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Abstract

In this paper, we study the multi-task learn-
ing problem with a new perspective of consid-
ering the structure of the residue error matrix
and the low-rank approximation to the task
covariance matrix simultaneously. In partic-
ular, we first introduce the Matrix General-
ized Inverse Gaussian (MGIG) prior and de-
fine a Gaussian Matrix Generalized Inverse
Gaussian (GMGIG) model for low-rank ap-
proximation to the task covariance matrix.
Through combining the GMGIG model with
the residual error structure assumption, we
propose the GMGIG regression model for
multi-task learning. To make the computa-
tion tractable, we simultaneously use varia-
tional inference and sampling techniques. In
particular, we propose two sampling strate-
gies for computing the statistics of the MGIG
distribution. Experiments show that this
model is superior to the peer methods in re-
gression and prediction.

1. Introduction

With the research on multiple task learning for decades
(Thrun, 1996; Caruana, 1997; Baxter, 2000), recent
years have witnessed the increasing applications of
multi-task learning in many fields ranging from classi-
fication of protein in bioinformatics to event evolution
in cross media due to its capability of transferring the
knowledge discovered in one task to the other relevant
tasks.
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An increasing number of efforts on multi-task learning
lie in discovering the relationship among the tasks ei-
ther by directly learning the relatedness of the tasks
(Xue et al., 2007; Yu et al., 2007; Jacob et al., 2008)
or by mining the common feature structures shared by
the tasks (Ando & Zhang, 2005; Zhang et al., 2005;
Argyriou et al., 2006; Obozinski et al., 2009; Chen
et al., 2009; Rai & Daumé III, 2010), which is equiva-
lent to estimating a matrix model parameter with its
rows corresponding to the tasks or its columns corre-
sponding to the features. Therefore, discovering the
relationship among tasks corresponds to learning the
relationship among the rows and mining the feature
structure corresponds to learning the structure of the
columns.

Given the variety of configurations of the multi-task
learning, it is convenient to describe the multi-task
learning problem as a multiple output regression prob-
lem as follows where each task produces an output for
its corresponding input

Y =WX + µ1TN + ε (1)

where Y = (y1, . . . , yN ) ∈ Rd×N is the correspon-
dence matrix of N samples under d tasks; X =
(x1, . . . , xN ) ∈ RD×N is the observation matrix of N
samples with D features. W ∈ Rd×D is the weight
matrix or regression matrix. µ ∈ Rd is the offset vec-
tor for the tasks, 1N is an N -dimension column vector
with all the elements being 1. ε is the residue error ma-
trix with matrix variate normal density (matrix variate
Gaussian density) Nd,N (0,Σ1 ⊗ Σ2). Herein, ⊗ is the
Kronecker product of two matrices and we employ the
notation from (Gupta & Nagar, 2000) that Σ1(d × d)
and Σ2(N ×N) are positive definite matrices describ-
ing the correlations of rows and columns, respectively.
Typically, we assume that samples are independent,
i.e., Σ2 is an identity matrix. Σ1, however, is required
to be non-trivial and describes the correlation of the
tasks in the residue error matrix ε.
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The regularization method is widely used in multi-task
learning to discover the relationship among the tasks
(Evgeniou & Pontil, 2004; Argyriou et al., 2007; Agar-
wal et al., 2010; Jenatton et al., 2011). Argyriou et
al. (2006) adopt the `2,1 matrix norm as the penalty
for the weight matrix to learn the feature structure
shared across the tasks. Chen et al. (2011) combine
the nuclear norm and the `p,q norm for W to con-
sider the sparsity of W and the correlation among the
tasks simultaneously. The above norm penalties focus
on involving the positive (or zero) correlation among
the tasks, but fail to establish the negative correlation
among the tasks.

To address this issue, Bonilla et al. (2007) model the
covariance matrix for the tasks by not only the positive
(or zero) correlation but also the negative correlation
among the tasks. In this manner, a hierarchical corre-
lated model (Zhang & Yeung, 2010; Zhang & Schnei-
der, 2010) is established for W ; then the problem of
simultaneously discovering the positive and negative
correlations among the tasks is reduced to the problem
of estimating the task covariance matrix of W under
the various constraints.

Despite the advantage of the above models on estab-
lishing the complete correlation among the tasks, the
computational complexity increases with the scale of
the tasks since the covariance matrix of the tasks is
often learned in a nonparametric manner. To solve
this problem, Bonilla et al. (2007) resort to a low-
rank approximation to the task covariance matrix. Ar-
chambeau et al. (2011) adopt this approximation by
decomposing the weight matrix to the product of the
projection matrix and the latent matrix. While this
scheme partially addresses the computational concern,
it ignores part of the structure to be learned, for ex-
ample, the residual error structure, which is very im-
portant for multiple regression (Breiman & Friedman,
1997; Kim & Xing, 2010; Rothman et al., 2010; Sohn
& Kim, 2012).

In this paper, we propose a Bayesian model to study
the multi-task learning problem with a new perspec-
tive of considering the residual error structure and the
low-rank approximation to the task covariance matrix
simultaneously. Instead of a nonparametric model-
ing, we model the task covariance matrix as a random
variable with the Matrix Generalized Inverse Gaussian
(MGIG) prior. This prior is able to degenerate to a
series of common priors, such as Wishart and inverse
Wishart prior, either of which is often used as the co-
variance matrix prior. In particular, a Gaussian Ma-
trix Generalized Inverse Gaussian (GMGIG) model is
developed first for the low rank structure of the covari-

ance matrices. Then we combine it with the residual
error structure assumption to obtain the GMGIG re-
gression model for multi-task learning. To estimate
the parameters in the GMGIG regression model, we
propose two sampling methods in the inference for nu-
merical estimation on the statistics of the MGIG dis-
tribution. Finally, we report experimental evaluations
for the model, and compare it with the peer methods
in the literature to demonstrate the effectiveness and
promise of the GMGIG regression model for multi-task
learning.

2. MGIG Prior and GMGIG Model

2.1. MGIG prior

The MGIG distribution is introduced from the Gener-
alized Inverse Gaussian (GIG) distribution (Barndorff-
Nielsen et al., 1982; Zhang et al., 2012) and is for-
mally proposed by Butler (1998). We denote Sp+ as
the cone of the p × p positive definite matrices. Let
Ψ, Φ ∈ Sp+ and ν ∈ R.1 A matrix random vari-
able G ∈ Sp+ is MGIG distributed and is denoted as
G ∼MGIGp(Ψ,Φ, ν) if the density of G is

|G|ν−(p+1)/2

|Ψ2 |νBν(Φ
2

Ψ
2 )

etr

(
−1

2
ΨG−1 − 1

2
ΦG

)
(2)

where etr(·) , exp Tr(·) is an operator mapping a ma-
trix to the exponent of its trace. Bν(·) is the ma-
trix Bessel function defined by (Herz, 1955). The
MGIG distribution can easily degenerate to Wishart
distribution and inverse Wishart distribution. In 1-
dimension case, Bν(·) degenerates to Matérn class
function2(Stein, 1999) and the MGIG distribution de-
generates to the GIG distribution, further to Γ distri-
bution, inverse Γ distribution, etc.

In light of the flexibility of the MGIG distribution,
we are able to mix a probabilistic model with MGIG
prior and obtain various posterior densities, making
the regression and prediction more robust.

2.2. GMGIG model

We intend to assign the MGIG prior to the covariance
matrices of the weight matrix W accommodating data
with various characteristics. Hence, we define a sta-
tistical model to describe the relationship between the
parameters.

1Ψ and Φ can be positive semidefinite according to the
value of ν (Butler, 1998).

2For p = 1, we have B−ν(z2/4) = 21−νzνKν(z). Kν(·)
is the modified Bessel function of the second kind and the
right hand side of the above equation belongs to Matérn
class function when ν > 0.
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Definition. Define matrices W ∈ Rd×D, V, V0 ∈
Rd×K , Z,Z0 ∈ RK×D, Ω,Ψ1,Φ1 ∈ SD+ , and Σ,Ψ2,Φ2

∈ Sd+. The GMGIG model is a series of dependent
random variables satisfying that

W ∼Nd,D(V Z,Σ⊗ Ω)

V ∼Nd,K(V0,Σ⊗ κ1IK)

Z ∼NK,D(Z0, κ2IK ⊗ Ω)

Ω ∼MGIGD(Ψ1,Φ1, ν1)

Σ ∼MGIGd(Ψ2,Φ2, ν2)

where κ1, κ2 > 0 and ν1, ν2 ∈ R.

In the definition above, W follows matrix variate
Gaussian distribution and its covariance matrices fol-
low MGIG distribution; that is why we call it GMGIG
model. The mean of W is decomposed into the prod-
uct of the projection matrix V and the latent matrix Z
with K(< D) high relevance directions (Rasmussen &
Williams, 2006). Through this decomposition, we are
able to obtain a low-rank approximation to the covari-
ance matrices. The GMGIG model can easily degener-
ate to Gaussian Inverse Wishart (GIW) model (Le &
Zidek, 2006) by setting κ1 = 0, Φ1 = 0D, ν1 < −D−1

2 ,
and fixing Σ to a constant positive definite matrix.
This setting is direct if we consider a “non-central”
version of the MGIG random matrix Σ−Σ0 and make
Ψ2,Φ2 → ∞; then Σ → Σ0. We do not involve such
design which may complicate the model; further we
set V0 and Z0 to a null matrix for simplicity. From the
GMGIG model, we derive the marginal distribution
p(W |V,Σ,Ψ1,Φ1, ν1) as∫

N (W |V Z,Σ⊗ Ω)N (Z|0, κ2IK ⊗ Ω)p(Ω)dZdΩ

=

∫
N (W |0, Σ̃⊗ Ω)MGIG(Ω|Ψ1,Φ1, ν1)dΩ

=
|Σ̃|−D/2|Ψ1|−d/2

πDd/2Bν1(Φ1

2
Ψ1

2 )
· |ID + Ψ−1

1 WT Σ̃−1W |ν1−d/2

·Bν1−d/2

(
Φ1

2

Ψ1 +WT Σ̃−1W

2

)
(3)

where Σ̃ , κ2V V
T + Σ. The marginal distribution

of W is the Matrix variate Generalized Hyperbolic
(MGH) distribution (Butler, 1998). This distribution
is mixed by matrix Gaussian distribution and MGIG
distribution. It is noted that Σ̃ is decomposed as the
sum of the original row covariance matrix Σ and a
low-rank matrix product V V T ; hence, Σ̃ actually cor-
relates the tasks in the weight matrix W and its low-
rank approximation helps identify the high relevance
directions for a large number of tasks and further helps
reduce the computational complexity in the inference.

The reason to highlight the MGH distribution is that it
contains a family of the distributions including matrix
variate T distribution, matrix Laplacian distribution,
matrix Bessel distribution, and multivariate Pearson
type VII distribution. We list two typical degenera-
tions of the MGH distribution:

1. Let −ν1 >
D−1

2 and Φ1 = 0, then

W |V,Σ,Ψ1, ν1 ∼ Td,D(−2ν1 −D + 1, 0, Σ̃,Ψ1)

is matrix variate T distribution according to Sec-
tion 4.2 of (Gupta & Nagar, 2000).

2. Let ν1 >
D−1

2 and Ψ1 = 0, then

W |V,Σ,Φ1, ν1 ∼MBSd,D(ν1, Σ̃,Φ1)

is Matrix variate Bessel (MBS) distribution
or matrix variate Variance-Gamma distribution.
When D = 1, the MBS distribution degenerates
to multivariate Bessel distribution as in (Kotz
et al., 2001). For MBS, if ν1 − d

2 = D
2 then

W |V,Σ,Φ1, ν1 is matrix variate Laplacian distri-
bution similar to the degeneration in the multi-
variate case.

Moreover, we would like to point out that in (Archam-
beau et al., 2011), the definition of the MGH distribu-
tion is derived from the GIW framework and is differ-
ent from the definition in (3). Archambeau et al. pro-
pose the Gaussian scale mixture model: W =

√
γX,

where scale factor γ > 0 follows GIG distribution and
X ∼ N (0,Σ ⊗ Ω). The MGH conditional distribu-
tion for W derived therein is a Matérn class function
w.r.t.

√
φ+ Tr Ω−1WTΣ−1W and the covariance ma-

trices Ω and Σ are considered as constant matrices or
hyper-parameters; however, in the GIW framework Ω
is inverse Wishart distributed. Hence, the marginal
distribution of W is not preserved to be MGH if the
matrix Ω is further integrated out in their model.

Though both definitions are able to degenerate to the
multivariate generalized hyperbolic distribution, our
definition of MGH is derived from the mixture of
MGIG prior, which is a formal matrix prior with a
closed form marginal distribution for W . We compare
our model with theirs in Section 5 and show that our
model is better in performance.

3. Inference of the GMGIG Regression
Model

In this section, we propose a Bayesian model for multi-
task learning by which we leverage the residual error
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structure based on the GMGIG model. Herein, we
make the residual error structure assumption in (1) for
ε: ε ∼ Nd,N (0,Σ⊗σ2IN ); then we obtain the following
statistical dependence on Y :

Y ∼ Nd,N (WX + µ1TN ,Σ⊗ σ2IN )

Notice that we denote Σ as the task covariance matrix
for ε, which is the same as the task covariance matrix
for the weight matrix W in the GMGIG model, since
we intend to combine the residual error structure with
the GMGIG model to arrive at a more stable relation-
ship among the tasks and to make the inference more
accurate than the existing literature (Rothman et al.,
2010). We define the GMGIG regression model as the
graphical model in Figure 1.

Ψ2,Φ2, ν2

V Σ σ2

W Y

Z Ω X

Ψ1,Φ1, ν1

Figure 1. Graphical Model of the GMGIG regression
Model.

In order to maximize the likelihood of the training
data for a precise prediction, we adopt the Expectation
Maximization (EM) algorithm under the variational
framework to learn the parameters of the GMGIG
regression model. Herein, we denote the observed
data set as ∆ = {X,Y } and the parameter set as θ.
Through the variational method, we approximate the
marginal likelihood p(∆) by

log p(∆) ≥
∫
Q(θ) log

p(∆, θ)

Q(θ)
dθ + KL(Q(θ)||p(θ|∆))

where Q(θ) is the auxiliary density of the parameters
and the inequality is due to the Jensen’s inequality and
KL(·||·) is the Kullback-Leibler divergence between
two distributions, which is nonnegative. Hence, we

have log p(∆) ≥
∫
Q(θ) log p(∆,θ)

Q(θ) dθ , L(Q). Herein,

we tend to select an auxiliary distribution Q(θ) of the
parameters θ to minimize KL(Q(θ)||p(θ|∆)) in order to
approximate log p(∆) by its lower bound L(Q). The
optimal distribution to minimize the KL divergence is

(Bishop, 2006):

Ql(θl) =
exp〈log p(∆, θ)〉l′ 6=l∫
exp〈log p(∆, θ)〉l′ 6=ldθl

(4)

Herein, 〈·〉l′ 6=l indicates the expectation of parameter
θl under the joint auxiliary density without θl.

In the E phase, we have the parameter estimation as :

W =(〈V 〉〈Z〉〈Ω−1〉+ σ−2(Y − µ1TN )XT )ΩW

V =〈W 〉〈Ω−1〉〈Z〉T (κ−1
1 IK + 〈ZΩ−1ZT 〉)−1

Z =(κ−1
2 IK + 〈V TΣ−1V 〉)−1〈V 〉T 〈Σ−1〉〈W 〉

where ΩW = (〈Ω−1〉+σ−2XXT )−1. For parameters Ω
and Σ, since there is no closed form for the expectation
of MGIG distribution, we only obtain their posterior
distributions, which are also MGIG distributions, as :

Ω ∼MGIGD(Ψ̂1,Φ1, ν̂1)

Σ ∼MGIGd(Ψ̂2,Φ2, ν̂2)

In the M phase, the hyperparameters are updated as :

Ψ̂1 =Ψ1 + κ−1
2 〈ZTZ〉+ 〈(W − V Z)T (W − V Z)〉

Ψ̂2 =Ψ2 + κ−1
1 〈V V 〉T + 〈(W − V Z)Ω−1(W − V Z)T 〉

+ σ−2〈(Y −WX − µ1TN )(Y −WX − µ1TN )T 〉
ν̂1 =ν1 − (d+K)/2

ν̂2 =ν2 − (d+N +D +K)/2

4. Numerical estimation on the
statistics of MGIG distribution

In the previous section, the estimation of the parame-
ters Σ and Ω is obtained in the EM framework. Since
there is no closed form for the parameter estimation
as far as we know, we intend to offer a numerical es-
timation. In this section, we first introduce two fun-
damental propositions; then we present two sampling
methods for computing the matrix Bessel function and
the corresponding sampling methods for estimating
the mean and the reciprocal mean of MGIG distri-
bution. Matrix Bessel function Bδ(WZ) is defined as
an integral over Sp+:

|W |−δ
∫
Sp+
|S|−δ−

p+1
2 etr(−SW − S−1Z)dS (5)

where W,Z ∈ Sp+ and δ ∈ R.3

Proposition 1. Assume that Bδ(WZ) is defined as
above. We have

Bδ(WZ) = |WZ|−δB−δ(ZW ).

3W , Z can be positive semidefinite according to the
value of δ (Butler, 1998).
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If −δ > p−1
2 , we further have

Bδ(0) = Γp(−δ).

where Γp(·) is the multivariate gamma function (Gupta
& Nagar, 2000).

Proof. The first equation is from the transformation
S → S−1 in the integral (5). The second equation is
obtained by setting Z to a null matrix in (5) and using
the definition of the multivariate gamma function.

Proposition 2. If matrix G ∼MGIGp(Ψ,Φ, ν), then
G−1 ∼MGIGp(Φ,Ψ,−ν).

Proof. The proof is straightforward by the transfor-
mation G→ G−1 in (2) and using Proposition 1.

Computing the matrix Bessel function is an open prob-
lem in multivariate statistics; the existing method is
the Laplace approximation (Butler & Wood, 2003).
Since the approximation is not accurate, we intend to
apply the Monte Carlo method to sample the integral.
Ideally, we would consider MGIG distribution as the
product of Wishart distribution and inverse Wishart
distribution. We generate sufficient samples through
either distribution and average the evaluations of the
samples to estimate the integral. This estimation is
valid only if |δ| > p−1

2 . For |δ| ≤ p−1
2 , the generation

method of the random samples needs to be modified
since δ in this region is not qualified to be the degree
of freedom of Wishart distribution or inverse Wishart
distribution. We propose two importance sampling
methods (Mackay, 2003) in the following.

4.1. Estimating the matrix Bessel function

For the case of |δ| ≤ p−1
2 , we first define t , δ − p−1

2 ;
then we make the importance sampling in “pull” mode
or in “push” mode:

• Pull the “degree of freedom”4 δ more than p−1
2 ,

generate the Wishart random matrices, and aver-
age the evaluations of the samples.

• Push the “degree of freedom” δ less than −p−1
2 ,

generate the inverse Wishart random matrices,
and average the evaluations of the samples.

For the “pull” mode, we have

Bδ(WZ) =|W |−δ
∫
Sp+
|S|−δetr(−SW − S−1Z)

dS

|S|(p+1)/2

4Though δ is not explicitly defined as the degree of free-
dom for the MGIG distribution, we herein borrow the con-
cept from Wishart distribution.

=

∫
Sp+
|S|−δetr(−S −WT/2ZW 1/2S−1)

dS

|S|(p+1)/2

=

∫
Sp+
|S|(1+α)t−2δ

· |S|−δ+2δ−(1+α)tetr(−S −WT/2ZW 1/2S−1)
dS

|S|(p+1)/2

=〈|S|(1+α)t−2δetr(−WT/2ZW 1/2S−1)〉 · Γp(δ − (1 + α)t)

where W = W 1/2WT/2; α > 0 is a coefficient control-
ling the surplus of the degree of freedom beyond p−1

2
and the samples

S ∼Wishart(2Ip, 2(δ − (1 + α)t)). (6)

For the “push” mode, we have

Bδ(WZ)

=|W |−δ
∫
Sp+
|S|−δetr(−SW − S−1Z)

dS

|S|(p+1)/2

=

∫
Sp+

1

|S|δ
etr(−S −WT/2ZW 1/2S−1)

dS

|S|(p+1)/2

=

∫
Sp+
|S|−(1+β)t

· 1

|S|δ−(1+β)t
etr(−S −WT/2ZW 1/2S−1)

dS

|S|(p+1)/2

=〈|S|−(1+β)tetr(−S)〉 · Γp(δ − (1 + β)t)

|ZW |δ−(1+β)t

where β > 0 is a coefficient controlling the surplus of
the degree of freedom beyond p−1

2 and the samples

S ∼IWishart(2WT/2ZW 1/2, 2(δ − (1 + β)t)). (7)

The “push-pull” sampling methods are also feasible
when |δ| > p−1

2 . For δ > p−1
2 , we set β = −1 and

take the sampling through (7); for δ < −p−1
2 we use

Proposition 1 and the sampling is taken similarly.

4.2. Sampling the mean of MGIG

Using the “push-pull” sampling methods above, we
have two methods for sampling the mean of the distri-
bution MGIGp(Ψ,Φ, ν). We first define t , ν − p−1

2
and for the “pull” mode sampling, we have

〈G〉MGIG

=

∫
Sp+
G|G|(1+α)t |G|ν−(1+α)t

|Ψ2 |νBν(Φ
2

Ψ
2 )

· etr

(
−1

2
G−1Ψ− 1

2
GΦ

)
dG

|G|(p+1)/2

=〈G|G|(1+α)tetr(−G−1Ψ/2)〉 Γp(ν − (1 + α)t)

|Φ2 |ν−(1+α)t|Ψ2 |νBν(Φ
2

Ψ
2 )
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where α > 0 is a coefficient controlling the surplus of
the degree of freedom beyond p−1

2 and the samples

G ∼Wishart(Φ−1, 2(ν − (1 + α)t)) (8)

For the “push” mode, we have

〈G〉MGIG

=

∫
Sp+
G|G|2ν−(1+β)t 1

|G|ν−(1+β)t|Ψ2 |νBν(Φ
2

Ψ
2 )

·etr

(
−1

2
G−1Ψ− 1

2
GΦ

)
dG

|G|(p+1)/2

=〈G|G|2ν−(1+β)tetr(−GΦ/2)〉 Γp(ν − (1 + β)t)

|Ψ2 |2ν−(1+β)tBν(Φ
2

Ψ
2 )

where β > 0 is a coefficient controlling the surplus of
the degree of freedom beyond p−1

2 and the samples

G ∼ IWishart(Ψ, 2(ν − (1 + β)t)). (9)

The “push-pull” sampling methods are also feasible
when |ν| > p−1

2 . For ν > p−1
2 , we simply set α = −1

and take the sampling through (8); for ν < −p−1
2 , we

set β = 2ν/t− 1 and take the sampling through (9).

4.3. Sampling the reciprocal mean of MGIG

Similarly, we can sample the reciprocal mean of
MGIGp(Ψ,Φ, ν) by using Proposition 2

〈G−1〉MGIG

=

∫
Sp+
G
|G|−ν−(p+1)/2

|Φ2 |−νB−ν(Ψ
2

Φ
2 )

etr

(
−1

2
G−1Φ− 1

2
GΨ

)
dG

Hence, we first define t , −ν− p−1
2 and for the “pull”

mode, 〈G−1〉MGIG is estimated as

〈G|G|(1+α)tetr(−G−1Φ/2)〉 Γp(−ν − (1 + α)t)

|Ψ2 |−(1+α)tBν(Φ
2

Ψ
2 )

where α > 0 is a coefficient controlling the surplus of
the degree of freedom beyond p−1

2 and the samples

G ∼Wishart(Ψ−1, 2(−ν − (1 + α)t)) (10)

For the “push” model, 〈G−1〉MGIG is estimated as

〈G|G|−2ν−(1+β)tetr(−GΨ/2)〉 Γp(−ν − (1 + β)t)

|Φ2 |−2ν−(1+β)tB−ν(Ψ
2

Φ
2 )

where β > 0 is a coefficient controlling the surplus of
the degree of freedom beyond p−1

2 and the samples

G ∼ IWishart(Φ, 2(−ν − (1 + β)t)) (11)

The “push-pull” sampling methods are also feasible
when |ν| > p−1

2 . For ν < −p−1
2 , we set α = −1 and

take the sampling through (10); for ν > p−1
2 , we set

β = −2ν/t− 1 and take the sampling through (11).

5. Experiments

In this section, we report the experimental evalua-
tions on multi-task learning on two datasets: a toy
dataset and a real dataset (landmine dataset). In
the real data experiment, we compare the GMGIG re-
gression model for multi-task learning (MTL-GMGIG)
with the single task learning method, the ridge logistic
regression (STL), and the other state-of-the-art multi-
task learning methods with least square loss including
clustered multi-task learning (MTL-C) (Jacob et al.,
2008), multi-task feature learning (MTL-F) (Argyriou
et al., 2006; Zhou et al., 2011), multi-task learning with
sparse matrix norm (MTL(Ω&Σ)) (Zhang & Schnei-
der, 2010), multi-task relationship learning (MTRL)
(Zhang & Yeung, 2010), multiple regression with co-
variance estimation (MRCE) (Rothman et al., 2010),
sparse Bayesian multi-task learning (SBMTL) (Ar-
chambeau et al., 2011), and multi-task learning with
GIW model (MTL-GIW).

For the hyperparameter configuration in MTL-
GMGIG, we set Ψ1 and Φ1 to infinite matrices and
make Ω approximate to identity matrix ID, Ψ2 and
Φ2 are initiated to Id and 5Id respectively, ν2 is ini-
tiated to d + 1, σ is set to 10. The hyperparame-
ter configuration for MTL-GIW is the same as that of
MTL-GMGIG except that Φ2 is set to null matrix.

5.1. Toy Dataset

Before we apply MTL-GMGIG on the real dataset,
we first conduct a proof of concept experiment on
a toy dataset. We generate the toy data as fol-
lows. We establish three regression tasks according
to three regression functions: Z1 = 2X1 + 3Y1 + 1,
Z2 = −2X2 − 3Y2 + 2, and Z3 = 1. For each task,
we randomly sample 1000 pairs of points uniformly in
the xOy plane [−5, 5] × [−5, 5]. Each function is cor-
rupted by a Gaussian noise process with zero mean and
variance equal to 0.1. The data points are plotted in
Figure 5.1, with each color (and legend) correspond-
ing to one task. From the coefficients of the regres-
sion functions, we expect the correlations Corr(Z1, Z2)
to approach to −1, Corr(Z1, Z3) and Corr(Z2, Z3)
both to approach to 0. After we apply MTL-GMGIG,
we obtain the estimated regression functions: Z1 =
2.003X1 +3.033Y1 +1.082, Z2 = −1.964X2−3.007Y2 +
2.004, and Z3 = −0.0001X3 − 0.0019Y3 + 0.9914. We
also obtain the correlation matrix for the three tasks in
the left below and for comparison we list the correla-
tion matrix obtained from SBMTL in the right below.
Clearly, the task correlations learned herein confirm
the expectation that MTL-GMGIG is able to discover
the relationships among the tasks for this toy problem
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Figure 2. Toy dataset

with a much better performance than that of SBMTL.[ ]
1 -0.875 -0.017

-0.875 1 0.048
-0.017 0.048 1

MTL-GMGIG

[ ]
1 -0.636 0.103

-0.636 1 0.203
0.103 0.203 1

SBMTL

5.2. Landmine Detection Dataset

The landmine detection dataset5 consists of 14280 ex-
amples of 29 tasks collected from various landmine
fields. Each example in the dataset is detected by a
radar and represented by a 9-dimensional vector de-
scribing various features concerned. The landmine de-
tection problem is cast as a binary classification prob-
lem to predict landmines (positive class) or clutter
(negative class) and we learn the GMGIG regression
model for prediction. For a fair comparison with (Xue
et al., 2007; Zhang & Schneider, 2010), we also jointly
learn the same 19 tasks from landmine fields 1 − 10
and 16−24 in the dataset. As a result, the weight ma-
trix W is 19×10 matrix corresponding to the 19 tasks
and the 10 coefficients (9 features and the intercept)
for each task.

We elect to use the average AUC (Area Under the
ROC Curve) as the performance measure for the com-
parison and vary the size of the training set for each
task as 30, 40, and 80, respectively. The size of the
training set is kept in a small scale since the advan-
tage of multi-task learning would begin to vanish as
the training size increases. For each task, the remain-
ing examples are treated as the testing sets. The AUC
scores are task-averaged for each run. We report the

5http://www.ee.duke.edu/˜lcarin/LandmineData.zip
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Figure 3. The AUC scores under different K values for
SBMTL and MTL-GMGIG, respectively. The training size
is 30.

average AUC scores and their standard errors for 30
runs in Table 1. It is noted that MTL-GMGIG outper-
forms the other models due to the low-rank approxi-
mation to the task covariance matrix and the residual
error structure introduced in the model to discover
the relationship among the tasks. Consistent with
the intuition, like the other methods, the performance
of MTL-GMGIG increases when the training size in-
creases. On the other hand, the gain of MTL-GMGIG
over all the other methods is more significant when the
training size is small where multi-task learning is more
appropriate, which indicates that MTL-GMGIG is the
best for multi-task learning.

For the dimensionality analysis of the latent relevance
K in MTL-GMGIG, we study how the performance
varies with different K values. Figure 3 shows that the
average performance of MTL-GMGIG on the Land-
mine detection dataset varies with K. For a com-
parison, we also show the performance variation for
SBMTL with different K values. It is noted that both
the AUC scores increase, though not monotonically,
with the increase of K and the performance of MTL-
GMGIG is superior to that of SBMTL.

6. Conclusion

In this paper, we study the multi-task learning prob-
lem with a new perspective of considering the struc-
ture of the residue error matrix and the low-rank ap-
proximation to the task covariance matrix simultane-
ously. For this purpose, we first introduce the MGIG
prior and propose the GMGIG model. Combining this
model with the residual error structure assumption, we
have developed the GMGIG regression model with the
variational inference and sampling simultaneously to
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Table 1. The average AUC scores in percentage on the landmine detection dataset for K = 7 in the form of the mean
(standard error).

Training Size(average % of the whole size)
30(6.0%) 40(8.0%) 80(16.1%)

STL 63.71(0.91) 66.72(0.60) 70.67(0.45)
MTL-C 64.23(1.10) 69.39(0.87) 79.75(0.95)
MTL-F 62.77(0.94) 66.94(1.11) 70.09(1.26)

MTL(Ω&Σ) 65.46(1.91) 73.66(1.63) 83.01(0.61)
MTRL 78.31(0.62) 80.64(0.65) 87.02(1.00)
MRCE 75.53(0.53) 76.86(0.54) 77.12(0.83)
SBMTL 80.28(0.62) 82.39(0.61) 85.84(0.88)

MTL-GIW 82.36(0.65) 83.63(0.64) 85.60(0.37)
MTL-GMGIG 84.90(0.44) 86.94(0.34) 89.00(0.45)

make the computation tractable. We have developed
two sampling strategies to compute the statistics of
the MGIG distribution. Experiments show that this
model is superior to the peer methods in regression
and prediction. For our future research on multi-task
learning problem, we intend to extend the prior of the
task covariance martix by introducing the scale mix-
ture model.
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