the Nystrom approximation (Fowlkes et al.,
2004).

We finally discuss how to efficiently solve the optimiza-
tion problem in (8). We exploit the fast stochastic sub-
gradient descent (FSGD) method developed in (Avron
et al., 2012). Define

L(M) =
C

2

∥∥RΩ(ZMZ>)−RΩ(S)
∥∥2

F
.

At each iteration, the proposed algorithm samples a
subset of rows from the binary similarity matrix S by
introducing a probing matrix H. It then computes an
unbiased estimate of the gradient ∇L(Mt), denoted by
∇̃L(Mt), based on the sampled rows. Given the unbi-
ased estimate of gradient, solution Mt is updated by
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Mt+1 = Π
(
M ′t+1 = Mt − η∇̃L(Mt)

)
. Here, Π(A) is

a soft thresholding function and is defined as Π(A) =∑r
i=1 max(λi − 1, 0)aia

>
i , where (ai, λi), i = 1, . . . , r

are the top r eigenvectors and eigenvalues of A. Al-
gorithm 1 shows the detailed steps of the proposed
algorithm, where the notation U(1:k, 1:r) represents
the sub-matrix of U that includes the first k rows and
the first r columns of U .

4. Analysis

In this analysis, we will focus on the result for the noisy
case, namely where the cluster membership vectors can
be well approximated by the top k singular vectors of
X although they do not lie in the subspace spanned by
the top k singular vectors. This is a more general case
and the perfect recovery result in Theorem 1 follows
immediately from Theorem 2 by setting E = 0.

We need to define a few notations before presenting our
analysis. We define two linear operators PT : Rn×n 7→
Rn×n and PT⊥ : Rn×n 7→ Rn×n as follows:

PT (A) = PUA+APU − PUAPU (9)

PT⊥(A) = (Pk − PU )A(Pk − PU ) (10)

where PU = UU> and Pk = ZZ>. The coherence
measurement µ for binary similarity matrix S is given
by

µ(S) =
n

r
max

1≤i≤n
|PUei|2 ≤

n

rnmin
(11)

As a result, we have the following inequality for µ0

defined in (4)

µ0 = max

(
µ(Z),

n

rnmin

)
≥ max(µ(Z), µ(S))

Our strategy is to first identify the deterministic con-
ditions for the optimal solution M∗ = Z>SZ to be
close to M̂ , and then confirm that these deterministic
conditions will hold with high probability.

Theorem 3. Under the assumptions

1. the number of pairwise constraints is sufficiently
large, i.e.

|Ω| > 512µ2
0r(k − r) lnn

3
(12)

2. there exists a dual matrix Y ∈ Rn×m satisfied the
following condition

RΩ(Y ) = Y,

‖PT (Y )− UU>‖ ≤
√

r

2k
, (13)

‖PT⊥(Y )‖ ≤ 1

2

3. for any nonzero F ∈ Rn×n satisfying F = PkFPk,
we have

‖PT (F )‖F ≤ γ‖PT⊥(F )‖F + 2‖RΩ(F )‖F , (14)

where γ is given by

γ = 4µ0(k − r)

√
2 log n

3|Ω|
(15)

Then, by setting C = 1√
rE ,, we have

|S − Ŝ|F ≤
[
6
(√

2k + 4
√
r
) (

3 +
√
r
)]
E

The proof can be found in the appendix. The follow-
ing two theorems are developed to confirm that the
conditions specified in Theorem 3 hold with a high
probability.

Theorem 4. With a probability 1 − 4n−β+1,for any
Z 6= 0 satisfying Z = PUZPU , we have

‖PT (Z)‖F ≤ γ‖PT⊥(Z)‖F + 2‖RΩ(Z)‖F
where γ is given in (15), provided |Ω| ≥ Ω0 and |Ω1| ≤
Ω0.

To verify if there exists a matrix Y that satisfies the
condition in (14), we follow (Candès & Recht, 2011)
and construct Y as follows. We randomly select qΩ0

entries from Ω, and divide the selected entries into q
subsets of equal size, denoted by Ω1, . . . ,Ωq, with

|Ωi| = Ω0, i = 1, . . . , q.

We generate a sequence of Yt, t = 1, . . . , q as follows

Yt =
n2

Ω0

t∑
i=1

RΩi(Wi)

where W1 = UU> and Wt+1 is defined inductively as

Wt+1 = PT (UU> − Yt)

= Wt −
n2

Ω0
PTRΩt(Wt)

=

(
PT −

n2

Ω0
PTRΩtPT

)
Wt

We construct Y as the last element of the sequence, i.e.
Y = Yq. Evidently, we have Y = RΩ(Y ). The follow-
ing theorems show that Y satisfies the other properties
specified in (14)

Theorem 5. With a probability 1−2qn−β+1, we have

‖PT (Y )− UU>‖ ≤
√

r

2k

if q ≥ a.

Theorem 4 and Theorem 5 follows directly from the
analysis from (Recht, 2011).
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5. Experiments

In this section, we first conduct a simulated study to
verify our theoretical claim, i.e. the sample complexity
of the proposed semi-supervised clustering algorithm is
only logarithmic dependence on n. We then compare
the proposed algorithm to the state-of-the-art algo-
rithms for semi-supervised clustering on several bench-
mark datasets.

5.1. Baselines, and Parameter Settings

Baselines. We compare the proposed semi-supervised
clustering algorithm to the following six state-of-
the-art algorithms for semi-supervised clustering, in-
cluding three constrained clustering algorithms and
three distance metric learning algorithms. The three
constrained clustering algorithms are (a) MPCK-
means, the metric pairwise constrained k-means algo-
rithm (Bilenko et al., 2004), (b) CCSKL, constrained
clustering by spectral kernel learning (Li & Liu, 2009),
and (c) PMMC, pairwise constrained maximum mar-
gin clustering (Zeng & Cheung, 2012). The three state-
of-the-art distance metric learning algorithms are (d)
DCA, the discriminative component analysis (Hoi
et al., 2006), (e) LMNN, the large margin nearest
neighbor classifier (Weinberger et al., 2006), and (f)
ITML, the information theoretic metric learning al-
gorithm (Davis et al., 2007). In order to examine the
effectiveness of pairwise constraints for clustering, we
also include the baseline method, referred to as Base,
that directly applies the spectral clustering algorith-
m to cluster data points without any constraints. We
refer to the proposed semi-supervised clustering algo-
rithm as Matrix Completion based Constraint Clus-
tering, or MCCC for short.

Evaluation and Parameter Settings. Normalized
mutual information (NMI for short) (Cover & Thomas,
2006) is used to measure the coherence between the in-
ferred clustering and the ground truth categorization.
To determine the parameter C in (8), we follow the
heuristic used in (Yi et al., 2012a;b) that chooses the
best C that results in a balanced cluster distribution.
Two criteria are used in determining the values for k.
First, k should be small enough to make the Algorith-
m 1 efficient. Second, k should be reasonably large
to make the projection errors relatively small. In our
experiments, we set k = min(100, d), where d is the
dimensionality of the datasets.

5.2. Experiment with Synthesized Data

We first conduct experiments with simulated data to
verify that under the assumption A1, the proposed

semi-supervised clustering algorithm can perfectly re-
cover the true data partition with only O(log n) sam-
pled pairwise constraints. To this end, for a fixed n,
the number of data points to be clustered, we cre-
ate a partition of five clusters of equal size. Let
ui ∈ {0, 1}n, i = 1, . . . , 5 represent the cluster mem-
bership vectors. The target matrix to be recovered
is S =

∑5
i=1 uiu

>
i . We construct the input pattern

matrix Xsyn by first generating a Gaussian random
matrix G ∈ R5×15, with Gi,j drawn independent-
ly from a Gaussian distribution N (0, 1), and setting
Xsyn = UG, where U = (u1, . . . ,u5). We vary n
in range {5, 000, 10, 000, 20, 000, 50, 000, 10, 0000}. For
each n, we search for the smallest number of pairwise
constraints that results in the perfect partition (i.e.
NMI = 1). Figure 1 shows that the number of re-
quired constraints increases linearly in log n, thus ver-
ifying that the sample complexity is logarithmic in the
number of data points to be clustered.

Figure 1. The plot of the smallest number of pairwise con-
straints (PCs) needed for perfect recovery. The correlation
coefficient computed by the linear fit is 0.992, indicating a
linear dependence of sample complexity in logn.

Another advantage of the proposed algorithm is it-
s scalability to large datasets since it only requires
solving an optimization problem involving a smal-
l (k × k, k = Ω(r)) matrix. Table 1 summarizes the
running time of recovering the synthetic data Xsyn of
different sizes, with the number of observed pairwise
entries set to be the minimum required for perfect re-
covery. We observe that even for n = 100, 000, it takes
the proposed semi-supervised clustering algorithm less
than an hour.

Table 1. Running time (in seconds) for recovering synthetic
data of different size

n 5K 10K 20K 50K 100K
CPU time 24.0 77.1 217 1, 086 3, 429

5.3. Experiment with Benchmark Datasets

We evaluate the proposed semi-supervised clustering
algorithm on several benchmark datasets. They are
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Table 3. Average Clustering performance of the proposed semi-supervised clustering algorithm (MCCC) and the baseline
algorithms (Base, MPCKmeans (MPCK) (Bilenko et al., 2004), CCSKL (Li & Liu, 2009), PMMC (Zeng & Cheung, 2012),
DCA (Hoi et al., 2006), LMNN (Weinberger et al., 2006), and ITML (Davis et al., 2007)) on three datasets with 2, 000,
4, 000 and 6, 000 randomly sampled pairwise constraints

Datasets #pairwise constraints MCCC Base MPCK CCSKL PMMC DCA LMNN ITML

Mushrooms
2, 000 0.982 0.540 0.645 0.652 0.876 0.873 0.980 0.971
4, 000 0.991 0.540 0.684 0.786 0.898 0.977 0.982 0.981
6, 000 0.998 0.540 0.713 0.754 0.923 0.988 0.983 0.984

USPS M2
2, 000 0.979 0.866 0.950 0.979 0.976 0.971 0.976 0.982
4, 000 0.984 0.866 0.977 0.981 0.979 0.975 0.979 0.983
6, 000 0.991 0.866 0.989 0.982 0.987 0.981 0.985 0.986

Segment
2, 000 0.750 0.651 0.693 0.721 0.718 0.723 0.714 0.706
4, 000 0.755 0.651 0.701 0.695 0.734 0.741 0.744 0.740
6, 000 0.774 0.651 0.718 0.684 0.748 0.760 0.751 0.743

Table 2. Description of Datasets

Name #Instances #Features #Clusters
Mushrooms 8, 124 112 2
USPS M2 2, 822 256 2
Segment 2, 310 19 7

(i) Mushrooms database1 that contains 8, 124 mush-
rooms belonging to 2 classes: poisonous or edible; (ii)
USPS M2 database, that is comprised of 2, 822 images
belonging to the first two categories of USPS handwrit-
ten dataset (Hull, 1994); and (iii) Segment database2

that contains 2, 310 random segmentations of 7 out-
door images. Details of the three datasets are given in
Table 2.

We vary the number of randomly sampled pairwise
constraints from 2, 000, 4, 000 to 6, 000 for each data
sets. We note that we did not run experiments with
smaller numbers of pairwise constraints because our
theoretical analysis shows that the proposed algorith-
m is effective only when the number of constraints is
sufficiently large. All the experiments are performed
on a PC with Xeon 2.40 GHz processor and 64.0 GB
memory. Each experiment is repeated five times, and
the performance averaged over five trials is reported.

Table 3 summarizes the performance of the proposed
semi-supervised clustering algorithm and the base-
line algorithms. We first observed that although all
the semi-supervised clustering algorithms significant-
ly outperform the Base method with sufficiently large

1http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

2http://archive.ics.uci.edu/ml/datasets/
Image+Segmentation/

numbers of pairwise constraints, generally speaking,
the distance metric based algorithms outperform the
constrained clustering algorithms. We conjecture that
this may be due to the fact that the number of pairwise
constraints is large enough to learn a good distance
metric such that data points of the same class will be
separated by a small distance and data points from dif-
ferent classes are separated by a large distance. For the
first two datasets Mushrooms and USPS M2, we ob-
serve that MCCC, the proposed semi-supervised clus-
tering algorithm, achieves very high NMI value (close
to 1) and outperforms all the baseline methods when
the number of constraints is relatively large (i.e. 4, 000
and 6, 000). Among them, the experimental results
for Mushrooms dataset is very encouraging since only
4, 000 pairwise constraints are needed to achieve more
than 0.99 NMI. This only accounts for about 0.012%
of all possible pairwise constraints. For the Segment
datasets, although the proposed algorithm is unable
to achieve a (close to) perfect clustering, it still signif-
icantly outperforms all the baseline methods with all
the number of pairwise constraints. The results in Ta-
ble 3 demonstrates that the proposed algorithm is able
to yield good clustering performance with sufficiently
large numbers of pairwise constraints.

6. Conclusions

In this paper, we propose a framework for semi-
supervised clustering based on input pattern assisted
matrix completion. The key idea is to cast cluster-
ing into a matrix completion problem, and solve it
efficiently by exploiting the correlation between input
patterns and class assignments. Under the assumption
that cluster membership vectors can be well approx-
imated by the top few singular vectors of the data

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://archive.ics.uci.edu/ml/datasets/Image+Segmentation/
http://archive.ics.uci.edu/ml/datasets/Image+Segmentation/
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matrix, we show that with an overwhelming probabil-
ity, the proposed algorithm can accurately recover the
true data partition with only O(log n) randomly sam-
pled pairwise constraints. Our empirical study verifies
the effectiveness of the proposed algorithm.

In the future, we plan to further improve the effi-
ciency for solving the optimization problem in (8) by
exploiting various optimization techniques. We also
plan to explore active learning technique to further
reduce the sample complexity by actively selecting a
subset of pairwise constraints. Furthermore, we plan
to develop hybrid approaches that combine the pow-
er of input pattern assisted matrix completion with
the strength of the other approaches for more effective
semi-supervised clustering.
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A. Proof of Theorem 3

Define S∗ = Z>M∗Z and F = ZM̂Z>−S∗. Evidently,
we have F = PZFPZ . Using the condition in (14), we
have

‖PT (F )‖F ≤ γ‖PT⊥(F )‖F + 2‖RΩ(F )‖F

Let U⊥ be the eigenvectors of PT⊥(Z). Evidently, col-
umn vectors in U⊥ are orthogonal to the column vec-
tors in U . We have

|M̂ |tr = |Ŝ|tr ≥ 〈S∗ + Z,UU> + U⊥U
>
⊥ 〉

≥ |S|tr − |S∗ − S|tr + 〈Z,−Y + UU> + U⊥U
>
⊥ 〉

≥ |S∗|tr + 〈F,UU> − PT (Y ) + U⊥U
>
⊥ − PT⊥(Y )〉

−2
√

2r‖S∗ − S‖F
≥ |M∗|tr + ‖PT (F )‖F ‖UU> − PT (Y )‖F − 2

√
2rE

+ (1− ‖PT (Y )‖) ‖PT⊥(F )‖F

≥ |M∗|tr − 2

√
r

2k
‖RΩ(F )‖F − 2

√
2rE

+‖PT⊥(F )‖F
(

1

2
− γ
√

r

2k

)

When |Ω| > 512µ2
0r(k−r) logn

3 , we have

|M̂ |tr ≥ |M∗|tr − 2

√
r

2k
‖RΩ(F )‖F

+
‖PT⊥(F )‖F

4
− 2
√

2rE

Since

L(M̂) =
C

2
‖RΩ(ZM̂Z> − S)‖2F

≥ C

2
(‖RΩ(S∗ − S)‖F − ‖RΩ(Z)‖F )

2

and C ≥ 1√
rE , it is easy to verify that

‖RΩ(Z)‖F ≤ (12 + 2
√
r)
√
rE

and therefore

‖PT⊥(Z)‖ ≤ 8

√
r

2k
‖RΩ(Z)‖F + 8

√
2rE + CrE2

≤ 24
√
rE
(
3 +
√
r
)

As a result, we have

‖Z‖F ≤ ‖PT (Z)‖F + ‖PT⊥(Z)‖F
≤ (γ + 1)‖PT⊥(Z)‖F + 2‖RΩ(Z)‖F
≤

[
6
(√

2k + 4
√
r
) (

3 +
√
r
)]
E
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