Fast Max-Margin Matrix Factorization with Data Augmentation

Appendix A. Sampling New Features
in Gibbs iPM3F with Linear Cost

For detailed derivation and analysis of Gibbs sam-
pling in IBP models with a linear Gaussian likelihood,
we recommend the extended version® of (Doshi-Velez
et al., 2009). Below we concentrate on our discovery
of a more computationally efficient way to sample new
latent features, which achieves linear complexity with
respect to the Poisson truncation level k.

As indicated in Eq. (26), when sampling Z} = 1,
for each row of Z, we need to calculate |lek | and
w;gkiEwkjw”kl for all candidate k; values, be they
either Z>o or {0,1,2,...,x} for the truncated case.
The calculation of determinant for a k-by-k matrix is
of complexity O(k?®) with LU decomposition, and this
would bring about an overall complexity of O(x*) and
hence restrict our choice of the truncation level. How-
ever, we may take advantage of the special form of
E;i to reduce the computational cost to O(k).

Specifically, we find that for matrices Xy, of the follow-
ing form:
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and by solving these recursions we obtain the closed
form solution
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Furthermore, according to Cramer’s rule, we have
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and accordingly,
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Table 3. Asymptotic complexity for Gibbs M®F.

[ Step | Asymptotic complexity
Sample A O(|Z|LK)
Sample V (and U likewise) | O(JZ|(L + K?)) + O(MK?)
Calculate {B; '}}1, O(IZ|(L + K?))
Cholesky Decomposition O(MK?)
Calculate {b;}}1, O(|Z|(L + K)) + O(MK?)
Draw {V;};L, from N/ O(MK?)
Sample 6 O(ZI(L+ K)) + O(NL)

Table 4. Asymptotic complexity for Gibbs iPM®F.
[ Sampler for [ Asymptotic complexity ]

AV, 0 same as Gibbs M°F (Table 3)
{sz}L 1k=1 O(|Z|(L + K)) + O(NK)
{ZV 4« ki, O(Z|r) + O(Nm)

=1 loose O(\I| )—|—O(MN}<¢)

Then by taking b;; = Zf 11 452

may apply Eq. (31) to calculate \E”k | and by setting
62 —(§X (4 2)). we get

and a;;—b;; = %, we
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and thus may apply Eq. (33) for its calculation.

With b;; and §;; already at hand and updated from
previous steps, the incremental cost of calculating
Eq. (31) and (33), and hence Eq. (26), for k; =
0,1,...,k is thus reduced to O(k).

Appendix B. Asymptotic Complexity

Below we discuss the asymptotic computational com-
plexity of each iteration in our Gibbs sampling meth-
ods. Specifically, to draw samples from each condi-
tional distribution, there are typically two individual
costs, one for the calculation of the sufficient statistics,
e.g., Aj; in Eq. (22), B; and b; in Eq. (23), etc., and
the other for the actual drawing of the samples from
the corresponding distribution. Normally, the first one
is linear w.r.t. the number of the observed entries |Z|,
while the second one is independent of |Z| but linear
to the number of samples to be drawn, i.e. the num-
ber of parameters in the model. We list the results in
Table 3 and 4.

Note that we use the Cholesky decomposition B; -
R] R; both to calculate b; (23) where B;v is calculated
as R;\(R;\v)" and to draw samples from N'(b;, B;)
as b; + R;\x where x ~ N(0,I).

T\” is the “matriz left division” operator in MATLAB.



