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Abstract

We prove that for any VC class, it is possible
to transform any passive learning algorithm
into an active learning algorithm with strong
asymptotic improvements in label complex-
ity for every nontrivial distribution satisfy-
ing a uniform classification noise condition.
This generalizes a similar result proven by
(Hanneke, 2009; 2012) for the realizable case,
and is the first result establishing that such
general improvement guarantees are possible
in the presence of restricted types of classifi-
cation noise.

1. Introduction

In many machine learning applications, there is an
abundance of cheap unlabeled data, while obtaining
enough labels for supervised learning requires signif-
icantly more time, effort, or other costs. It is there-
fore important to try to reduce the total number of
labels needed for supervised learning. One of the most
appealing approaches to this problem is active learn-
ing, a protocol in which the learning algorithm itself
selects which of the unlabeled data points should be
labeled, in an interactive (sequential) fashion. There
is now a well-established literature full of compelling
theoretical and empirical evidence indicating that ac-
tive learning can significantly reduce the number of la-
bels required for learning, compared to learning from
randomly selected points (passive learning). However,
there remain a number of fundamental open questions
regarding how strong the theoretical advantages of ac-
tive learning over passive learning truly are, particu-
larly when faced with the challenge of noisy labels.

At present, there is already a vast literature on the de-
sign and analysis of passive learning algorithms, built
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up over several decades by a substantial number of
researchers. In approaching the problem of designing
effective active learning algorithms, we might hope to
circumvent the need for a commensurate amount of ef-
fort, by directly building upon the existing tried-and-
true passive learning methods. By leveraging the in-
creased power afforded by the active learning protocol,
we may hope to further reduce the number of labels
required to learn with these same methods.

Toward this end, (Hanneke, 2009; 2012) recently pro-
posed a framework called activized learning, in which a
passive learning algorithm is provided as a subroutine
to an active meta-algorithm, which constructs data
sets to feed into the passive subroutine, and uses the
returned classifiers to inform the active learning pro-
cess. The objective is to design this meta-algorithm in
such a way as to guarantee that the number of label
requests required to learn to a desired accuracy will al-
ways be significantly reduced compared to the number
of random labeled examples the given passive learning
algorithm would require to obtain a similar accuracy;
in this case, we say the active meta-algorithm activizes
the given passive algorithm. This reduction-based
framework captures the typical approach to the de-
sign of active learning algorithms in practice (see e.g.,
(Tong and Koller, 2001; Baldridge and Palmer, 2009;
Settles, 2010)), and is appealing because it may in-
herit the tried-and-true properties (e.g., learning bias)
of the given passive learning algorithm, while further
reducing the number of labels required for learning.

If an active meta-algorithm activizes every passive
learning algorithm, under some stated conditions, then
it is called a universal activizer under those conditions.
In the original analysis, (Hanneke, 2009) proved that
such universal activizers do exist under the condition
that the target concept resides in a known space of fi-
nite VC dimension and that there is no label noise (the
so-called realizable case). (Hanneke, 2012) also proved
that there exist classification noise models under which
there typically do not exist universal activizers, even
with the Bayes optimal classifier in a known space of
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finite VC dimension. Thus, there is a question of what
types of noise admit the existence of universal activiz-
ers for a given type of concept space.

In this work, we study the classic uniform classifica-
tion noise model of (Angluin and Laird, 1988). In this
model, there is a target concept residing in a known
concept space of finite VC dimension, and the labels
in the training data are corrupted by independent and
identically distributed noise variables. The probability
that a given label in the training set differs from that
of the target concept is referred to as the noise rate,
and is always strictly less than 1/2 so that the tar-
get concept is also the unique Bayes optimal classifier.
Below, we find that there do exist universal activiz-
ers for any VC classes under the uniform classification
noise model. This represents the first general result es-
tablishing the existence of universal activizers for VC
classes in the presence of classification noise. Our proof
of this result builds upon the established methods of
(Hanneke, 2012), but requires several novel technical
contributions in addition, including a rather interest-
ing technique for handling the problem of adapting to
the value of the noise rate.

The paper is structured as follows. In Section 2, we
formalize the setting and objective. This is followed
in Section 3 with a description of a helpful method
and result of (Hanneke, 2012). We then proceed to
construct two useful subroutines in Section 4, proving
a relevant guarantee for each. Finally, in Section 5,
we present our meta-algorithm and prove the main
result: that the proposed meta-algorithm is indeed a
universal activizer for VC classes under the uniform
classification noise model.

2. Notation and Definition

We are interested in a statistical learning setting for
binary classification, in which there is some joint dis-
tribution DXY on X × {−1, +1}, and we denote by
D the marginal distribution of DXY on X . For any
classifier h : X → {−1, +1}, denote by er(h) =
DXY ({(x, y) : h(x) 6= y}) the error rate of h. There
is additionally a set C of classifiers, called the con-
cept space, and we denote by d the VC dimension
of C (Vapnik and Chervonenkis, 1971; Vapnik, 1982);
throughout this work, we will suppose d <∞, in which
case C is called a VC class. We will be interested in the
set of distributions satisfying the uniform classification
noise assumption of (Angluin and Laird, 1988), which
supposes there is an element h∗

DXY
∈ C for which

the Y values are simply the h∗
DXY

(X) values, except
corrupted by independently flipping each Y to equal
−h∗

DXY
(X) with a constant probability (less than 1/2).

Definition 1. For a given concept space C, de-
fine the set of uniform classification noise distri-
butions UniformNoise(C) = {DXY : ∃h∗

DXY
∈

C, η(DXY ) ∈ [0, 1/2) such that for (X, Y ) ∼ DXY ,
P(Y 6= h∗

DXY
(X)|X) = η(DXY )}.

For DXY ∈ UniformNoise(C), the classifier h∗
DXY

is
called the target function, and η(DXY ) is referred
to as the noise rate; note that we have η(DXY ) =
er(h∗

DXY
) = minh er(h).

In the learning problem, there is a sequence Z =
{(Xi, Yi)}∞i=1 where the (Xi, Yi) are independent and
DXY -distributed; we denote by Zm = {(Xi, Yi)}mi=1.
The {Xi}∞i=1 sequence is referred to as the unlabeled
data sequence, while the Yi values are referred to as
the labels. An active learning algorithm has direct ac-
cess to the Xi values, but must request to observe the
labels Yi one at a time. In the specific active learning
protocol we study here, the active learning algorithm
is given as input a budget n ∈ N, and is allowed to
request the values of at most n labels; based on the Xi

values, the algorithm selects an index i1 ∈ N, receives
the value Yi1 , then selects another index i2, receives
the value Yi2 , etc. This continues for up to n rounds,
after which the algorithm returns a classifier.

Definition 2. An active learning algorithm A
achieves label complexity Λa(·, ·) if, for any joint
distribution DXY , ∀ε > 0, ∀n ≥ Λa(ε,DXY ),
E [er(A(n))] ≤ ε.

Since some DXY have no classifiers h with er(h) ≤ ε
for small ε > 0, we will be interested in analyzing the
quantity Λa(η(DXY ) + ε,DXY ), the number of labels
sufficient to achieve expected error rate within ε of the
best possible error rate.

In the present context, we define a passive learning
algorithm as any function Ap(·) mapping any finite
sequence of labeled examples to a classifier.

Definition 3. A passive learning algorithm Ap

achieves label complexity Λp(·, ·) if, for any joint
distribution DXY , ∀ε > 0, ∀n ≥ Λp(ε,DXY ),
E[er(Ap(Zn))] ≤ ε.

For any m ∈ N and sequence L ∈ (X ×{−1, +1})m, we
additionally define the empirical error rate of a clas-
sifier h as erL(h) = m−1

∑

(x,y)∈L 1[h(x) 6= y]. Also

define V [(x, y)] = {h ∈ V : h(x) = y} for any V ⊆ C.

Following (Hanneke, 2009; 2012), we now formally de-
fine what it means to activize a passive algorithm.
An active meta-algorithm is a procedure Aa taking
as input two arguments, namely a passive learning al-
gorithm Ap and a label budget n ∈ N, and return-

ing a classifier ĥ = Aa(Ap, n), such that Aa(Ap, ·)
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is an active learning algorithm. Define the class of
functions Polylog(1/ε) as those g s.t. ∃k ∈ [0,∞),

g(ε) = O
(

logk(1/ε)
)

. Here, and in all contexts below,

the asymptotics are always considered as ε→ 0 (from
above) when considering a function of ε, and as n→∞
when considering a function of n; all other quanti-
ties are considered constants in these asymptotics. In
particular, we write g1(ε) = o(g2(ε)) (or equivalently
g2(ε) = ω(g1(ε))) to mean limε→0 g1(ε)/g2(ε) = 0.

For a label complexity Λp, we will consider any DXY

for which Λp(·,DXY ) is relatively small as being triv-
ial, indicating that we need not concern ourselves
with improving the label complexity for that DXY

since it is already very small; for our purposes, “rel-
atively small” means polylog. Furthermore, keeping
with the reduction style of the framework, we will
only require our active learning methods to be effec-
tive when the given passive algorithm has “reason-
able” behavior. Formally, define the set Nontrivial(Λp)
as those DXY for which, letting ν = minh er(h),
∀ε > 0, Λp(ν + ε,DXY ) < ∞, and ∀g ∈ Polylog(1/ε),
Λp(ν + ε,DXY ) = ω(g(ε)). Finally, define an activizer
under uniform classification noise as follows.

Definition 4. (Hanneke, 2009; 2012) We say an
active meta-algorithm Aa activizes a passive algo-
rithm Ap for C under UniformNoise(C) if the fol-
lowing condition holds. For any label complexity Λp

achieved by Ap, the active learning algorithm Aa(Ap, ·)
achieves a label complexity Λa such that ∀DXY ∈
UniformNoise(C) ∩ Nontrivial(Λp), ∃c ∈ [1,∞) s.t.
(letting ν = η(DXY ))

Λa(ν + cε,DXY ) = o (Λp(ν + ε,DXY )) .

In this case, Aa is called an activizer for Ap with
respect to C under UniformNoise(C), and the active
learning algorithm Aa(Ap, ·) is called the Aa-activized
Ap. If Aa activizes every passive algorithm for C un-
der UniformNoise(C), we say Aa is a universal ac-
tivizer for C under UniformNoise(C).

This definition says that, for all nontrivial distribu-
tions satisfying the uniform classification noise model,
the activized Ap algorithm has a label complexity with
a strictly slower rate of growth compared to that of
the original Ap algorithm. For instance, if the origi-
nal label complexity of Ap was Θ(1/ε), then a label
complexity of O(log(1/ε)) for the activized Ap algo-
rithm would suffice to satisfy this condition (as would,
for instance, O(1/ε1/2)). The two slight twists on this
interpretation are the restriction to nontrivial distri-
butions and the factor of c loss in the ε argument. As
noted by (Hanneke, 2012), the restriction to some no-
tion of “nontrivial” DXY is necessary, since we clearly

cannot hope to improve over passive in certain triv-
ial scenarios, such as when D has support on a sin-
gle point; passive learning can have O(log(1/ε)) label
complexity in this case. The implication of this defi-
nition is that the activized algorithm’s label complex-
ity is superior to any nontrivial upper bound on the
passive method’s label complexity. It is not known
whether the loss in the ε argument, by a constant c,
is really necessary in general (even for the realizable
case). However, this only really makes a difference
for rather strange passive learning methods; in most
cases, Λp(ν + ε;DXY ) = poly(1/ε), in which case we
can set c = 1 by increasing the leading constant on Λa.
Our analysis below reveals we can set this c arbitrarily
close to 1, or even to a certain (1+ o(1)) function of ε.

2.1. Summary of Results

In this work, we construct an active meta-algorithm,
referred to as Meta-Algorithm 1 below, and prove that
it is a universal activizer for C under UniformNoise(C).
This applies to any VC class C. The significance of this
result is primarily a deeper understanding of the ad-
vantages of active learning over passive learning. This
first step beyond the realizable case in activized learn-
ing is particularly interesting in light of established
negative results indicating that there exist noise mod-
els under which there do not exist universal activizers
for certain VC classes (Hanneke, 2012).

The proof is structured as follows. We first review a
technique of (Hanneke, 2012) for active learning based
on shatterable sets, represented by Subroutine 1 be-
low. For our purposes, the important property of this
technique is that it produces a set of labeled exam-
ples, where each example has either its true (noisy)
label, or else has the label of the target function it-
self (i.e., the de-noised label). It also has the desirable
property that the number of examples in this set is
significantly larger than the number of label requests
used to produce it. These properties, originally proved
by (Hanneke, 2012), are summarized in Lemma 1.

We may then hope that if we feed this labeled sample
into the given passive learning algorithm, then as long
as this sample is larger than the label complexity of
that algorithm, it will produce a good classifier; since
we used a much smaller number of label requests com-
pared to the size of this sample, we would therefore
have the desired improvements in label complexity.
Unfortunately, it is not always so simple. The fact that
some of the examples are de-noised turns out to be a
problem, as there are passive algorithms whose perfor-
mance may be highly dependent on the uniformity of
the noise, and their performance can actually degrade
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from denoising select data points. For instance, there
are several algorithms in the literature on efficiently
learning linear separators under uniform classification
noise, which may produce worse classifiers if given a
partially-denoised set of examples instead of the orig-
inal noisy examples. Even common methods such as
logistic regression can be made to perform worse by
denoising select instances. So our next step is to alter
this sample to appear more like a typical sample from
DXY ; that is, oddly enough, we need to re-noise the
de-noised examples.

The difficulty in re-noising the sample is that we do
not know the value of η(DXY ). Furthermore, estimat-
ing η(DXY ) to the required precision would require
too many labeled examples to obtain the desired per-
formance gains. So we devise a means of getting what
we need, by a combination of coarse estimation and
a kind of brute-force search. With this approximate
noise rate in hand, we simply flip each de-noised la-
bel with probability ≈ η(DXY ), so that the sample
now appears to be a typical sample for DXY . This
method for re-noising the sample is referred to as Sub-
routine 2 below, and its effectiveness is described in
Lemma 2. Feeding this sample to the passive algo-
rithm then achieves the desired result.

However, before we can conclude, there is some clean-
up needed, as the above techniques generate a variety
of by-products that we must sort through to find this
re-noised de-noised labeled sample. Specifically, in ad-
dition to the large partially de-noised labeled sample,
Subroutine 1 also generates several spurious labeled
data sets, with no detectable way to determine which
one is the sample we are interested in. Furthermore,
in addition to the re-noised data set resulting from
adding noise at rate ≈ η(DXY ), Subroutine 2 also gen-
erates several samples re-noised with noise rates differ-
ing significantly from η(DXY ). As such, our approach
is to take all of the sets produced by Subroutine 1, run
each through Subroutine 2, and then run the passive
algorithm with each of the resulting samples. This re-
sults in a large collection of classifiers, at least one of
which has the required error rate. To identify a good
classifier among these, we perform a kind of tourna-
ment, comparing pairs of classifiers by querying for
the labels of points where they disagree, and taking as
the winner the one making fewer mistakes. After sev-
eral rounds of this, we emerge with an overall winner,
which we then return. This technique is referred to as
Subroutine 3 below, and the guarantee on the quality
of the classifier it selects is given in Lemma 3.

The sections below include the details of these meth-
ods, with rigorous analyses of their behaviors.

3. Active Learning Based on

Shatterable Sets

This section describes an approach to active learning
investigated by (Hanneke, 2009; 2012). Recall that we
say a set of classifiers V shatters {x1, . . . , xm} ∈ Xm if,
∀y1, . . . , ym ∈ {−1, +1}, ∃h ∈ V s.t. ∀i ≤ m, h(xi) =
yi. To simplify notation, define X 0 = {∅}, and say V
shatters ∅ iff V 6= {}; also suppose P(X 0) = 1.

Now consider the definition of Subroutine 1 below,
based on a similar method of (Hanneke, 2012). For
our purposes, for m ∈ N, the value Ûm(δ) is defined as
follows, based on a uniform concentration inequality
of (Vapnik and Chervonenkis, 1971).

Ûm(δ) =
2

m
+ 2

√

ln(12/δ) + d ln(2em/d)

m
.

The results below would also hold for certain other
choices of Ûm(δ), which may sometimes yield smaller
label complexity guarantees; see (Hanneke, 2012) for

one such alternative. The quantities P̂(· · · ) in Sub-
routine 1 are estimators for their respective analogous
quantities P(· · · ), based only on unlabeled examples.
Their specific definitions are not particularly relevant
to the present discussion, but for completeness are in-
cluded in an appendix available online.

Subroutine 1 operates as follows. We first request a
number of labels for random points, and use these to
prune away any classifiers making a relatively large
number of mistakes, leaving a subset V of classifiers
from C with relatively small empirical error rates. We
then proceed to construct d+1 different pairs (Lk, Qk)
of labeled data sets. For each k, each data point Xm

in the sequence will be inserted into either Lk or Qk,
along with a corresponding label. If it is determined
(in Step 6) that, for most sequences S ∈ X k−1 that V
shatters, V also shatters S ∪ {Xm}, then we request
the label Ym and add the pair (Xm, Ym) to Qk. For
each S ∈ X k−1 shattered by V for which V does not
shatter S∪{Xm}, there is some y ∈ {−1, +1} and some
classification of S such that every h ∈ V that classifies
S in that way has h(Xm) = y; we let ŷ denote the
value of y for which this happens on a larger fraction
of sequences S of this type; if Xm was not already
inserted into Qk, then we insert the pair (Xm, ŷ) into
Lk. Thus, Qk is the set of examples we requested
the labels of, while Lk is the set of examples we did
not request the labels of, along with a kind of inferred
label. The motivation for this technique comes from
the work of (Hanneke, 2012), where it is shown that,
for appropriate values of k, with high probability this ŷ
will agree with h∗

DXY
(Xm). The number of data points

processed in this way (specified in Step 5) is chosen to
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Subroutine 1:
Input : label budget n, confidence parameter δ
Output: pairs of labeled data sets (L1, Q1), (L2, Q2), . . . , (Ld+1, Qd+1)

0. Request the first mn = ⌊n/2⌋ labels, {Y1, . . . , Ymn}, and let t← mn

1. Let V =

{

h ∈ C : erZmn
(h)− min

h′∈C

erZmn
(h′) ≤ Ûmn (δ)

}

2. For k = 1, 2, . . . , d + 1

3. ∆̂(k) ← P̂

(

x : P̂

(

S ∈ X k−1 : V shatters S ∪ {x}
∣

∣

∣
V shatters S

)

≥ 1/2
)

4. Qk ← {}, Lk ← {}
5. For m = mn + 1, . . . , mn + min

{⌊

n/
(

6 · 2k∆̂(k)
)⌋

, n33/32
}

6. If P̂

(

S ∈ X k−1 : V shatters S ∪ {Xm}
∣

∣

∣
V shatters S

)

≥ 1/2 and t < n

7. Request the label Ym of Xm, and let Qk ← Qk ∪ {(Xm, Ym)} and t← t + 1

8. Else, let ŷ ← argmax
y∈{−1,+1}

P̂

(

S ∈ X k−1 : V [(Xm,−y)] does not shatter S
∣

∣

∣
V shatters S

)

9. Lk ← Lk ∪ {(Xm, ŷ)}
10. Return (L1, Q1), . . . , (Ld+1, Qd+1)

be small enough so that, with high probability, the
“t < n” condition in Step 6 is redundant, and so that
|Lk| ≤ n33/32 (for technical reasons arising below).

The following result was essentially proven by
(Hanneke, 2012) (more precisely, it can easily be estab-
lished following the techniques of (Hanneke, 2012)); for
completeness, we include a full proof in an appendix
available on the web.

Lemma 1. (Hanneke, 2012) For any VC class C

and DXY ∈ UniformNoise(C), there exist constants
k∗ ∈ {1, . . . , d + 1}, c, c′ ∈ (1,∞), and a monotone
sequence φ1(n) = ω(n) such that, ∀n ∈ N, with prob-
ability at least 1 − c · exp{−c′n1/3}, running Subrou-
tine 1 with label budget ⌊n/2⌋ and confidence param-
eter δn = exp {−√n} results in |Lk∗ ∪ Qk∗ | ≥ φ1(n)
and erLk∗

(h∗
DXY

) = 0.

In other words, the set Lk∗ ∪ Qk∗ has size ≫ n, and
every (x, y) ∈ Lk∗ has y = h∗

DXY
(x).

4. An Active Meta-algorithm for

Uniform Classification Noise

Re-noising the Sample At first glance, it might
seem Lemma 1 almost solves the problem already,
aside from identifying an appropriate k. For k = k∗,
the sample Lk ∪ Qk represents a partially de-noised
collection of labeled examples, which might intuitively
seem even better to feed into the passive algorithm
than a sample with noisy labels. However, this reason-
ing is näıve, since we are seeking a universal activizer
for C, applicable to any passive learning algorithm. In
particular, there are many passive learning algorithms

that actually use the properties of the noise to their
advantage in the learning process, so that altering the
noise distribution of the sample may alter the behav-
ior of the passive algorithm to ill effects: that is, its
performance can be made worse by de-noising select
examples from a given sample. For instance, this is the
case for certain algorithms in the computational learn-
ing theory literature on efficiently learning linear sepa-
rators under uniform classification noise. It is also true
for many methods based on statistical models, such as
logistic regression. Another idea might be to simply
feed one of the Qk sets to the passive learning algo-
rithm. However, this suffers from a similar problem,
as there are many passive learning algorithms designed
for specific distributions over X , which simply do not
work when the data has a different distribution. For
instance, this is the case for many algorithms in the
computational learning theory literature, which are of-
ten designed specifically for certain highly-symmetric
distributions (e.g., so that one has concentration guar-
antees on the coefficients in a high-dimensional repre-
sentation of the target, such as in Fourier analysis).
Therefore, to design an active learning algorithm with
label complexity improvements over passive learning
methods such as these, we cannot simply use the de-
noised labels, nor can we use only the subset of labels
actually requested, as input to the passive algorithm.

Thus, we are tasked with the somewhat unusual prob-
lem of re-noising the de-noised labels, so that the la-
beled sample appears to be a typical iid sample with
distribution roughly DXY . Of course, if we knew
η(DXY ), we could simply corrupt each of the de-noised
labels independently with probability η(DXY ). In the
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Subroutine 2:
Input : label budget n, pair of labeled data sets (L, Q)
Output : sequence of 1 + n3/4 labeled data sets R0, R1, . . . , Rn3/4

0. Let {(Xℓ1 , ŷℓ1), . . . , (Xℓs , ŷℓs)} denote the first s = min{|L|, n} elements of L
1. Request the labels Yℓ1 , Yℓ2 , . . . , Yℓs

2. Calculate η̂ = s−1
∑s

i=1 1[Yℓi 6= ŷℓi ]
3. For each j ∈ {1, 2, . . . , n3/4}
4. Let ηj = η̂ − n−5/16 + 2jn−17/16, L(j) = {}
5. Let {χij}i∈N be a collection of iid {−1, +1} random variables with P(χij = −1) = ηj ,

(independent from {χij′}i∈N,j′ 6=j and Z)
6. Let L(j) = {(Xℓi , χij · ŷℓi) : (Xℓi , ŷℓi) ∈ L}
7. Let R0 = L ∪Q, and for each j ∈ {1, 2, . . . , n3/4}, let Rj = L(j) ∪Q
8. Return the sequence R0, R1, . . . , Rn3/4

absence of such direct information, one might try sub-
stituting an estimate of η(DXY ). However, it happens
one would need too many labeled samples to estimate
η(DXY ) to the precision needed to re-noise the sample
similarly enough to the DXY distribution to work well
when we feed it into the passive algorithm. Instead, we
employ a combination of estimation and search, which
turns out to be sufficient for our purposes. Specifi-
cally, consider Subroutine 2 above. The algorithm first
produces a confidence interval for η(DXY ) of width
2n−5/16, and then picks a sequence of evenly-spaced
values ηj in this range, at increments of 2n−17/16; for
each of these ηj values, it flips the label of each sam-
ple in L independently with probability ηj , and merges
these corrupted samples with the set Q to produce a
labeled data set Rj .

1 We have the following lemma.

Lemma 2. Suppose DXY ∈ UniformNoise(C),
φ2(n) = ω(n), QX ⊂ {X1, . . . , Xm}, and LX =
{X1, . . . , Xm} \ QX. Further suppose Q = {(Xi, Yi) :
Xi ∈ QX}, L = {(Xi, h

∗
DXY

(Xi)) : Xi ∈ LX},
n33/32 ≥ |L| ≥ φ2(n), and Ap is a passive learning

algorithm. Then ∃q1(n) = o(1) s.t., if {Ri}n
3/4

i=1 is the
sequence of data sets returned by Subroutine 2 when
provided n and (L, Q) as inputs, then

E

[

min
j

er (Ap(Rj))− η(DXY )

]

≤ (1 + q1(n))E [er (Ap(Zm))− η(DXY )]

+ (1 + q1(n)) · exp
{

−n1/4
}

.

Proof. If η(DXY ) = 0, then R0 = Zm, so that the re-
sult clearly holds with q1(n) = 0. For the remainder of
the proof, suppose η(DXY ) > 0, and let ν = η(DXY ).

1We suppose the union L
(j)

∪ Q merges the two sets in
a way that preserves their original order in the unlabeled
sequence (supposing each Xi implicitly records its index i).

Let N1 = min{n′ ∈ N : minm>n′ φ2(m) ≥ n}; this
exists because φ2(n) = ω(n). Since |L| ≥ φ2(n),
if n > N1 we must have s = n. If this is the
case, then by Hoeffding’s inequality, with probabil-
ity 1 − exp

{

−n1/4
}

, |η̂ − η(DXY )| ≤ c1 · n−3/8 for
some (universal) constant c1 ∈ (0,∞). Thus, on
this event, letting N2 = max{N1, c

16
1 }, if n > N2,

we have η(DXY ) ∈
[

η̂ − n−5/16, η̂ + n−5/16
]

. In par-
ticular, this means j∗ = argminj |ηj − η(DXY )| has

|ηj∗ − η(DXY )| ≤ 2n−17/16.

Now for any sequence of labels y1, . . . , ym ∈ {−1, +1}
s.t. Xi ∈ QX =⇒ yi = Yi, we have

P (Rj∗ = {(Xi, yi)}mi=1|{Xi}mi=1, Q, j∗)

P (Zm = {(Xi, yi)}mi=1|{Xi}mi=1, Q)

≤ max
0≤r≤|L|

ηr
j∗(1− ηj∗)|L|−r

η(DXY )r(1− η(DXY ))|L|−r

≤ max
0≤r≤|L|

(

1 + 2n−17/16

η(DXY )

)r

·
(

1 + 2n−17/16

1−η(DXY )

)|L|−r

=
(

1 + 2n−17/16

η(DXY )

)|L|

≤
(

1 + 2n−17/16

η(DXY )

)n33/32

≤ exp
{

2n−1/32/η(DXY )
}

.

This final quantity approaches 1 as n → ∞, and we
therefore define, for any n > N2,

q1(n) = exp
{

2n−1/32/η(DXY )
}

− 1 = o(1).

In particular, when the above inequalities hold,

E

[

er (Ap(Rj∗))− ν
∣

∣

∣
{Xi}mi=1, Q, j∗

]

≤ (1 + q1(n))E
[

er (Ap(Zm))− ν
∣

∣

∣
{Xi}mi=1, Q

]

.

Since we have established that this holds with proba-
bility at least 1− exp

{

−n1/4
}

when n > N2, we have,
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Subroutine 3:
Input : label budget n, sequence of classifiers h1, h2, . . . , hN

Output : classifier hĵ

0. If N = 1, return the single classifier h1

1. For each i ∈ {1, 2, . . . ⌊N/2⌋}
2. Let TiN be the next ⌊n/N⌋ (previously untouched) unlabeled examples Xi

in the unlabeled sequence for which h2i−1(Xi) 6= h2i(Xi) (if they exist)
3. Request the label Yt for each Xt ∈ TiN and let SiN = {(Xt, Yt) : Xt ∈ TiN}
4. Let h′

i = argminh∈{h2i−1,h2i} erSiN (h)
5. If N is odd, let h′

⌈N/2⌉ = hN

6. Recursively call Subroutine 3 with label budget n/2 and classifiers h′
1, h

′
2, . . . h

′
⌈N/2⌉

and return the classifier it returns

by the law of total expectation, and since we always
have er(Ap(Rj∗))− ν ∈ [0, 1], if n > N2,

E [er (Ap(Rj∗)) − ν]

≤ (1 + q1(n))E [er (Ap(Zm))− ν] + exp
{

−n1/4
}

.

For completeness, we may define q1(n) = exp
{

N
1/4
2

}

for any n ≤ N2, and the inequality in the lemma state-
ment then trivially holds for these small n values.

A Tournament for Classifier Selection Lem-
mas 1 and 2 together indicate that, if we feed each
(Lk, Qk) pair into Subroutine 2 (using an appropri-
ate fraction of the overall label budget for each call),
then we need only find a way to select from among
the returned labeled samples Rj , or equivalently from
among the set of classifiers hj = Ap(Rj), so that the

selected ĵ has er(hĵ) − η(DXY ) not too much larger
than er(hj∗) − η(DXY ), for j∗ as above. Here we de-
velop such a procedure, based on a tournament among
these classifiers by pairwise comparisons. Specifically,
consider Subroutine 3 above. This algorithm groups
the classifiers into pairs, and for each pair it requests a
number of labels for points on which the two classifiers
disagree; it then discards whichever of these classifiers
makes more mistakes, and makes a recursive call on
the set of surviving classifiers (the number of which is
smaller than the original set by a factor of 2). This
procedure admits the following lemma.

Lemma 3. Suppose DXY ∈ UniformNoise(C). Then
there exists a constant c ∈ (0,∞) and a func-
tion q2(n) = o(1) such that, for any n ∈ N and
any sequence of classifiers h1, h2, . . . , hN with 1 ≤
N ≤ (d + 1)(1 + (4n)3/4), with probability at least
1 − exp

{

−cn1/12
}

, the classifier hĵ returned from
calling Subroutine 3 with label budget n and classi-
fiers h1, h2, . . . , hN satisfies er(hĵ) − η(DXY ) ≤ (1 +
q2(n))minj (er(hj)− η(DXY )).

Proof. Let ν = η(DXY ). We proceed inductively (it
is clear for N = 1). Suppose some i ∈ {1, . . . , ⌊N/2⌋}
has P(hj(X) 6= h∗

DXY
(X)) > (1 + n−1/12)P(hk(X) 6=

h∗
DXY

(X)), where j, k ∈ {2i− 1, 2i}. Then

E[erSiN (hk)]

≤ (1− η(DXY ))(2 + n−1/12)−1 + η(DXY )
1 + n−1/12

2 + n−1/12

=
1 + η(DXY )n−1/12

2 + n−1/12
.

Denoting by p1 this latter quantity, and letting ε1 =
(1/2−η(DXY ))n−1/12

1+η(DXY )n−1/12
, a Chernoff bound implies

P(erSiN (hk) > 1/2) = P (erSiN (hk) > (1 + ε1)p1)

≤ exp
{

−c1n
1/4p1ε

2
1

}

,

for an appropriate choice of constant c1 ∈ (0,∞).
Simplifying this last expression, we find that it is
at most exp

{

−c2n
1/12

}

for an appropriate constant
c2 ∈ (0,∞). A union bound then implies that with
probability at least 1−(N/2) exp

{

−c1n
1/12

}

, for each
i ∈ {1, . . . , ⌊N/2⌋}, we have P(h′

i(X) 6= h∗
DXY

(X)) ≤
(1 + n−1/12)minj∈{2i−1,2i} P(hj(X) 6= h∗

DXY
(X)).

Note that, although both n and N are reduced in the
recursive calls, they will still satisfy the constraint on
the size of N (i.e., 1 ≤ N ≤ (d + 1)(1 + (4n)3/4)),
and the sample sizes |S·| = ⌊n/N⌋ remain essentially
constant over recursive calls, so that this result can
be applied to the recursive calls as well (tweaking the
constant in the exponent can compensate for the vari-
ability due to the floor function). Thus, applying this
argument inductively, combined with a union bound
over the O(log N) recursive calls, we have that there
exists a constant c2 ∈ (0,∞) s.t. with probability
≥ 1− (N log2 N) exp

{

−c2n
1/12

}

≥ 1− exp
{

−cn1/12
}

(for an appropriate c > 0), the returned classifier hĵ
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Meta-Algorithm 1:
Input : passive learning algorithm Ap, label budget n

Output : classifier ĥ

0. Execute Subroutine 1 with label budget ⌊n/2⌋ and confidence parameter δ = exp{−√n}
1. Let (L1, Q1), . . . , (Ld+1, Qd+1) be the returned pairs of labeled data sets
2. For each k ∈ {1, . . . , d + 1}, execute Subroutine 2 with budget ⌊n/(4(d + 1))⌋ and (Lk, Qk)
3. Let Rk0, Rk1, . . . , RkM denote the sequence of returned data sets (M = ⌊n/(4(d + 1))⌋3/4)
4. Execute Subroutine 3 with label budget ⌊n/4⌋ and classifiers

{Ap(Rkj) : k ∈ {1, . . . , d + 1}, j ∈ {0, 1, . . . , M}}
5. Return the classifier ĥ selected by this execution of Subroutine 3

satisfies (for an appropriate constant c3 ∈ (0,∞))

P

(

hĵ(X) 6= h∗
DXY

(X)
)

≤
(

1 + n−1/12
)c3 log n

min
1≤j≤N

P
(

hj(X) 6= h∗
DXY

(X)
)

.

Since ∀h, er(h) − ν = (1 − 2ν)P(h(X) 6= h∗
DXY

(X)),

and (1 + n−1/12)c3 log n ≤ exp
{

c3n
−1/12 log n

}

, which
approaches 1 as n → ∞, defining q2(n) =
exp

{

c3n
−1/12 log n

}

− 1 suffices for the result.

5. A Universal Activizer for C under

Uniform Classification Noise

We are now finally ready for our main result, establish-
ing the existence of universal activizers for VC classes
under uniform classification noise. Specifically, con-
sider Meta-Algorithm 1 above, which combines the
above arguments (setting appropriate label budgets for
each subroutine). We have the following result.

Theorem 1. For any VC class C, Meta-Algorithm 1
is a universal activizer for C under UniformNoise(C).

Proof. Lemma 1 implies that with probability 1 −
exp{−Ω(n1/3)}, some pair (Lk, Qk) will satisfy the
conditions of Lemma 2; more precisely, on this event,
and conditioned on |Lk ∪ Qk|, the pair (Lk, Qk) will
be distributionally equivalent to a pair (L, Q) that
satisfies these conditions. Thus, combining Lemmas
1 and 2, and the law of total expectation, combined
with the fact that er(h) − η(DXY ) ∈ [0, 1] for DXY ∈
UniformNoise(C), we have that (letting ν = η(DXY ))

E

[

min
k,j

er(Ap(Rkj))− ν

]

≤ (1 + o(1)) sup
m≥φ1(n)

E [er(Ap(Zm))− ν]

+ exp
{

−Ω(n1/4)
}

.

Finally, combining this with Lemma 3 implies that

E

[

er(ĥ)− ν
]

≤ (1 + o(1)) sup
m≥φ1(n)

E [er(Ap(Zm))− ν]

+ exp
{

−Ω(n1/12)
}

. (1)

For an n = Ω(log12(1/ε)), the second term on the right
hand side of (1) is < ε. For the first term, note that
if Ap achieves label complexity Λp, then in order to
make supm≥φ1(n) E [er(Ap(Zm))− ν] ≤ ε, it suffices to
take n large enough so that φ1(n) ≥ Λp(ε + ν;DXY ).
Thus, since φ1(n) = ω(n), for DXY ∈ Nontrivial(Λp),
the smallest N2ε ∈ N such that every n ≥ N2ε has

(1 + o(1)) sup
m≥φ1(n)

E [er(Ap(Zm))− ν] ≤ 2ε

satisfies N2ε = o(Λp(ε + ν,DXY )). Therefore, since
any O(log12(1/ε)) function is also o(Λp(ε + ν,DXY ))
for DXY ∈ Nontrivial(Λp), we see that applying Meta-
Algorithm 1 to Ap results in an active learning algo-
rithm achieving a label compleity Λa s.t., for DXY ∈
UniformNoise(C)∩Nontrivial(Λp), Λa(3ε+ν,DXY ) ≤
max

{

N2ε, O(log12(1/ε))
}

= o (Λp(ε + ν,DXY )).

6. Conclusions

We established the existence of universal activizers for
arbitrary VC classes in the presence of uniform classi-
fication noise. This is the first result of this generality
regarding the advantages active learning over passive
learning in the presence of noise.

Previously, (Hanneke, 2009; 2012) has argued that
even seemingly benign noise models typically do not
permit the existence of universal activizers for arbi-
trary VC classes. Thus, in an investigation of the
existence of universal activizers for VC classes, the
key question going forward is whether there are more
general noise models, nontrivially subsuming uniform
classification noise, under which universal activizers
for VC classes still exist.
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