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Appendix A. Sampling New Features
in Gibbs iPM3F with Linear Cost

For detailed derivation and analysis of Gibbs sam-
pling in IBP models with a linear Gaussian likelihood,
we recommend the extended version6 of (Doshi-Velez
et al., 2009). Below we concentrate on our discovery
of a more computationally efficient way to sample new
latent features, which achieves linear complexity with
respect to the Poisson truncation level κ.

As indicated in Eq. (26), when sampling Zνi = 1>ki
for each row of Z, we need to calculate |Σijki | and
ω>ijkiΣ

−1
ijki
ωijki for all candidate ki values, be they

either Z≥0 or {0, 1, 2, . . . , κ} for the truncated case.
The calculation of determinant for a k-by-k matrix is
of complexity O(k3) with LU decomposition, and this
would bring about an overall complexity of O(κ4) and
hence restrict our choice of the truncation level. How-
ever, we may take advantage of the special form of
Σ−1
ijki

to reduce the computational cost to O(κ).

Specifically, we find that for matrices Xk of the follow-
ing form:

Xk = (a− b)Ik×k + b1k×k =
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we have

δk , det(Xk) = aδk−1 − (k − 1)bδ′k−1

δ′k , det
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= δk + (b− a)δk−1

(30)

and by solving these recursions we obtain the closed
form solution

δk = (a− b)k−1(kb+ a− b) (k ≥ 0) (31)

Furthermore, according to Cramer’s rule, we have
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and accordingly,

1>k X
−1
k 1k =

1

δk
(kδk−1 − k(k − 1)δ′k−1)

=
k

kb+ a− b (k ≥ 0)

(33)

6http://people.csail.mit.edu/finale/papers/
aistats09_tr.pdf

Table 3. Asymptotic complexity for Gibbs M3F.
Step Asymptotic complexity

Sample λ O(|I|LK)
Sample V (and U likewise) O(|I|(L+K2)) +O(MK3)
Calculate {B−1

j }Mj=1 O(|I|(L+K2))

Cholesky Decomposition O(MK3)
Calculate {bj}Mj=1 O(|I|(L+K)) +O(MK2)
Draw {Vj}Mj=1 from N O(MK2)
Sample θ O(|I|(L+K)) +O(NL)

Table 4. Asymptotic complexity for Gibbs iPM3F.
Sampler for Asymptotic complexity

λ, V,θ same as Gibbs M3F (Table 3)

{Zik}N,Ki=1,k=1 O(|I|(L+K)) +O(NK)

{Zνi }Ni=1 : {ki}Ni=1 O(|I|κ) +O(Nκ)

{V iν}Ni=1
tight:O(

∑
ij∈I k

3
i ) +O(M

∑
i ki)

loose:O(|I|κ3) +O(MNκ)

Then by taking bij =
∑L−1
r=1

C2

4λijr
and aij−bij = 1

σ2 , we

may apply Eq. (31) to calculate |Σ−1
ijki
| and by setting

ξij , −
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, we get

ω>ijkiΣ
−1
ijki
ωijki = ξ2

ij1
>
kiΣijki1ki

and thus may apply Eq. (33) for its calculation.

With bij and ξij already at hand and updated from
previous steps, the incremental cost of calculating
Eq. (31) and (33), and hence Eq. (26), for ki =
0, 1, . . . , κ is thus reduced to O(κ).

Appendix B. Asymptotic Complexity

Below we discuss the asymptotic computational com-
plexity of each iteration in our Gibbs sampling meth-
ods. Specifically, to draw samples from each condi-
tional distribution, there are typically two individual
costs, one for the calculation of the sufficient statistics,
e.g., ∆r

ij in Eq. (22), Bj and bj in Eq. (23), etc., and
the other for the actual drawing of the samples from
the corresponding distribution. Normally, the first one
is linear w.r.t. the number of the observed entries |I|,
while the second one is independent of |I| but linear
to the number of samples to be drawn, i.e. the num-
ber of parameters in the model. We list the results in
Table 3 and 4.

Note that we use the Cholesky decomposition B−1
j =

R>j Rj both to calculate bj (23) where Bjv is calculated

as Rj\(R>j \v)7 and to draw samples from N (bj , Bj)
as bj +Rj\x where x ∼ N (0, I).

7“\” is the “matrix left division” operator in MATLAB.


