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Abstract

We propose a natural cost function for the
bi-clustering task, the monochromatic cost.
This cost function is suitable for detecting
meaningful homogeneous bi-clusters based
on categorical valued input matrices. Such
tasks arise in many applications, such as the
analysis of social networks and in systems-
biology where researchers try to infer func-
tional grouping of biological agents based
on their pairwise interactions. We analyze
the computational complexity of the result-
ing optimization problem. We present a poly-
nomial time approximation algorithm for this
bi-clustering task and complement this result
by showing that finding (exact) optimal so-
lutions is NP-hard. As far as we know, these
are the first positive approximation guaran-
tees and formal NP-hardness results for any
bi-clustering optimization problem. In ad-
dition, we show that our optimization prob-
lem can be efficiently solved by deterministic
annealing, yielding a promising heuristic for
large problem instances.

1. Introduction

Common clustering tasks take as input a data set and
a similarity (or distance) function over it, with the aim
of finding a partition of the data into groups of mutu-
ally similar elements. Bi-clustering is a variant of this
general task, in which the input data comes from two
domain sets, and instead of having a distance func-
tion over its elements, the input is some relation over
these sets. For example, a set of documents and a
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set of words and the relation indicating the member-
ship of words in the documents. In this setting, the
bi-clustering task is to find partitions of each of the
two domain sets into groups, such that words in the
same group appear in the same groups of documents
and documents that share a group are likely to con-
tain words from the same groups of words. Namely,
the relation values in each of the resulting blocks (i.e.,
the product of two groups, one from each domain set)
are as homogeneous as possible.

Similarly to clustering, bi-clustering is an unsuper-
vised method for detecting meaningful structure in
data. While common clustering tasks require some
user-defined notion of similarity between data points,
the bi-clustering task we analyze is fully determined
by a matrix of an empirically measured pairwise rela-
tion (or interaction) between the domain points. The
only additional learner’s prior knowledge it requires,
is the number of row and column groups. In this
sense bi-clustering can be viewed as a more “objec-
tive” method.

Bi-clustering is far from being a new framework. Biol-
ogists apply bi-clustering techniques to detect groups
of similar genes based on their gene expression levels
over a set of different treatments. In recommender
systems it is used to determine groups of similar cus-
tomers based on the matrix of their preferences for a
set of products. Bi-clustering is also applied in text
categorization and other diverse data mining settings.
In spite of its wide scope of applications, bi-clustering
tasks have hardly been analyzed in terms of their com-
putational and sample complexity. Many popular bi-
clustering paradigms are only defined through the al-
gorithms used to carry them out. Furthermore, the
various tasks that are defined as optimization prob-
lems with respect to a clear objective function, lack
proven bounds on their computational complexity.

The main contributions of this paper are as fol-
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lows: We propose a new cost-function for the bi-
clustering problem, the monochromatic cost. The
monochromatic cost is a natural formalization of the
goal of detecting structure in the form of label-
homogeneous sub-matrices, (which is shared by most
existing bi-clustering works). Unlike many existing
cost-functions, the monochromatic cost can easily han-
dle missing values in the input matrix.

We show that the monochromatic cost complies with
the minimum description length (MDL) principle, by
presenting a natural encoding of the input matrix
whose length corresponds to our cost.

We provide a complete theoretical analysis of the opti-
mization problem induced by the monochromatic cost
function. We prove that optimizing this cost is NP-
hard, as well as design a polynomial time approxima-
tion scheme (PTAS) with proven performance guaran-
tees (it is generally assumed that the various existing
formulations of bi-clustering are NP-hard, we are not
aware of a formal hardness proof for any formulation).

Finally, we show that the problem of minimizing the
monochromatic cost can be solved efficiently by a de-
terministic annealing scheme, leveraging on ideas used
to derive the PTAS. We use such a solver to detect ho-
mogeneous bi-clusters in a real-world animal-feature
dataset. Albeit not having performance guarantees
for this scheme, we empirically demonstrate that this
solver performs well in recovering the monochromatic
objective on synthetic data.

Due to lack of space, this paper contains only a presen-
tation of our results with succinct proof ideas, while
all proofs are deferred to the appendix.

2. Related Work

Much of the more practically oriented work on bi-
clustering discusses algorithms that lack an explicit
objective function as an optimization goal. This line
of work is less relevant to our work and we refer the
reader to the survey by Tanay et al. (2006) for further
details.

The first definition of bi-clustering as an optimization
problem over some well defined objective function is
probably due to Hartigan (1972). Hartigan consid-
ers real valued matrices and proposes several objec-
tive functions, including the sum of block’s variances.
Hartigan also proposes a heuristic for finding a low-
cost bi-clustering, however, no guarantees are proven
for its performance.

Cheng & Church (2000), were the first to introduce bi-
clustering to gene expression analysis. They formally

define a cost function, called the low mean squared
residue, which can be viewed as a variant of Harti-
gan’s minimum variance cost. They propose an itera-
tive greedy search algorithm which may converge to a
local minima. Other notable objective functions used
in bioinformatics include loss in mutual information
in (Dhillon et al., 2003) and the square residue, (Cho
et al., 2004). In all of these papers, neither optimiza-
tion quality guarantees nor computational complexity
bounds are proven.

The Infinite Relational Model (IRM), described
in (Kemp & Tenenbaum, 2006; 2008) is a Bayesian
model for the automated discovery of structure in com-
plex data. The approach assumes a generative model,
in which the entries of the matrix M are generated by
a Binomial distribution. The number of bi-clusters is
automatically adjusted by a Chinese restaurant pro-
cess. Unlike the IRM, the work presented here takes
a combinatorial view of the problem of detecting ho-
mogeneous structure. It is more objective in the sense
of not making any assumptions about the generating
process. Their approach on the other hand is more
general, and is suitable for more types of input data.
Their work contains an extensive experimental setup,
but it does not provide formal guarantees.

Various studies (Chakrabarti et al., 2004; Papadim-
itriou et al., 2008; Hirai et al., 2011) propose cost
functions that are inspired by the minimum descrip-
tion length (MDL) principle. These cost functions try
to minimize a variation of the Shannon entropy, and
justify this by its relation to encoding length. How-
ever, this relation is of asymptotic nature, it holds
only in the limit, when instance sizes go to infinity.
Minimizing this measure for a specific input matrix
does not necessarily yield an actual short description
of the matrix. In contrast to this, the monochromatic
cost function does correspond to the length of a com-
pressed representation (see the discussion in 3.3), and
can hence be also viewed as implementing the MDL
principle. Those studies do not provide theoretical
analysis of the approximation quality of their outcome
or of the computational complexity of the resulting
bi-clustering optimization task 1.

The algorithms and complexity community analyzed
the computational complexity of the related prob-
lem of correlation clustering (the monochromatic bi-
clustering cost can be viewed as a generalization of cor-
relation clustering). The problem of correlation clus-

1Both (Chakrabarti et al., 2004) and (Papadimitriou
et al., 2008) claim that the task is NP-hard. However, a
closer look reveals that their argument is based on intuition
and does not yield an actual proof of the claim.
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tering with a fixed number of clusters has been studied
in (Giotis & Guruswami, 2006), yielding a PTAS for
the minimization problem for all k, and a PTAS for
the maximization version along with an NP-hardness
result. Our approximation algorithm is inspired by the
PTAS for Max k-CUT by Goldreich et al. (1998).

3. The Monochromatic Bi-Clustering
Cost Function

Given an input matrix over some fixed finite domain
D of values, and integers K and L, the monochro-
matic bi-clustering task is to find a partition of the
rows of the matrix into K groups and its columns into
L groups, such that the resulting matrix blocks are as
homogeneous as possible. We define the cost of a par-
tition as the fraction of matrix entries that reside in
blocks in which they are not the majority value entries.

3.1. Motivation

As an example consider gene expression profiling.
DNA micro-arrays are designed to simultaneously
measure the expression level of many genes within a
particular mRNA sample, under various clinical con-
ditions. The result of such an experiment is a matrix
with rows corresponding to genes, columns to condi-
tions and entries to the measured expression. Often
the genes are not homogeneous under the performed
tests, and thus one of the main challenges in the analy-
sis of such data-sets, is to discover local patterns of sets
of genes that exhibit coherent expression across sub-
sets of experimental conditions. The expression values
are often discretized or even threshold-ed such that
the post-processed data has {0, 1} entries. The raw
micro-array data may contain missing values caused
by various factors such as, insufficient resolution, im-
age corruption, or even a systematic robotic failure in
the generation process. These missing entries do not
carry any information and thus should be disregarded
for the purpose of gene grouping. In this work we as-
sign missing entries the symbol ? and design our cost
function such that these values do not affect the rank-
ing of the different solutions.

3.2. Formal Definition

Formally, for some finite domain D, let M ∈ (D ∪
{?})m×n be an input matrix (in sections 5 and 6, we
consider a binary domain D = {0, 1} for concreteness),
and let R = [m] and C = [n] denote the set of M ’s
row indices and column indices respectively. Given
integers K and L, let P = (PR = {R1, . . . RK}, PC =
{C1, . . . CL}) denote a partition of R into K subsets,

and of C into L subsets. We use M [R′, C ′] for a sub-
matrix defined by a subset of rows R′ ⊆ R and subset
of columns C ′ ⊆ C.

The monochromatic cost of a partition is defined as

MonK,L(M , P ) :=
1

mn

∑

k∈[K],l∈[L]
φ(M [Rk, Cl]) (1)

where φ : {D ∪ ?}s×t → R is a function returning the
number of the non-? entries in a (sub) matrix that
differ from the majority, non-? value. Formally, for a
matrix A ∈ (D∪{?})s×t, let dmax denote the majority
non-? entry in A, then

φ(A) = |{(i, j) : A[i, j] 6= dmax and A[i, j] 6= ?}|

The majority value here refers to the most frequent
value among the non-? entries, the majority value does
not necessarily occur in more than half of the entries.

We formally define the monochromatic bi-clustering
problem as:

Definition 3.1. Given an input matrix M ∈ (D ∪
{?})m×n, the K,L-MonochromaticBiclustering
(K,L-MCBC) problem is finding a partition P of M
that minimizes the monochromatic cost.

We also consider the version of the monochromatic
bi-clustering in which instead of penalizing non-
homogeneous bi-clusters, we promote bi-cluster homo-
geneity (or agreement). We refer to this version as the
monochromatic agreement. The monochromatic agree-
ment of an input matrix M and a partition P is sim-
ply 1 −MonK,L(M , P ) (naturally a matrix partition
that optimizes one of these costs also optimizes the
other, but there is a difference when it comes to mea-
suring the approximation ratio of a close-to-optimal
partitioning).

3.3. Monochromatic Compression Scheme

One can think of the monochromatic bi-clustering
problem as a compression of an input m × n matrix
into a K × L blocks matrix, typically, K � m and
L� n. The compressed representation requires K · L
+ m log(K) + n log(L) bits (the majority label of each
block, augmented by the cluster index of each row and
each column), instead of the straightforward m · n bit
representation. The monochromatic cost is essentially
the error (or the information loss) of such a compressed
representation. For an error-free compression, we need
to add an encoding of the outliers in each block, adding∑
k∈[K],l∈[L] φ(M [Rk, Cl]) log(mn) to the length of the

encoding. This shows that (for fixed M ,K and L) the
length of our encoding corresponds to the monochro-
matic cost.
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3.4. Symmetric Version

While the the bi-clustering problem described above
models situations in which the input objects come from
disparate domains (e.g. movies and viewers or text
documents and words), one can also consider a sin-
gle domain symmetric variant of the problem. In the
symmetric problem, the input matrix is a square sym-
metric matrix, and the output partitions of the rows
and columns are required to be identical. This ver-
sion models the case where the input matrix records
pairwise relations among the elements of a single set.
The results of this paper apply to both versions. How-
ever, for the sake of concreteness, our presentation is
in terms of the non-symmetric version. It is interest-
ing to note that correlation clustering, as defined by
Bansal et al. (2004), while being a clustering rather
than a bi-clustering problem, can also be viewed as a
special case of symmetric monochromatic bi-clustering

4. NP-Hardness

In this section, we show that the K,L-MCBC problem
is computationally hard (NP-hard) for input matrices
over D ∪ {?}. We use a reduction from MaxCut.

Theorem 4.1. The K,L-MCBC over a domain set D
is NP-hard for every finite domain set D of size ≥ 2
and any (K,L) such that K ≥ 2 and K ≤ L ≤ |D|K−1,
or L ≥ 2 and L ≤ K ≤ |D|L−1.

Proof Sketch: We first construct a reduction from
MaxCut to the 2, 2-MCBC, and then extend the re-
duction to larger (fixed) values of K and L. A cut in
a graph G = (V,E) is a partition of the vertex set into
V1 and V2. The size of the cut is the number of edges
in E that connect vertices from V1 to vertices from V2.
The decision version of MaxCut is defined as follows:

Input A graph G = (V,E), an integer r.
Question Is there a cut of G of size at least r?

Given instance (G = (V,E), r) of MaxCut we con-
struct an instance MG of 2, 2-MCBC and prove that
this constitutes a reduction by showing:

Lemma 4.2. G has a cut of size at least r if and only
if MG has a 2, 2-bi-clustering of monochromatic cost

at most 2(|E|−r)
|MG| .

Finally, we extend the hardness results to the K,L-
MCBC problem for larger values of K and L. Given
K and L as in the theorem, and an input matrix M to
the 2, 2-MCBC problem, we construct another matrix
N such that an optimal K,L-MCBC partitioning of
N will induce an optimal 2, 2-MCBC partitioning of
M .

Discussion Note that for K and L such that K >
|D|L, K,L-MCBC is the same as |D|L, L-MCBC,
since, for L column blocks, there are at most |D|L pos-
sible patterns for the rows. Thus, our current reduc-
tions, miss only few relevant combinations for K and
L. Theorem 4.1 further implies, that over an infinite
domain, K,L-MCBC is NP-hard for all combinations
of K ≥ 2 and L ≥ 2. We conjecture that this holds for
finite domains as well. Furthermore, our NP-hardness
results for fixed K and L imply that the MCBC prob-
lem version, where K and L are part of the input, is
NP-hard.

NP-hardness for matrices with arbitrary frac-
tion of ? entries Adding blocks of ?-entries to a
matrix does not make it any easier to find its opti-
mal bi-clustering. Therefore, our hardness result ap-
plies to arbitrarily sparse inputs as well. However, for
instances with a large fraction of ?-entries, approx-
imating the monochromatic agreement is easy: any
bi-clustering has relatively low cost, yielding a trivial
approximation algorithm for such instances. We thus
provide an NP-hardness result for the case of input
matrices with only a small fraction of ?-entries:

Theorem 4.3. For any fixed K ≥ 2, L ≥ 2, satisfying
the condition of Theorem 4.1, and any ε ≥ 0, the K +
1, L+ 1-MCBC problem restricted to instances with at
most ε-fraction of missing ? entries, is NP-hard.

We conjecture that the K,L-MCBC is NP-hard even
restricted to input matrices without ?-entries.

5. Approximation Algorithm With
Guarantees

In this section we present a randomized polynomial
time approximation scheme (PTAS) for solving the
K,L-MCBC problem. Given an accuracy parameter
ε and confidence threshold δ, for a binary input ma-
trix M ∈ {0, 1, ?}m×n, the algorithm outputs a bi-
clustering that, with probability ≥ 1 − δ, has agree-
ment score within a multiplicative (1− ε) factor of the
score of the best possible bi-clustering for that matrix.
The run time of the algorithm is polynomial in the size
of the input matrix, m · n.

5.1. Algorithm Overview

There are two key ideas underlying the algorithm.
To introduce the first concept, we need to define the
monochromatic cost with respect to a pattern. The
output of the monochromatic bi-clustering is a parti-
tion of the original matrix into K × L sub-matrices.
We define the pattern of the solution as the result-
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ing K×L binary matrix with entries corresponding to
the majority values in each sub-matrix of the partition.
One can also consider the reverse operation, where the
pattern is fixed in advance, and the cost of a partition
is computed with respect to the values defined by the
pattern rather than the true majorities emerging from
the partition.

Formally, let A ∈ {0, 1}K×L be a pattern matrix, we
define the monochromatic cost with respect to A as

MonA(M , P ) :=
1

mn

∑

k∈[K],l∈[L]
φA[k,l](M [Rk, Cl])

(2)
where, for a matrix M and a value a ∈ {0, 1}, we
define

φa(M) = |{(i, j) : M [i, j] 6= a and M [i, j] 6= ?}|

Note that in the above definition the parameters K
and L are given implicitly by the dimensions of A.

Our algorithm iterates over all (discarding symme-
tries) possible patterns, and for each pattern finds the
best (approximated) partition. Naturally, the pattern
of the best partition will be considered, and it is easy to
see that the partition minimizing the cost with respect
to the optimal pattern, is the optimal monochromatic
solution.

Claim 5.1. For a fixed pattern matrix A, and
a fixed partition PR of the rows of M , it is
possible to find the partition of the columns that
yields the lowest monochromatic pattern cost, i.e.
min
P ′

C

MonA(M , (PR, P
′
C)), in polynomial time.

According to claim 5.1, if we knew the optimal parti-
tion of the rows, and conditioning on the pattern, we
could efficiently recover the optimal partition of the
columns. The claim is stated with respect to the rows
but holds just the same for the columns

The second component in the derivation of the PTAS,
is showing that it is sufficient to know the optimal par-
tition of only a (fixed-size) uniformly sampled subset
of the rows, to obtain a partition of the columns which
is guaranteed to yield an “ε-close” agreement score to
the optimal partition, with high probability (over the
sample). The main technical part of the proof is show-
ing that a sample size depending only on ε and δ (but
independent of |M |) suffices to guarantee the genera-
tion of an ε-approximation with high probability.

Putting the two ideas together, the approximation al-
gorithm performs the following steps; For each K × L
pattern matrix A, the algorithm randomly picks a
sample of the rows and a sample of the columns. For

each partition of the rows sample into K groups, it
computes the implied partition of the entire set of
columns, having the optimal monochromatic cost with
respect to A. Similarly, for every partition of the
columns sample, compute the corresponding optimal
partition of the entire set of rows (w.r.t. the pattern
A). Next, for every resulting partitioning of the rows
and every resulting partitioning of the columns, com-
pute the monochromatic cost of the full partition, and,
finally, the solution with minimal cost is returned. A
pseudo-code of the monochromatic approximation al-
gorithm is given in Algorithm 1.

Algorithm 1 Monochromatic Approximation Algorithm

1: Input: M ∈ {0, 1, ?}m×n, K,L ∈ N≥1, ε, δ > 0.

2: Initialize t = 1
2ε2

log KL
δε

.

3: for each pattern matrix A ∈ {0, 1}K×L do

4: Sample t rows and columns: RS , CS

5: for each partition PSR = {RS1 , . . . RSK} of RS and
PSC = {CS1 , . . . CSL} of CS do

6: for each row i ∈ R and column j ∈ C do

7: assignment(i) = argmin
1≤k≤K

Err(i, k|A, PSC )

8: assignment(j) = argmin
1≤l≤L

Err(j, l|A, PSR )

9: end for

10: compute the cost of the partition
11: end for

12: end for
13: Return the partition with the minimal cost

The following additional notation is used in the
pseudo-code and the analysis of the algorithm. Let
S = (RS , CS) denote the sample of the rows and
columns and t = |RS | = |CS |. We use PS = (PSR , P

S
C )

to denote the partition of the sample, where PSR =
{RS1 , . . . RSK} and PSC = {CS1 , . . . CSL}.
Given a partition of the rows PR = {R1, . . . , RK}, and
a pattern A, we define the following error function for
each column j ∈ C and a column block 1 ≤ l ≤ L,

Err(j, l|A, PR) =
1

t

∑

k∈[K]

∑

i∈Rk

|M [i, j]−A[k, l]|

The sum above ignores rows i for which M [i, j] =
?. This is essentially the error with respect to the
pattern A incurred by placing the column j in the l
block, when the partition of the rows is given by PR.
Similarly Err(i, k|A, PC) is defined for each row i.
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5.2. Algorithm Analysis

Next we show that taking a sample size of O( 1
ε2 ) suf-

fices to approximate OPT (M), within an additive fac-
tor of 4ε with high probability. OPT here denotes the
optimal monochromatic solution cost for an input ma-
trix M . For the homogeneity maximization version,
using a lower bound on the monochromatic agreement,
we show that this is equivalent to a multiplicative ap-
proximation of OPT ′ ·(1−ε), where OPT ′ = 1−OPT
is the optimal agreement score. Since the sample size is
O( 1

ε2 ), the run time of the basic step of our algorithm,
is then exp(O( 1

ε2 )).

The main technical claim we prove, is that given pa-
rameters ε > 0 and δ > 0, there exists some sample
size, t = t(ε, δ,K,L), for which for every input ma-
trix M (of any size), if RS and CS are samples of size
t drawn uniformly and independently from the set of
rows and columns of M , then for any fixed K × L
bi-clustering pattern A, there exists a partition of RS

into K groups and of CS into L groups such that the
MonA cost of the induced solution is ε-close to the
MonA cost of the optimal partition with probability
exceeding 1− δ. With this, we get:

Theorem 5.2. There is a randomized algorithm for
the monochromatic bi-clustering problem, that given
an input matrix M and an accuracy parameter ε,
runs in time |M |2 exp

(
c
ε2

)
(for some constant c) and

with high probability outputs a partition P of M with
Mon(M , P ) ≤ OPT + 4ε.

This implies:

Corollary 5.3. For every K,L there exists a random-
ized polynomial time approximation scheme for the
K × L monochromatic bi-clustering agreement maxi-
mization problem.

The proof uses a lower bound of 1
2 on the agreement

of the optimal solution and shows that an additive
4ε approximation translates into a multiplicative (1−
ε)OPT ′ bound. The corollary follows from Theorem
5.2. Detailed proofs can be found in the appendix.

6. Deterministic Annealing

For relatively large values of K and L, the run-time
of the approximation algorithm presented in section 5
(PTAS), which is polynomial in the input size, but ex-
ponential in K, L, can be too high, making it imprac-
tical for most real-world bi-clustering applications.

In this section we present a solution of the monochro-
matic objective by means of deterministic annealing
(DA). The DA algorithm derived here, is directly
motivated by one of the ideas which also underline

the PTAS derivation. This property is formulated in
claim 5.1. It is essentially saying that conditioned on a
specific solution pattern, and given a partition of one
of the item sets (i.e. rows or columns), the partition
of the other item set, can be carried out efficiently in
a decoupled manner, i.e. the assignment of the indi-
vidual items in the second set is independent.

Rather than thinking of a clustering as a partition,
here we represent a clustering as an assignment of the
rows and columns to clusters. Let xi and yj denote
the assignment of the i-th row and the j-th column
to the row and column clusters, respectively. Hence,
xi ∈ {1, . . . ,K} and yj ∈ {1, . . . , L}. To make the
conditioning on the pattern explicit we define auxiliary
variables A[k, l] ∈ {0, 1} for 1 ≤ k ≤ K and 1 ≤ l ≤ L
coding the majority of the bi-cluster k, l.

The DA solution alternates between updating the
three blocks of variables: row assignments x, column
assignments y and the bi-cluster majorities A. The
row partition is sampled according to the following
probabilities:

P (xi = k|y,A) ∝ exp(− 1

T

∑

j∈[n]
|M [i, j]−A[k, yj ]|),

whereas the column probabilities are given as follows:

P (yj = l|x,A) ∝ exp(− 1

T

∑

i∈[m]

|M [i, j]−A[xj , l]|).

For v ∈ {0, 1}, the bi-cluster majority probabilities are

P (A[k, l] = v|x,y) ∝ exp(− 1

T

∑

xi=k,yj=l

|M [i, j]− v|).

T is a temperature parameter that is decreased during
the run of the algorithm in order to eventually only
sample low-cost configurations. In case entries in M
are missing, the corresponding elements do not con-
tribute to the costs.

6.1. Deterministic Annealing Variant

In the experiments in section 7 we benchmark the DA
solution, denoted as DA, against a variant of this so-
lution which performs sampling without conditioning
on the bi-cluster majorities. We denote this solver
DA-no-auxiliary. This modification requires comput-
ing the assignments of each row and column individu-
ally, given the assignments of the rest of the variables.
The clear disadvantage of this solver is an increase of
the running time by a factor of |M |. The reason it
is interesting to compare with this solver, is to get
empirical evidence on whether the introduction of the
auxiliary variables affects the quality of the solution of
a deterministic annealing scheme.
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7. Experiments

The nature of the bi-clustering task as an unsuper-
vised learning method, having no clear ground truth
for real data, makes it hard to compare different ap-
proaches aiming at optimizing different cost functions.
In order to draw connections to existing work, in sec-
tion 7.2 we apply the monochromatic DA solver to the
Osherson dataset of animal-features matrix gathered
in a psychological experiment (Osherson et al., 1991).
This data was used in (Kemp & Tenenbaum, 2006) to
motivate a relational learning model. In section 7.1
we empirically demonstrate that the DA solver for the
monochromatic objective performs well on synthetic
data, despite not having provable guarantees on the
solution. Even on relatively large instances it finds
a solution with monochromatic cost close to the as-
sumed minimal cost, given by the noise introduced to
the data. We compare the cost with a variant of the
solver detailed in section 6.1.

7.1. Synthetic Data

For a matrix size (m,n), parameters (K,L), and a
noise level σ, we generate a data instance Mσ in the
following way. First we generate a pattern matrix of
size (K,L) by uniformly at random assigning each en-
try a value in {0, 1}. After fixing the pattern, for each
row and column we choose uniformly at random an
assignment to a row cluster 1 ≤ k ≤ K, and column
cluster 1 ≤ l ≤ L respectively. Finally, for each en-
try Mσ[i, j], we choose the value matching the assign-
ment of i and j with probability 1−σ, and with prob-
ability σ we choose the other value. We report the
results on three synthetic dataset sizes, 50, 500, 1000
with (5, 5), (10, 10), (10, 10) number of bi-clusters used
for generation. For each size and number of bi-clusters
parameters, we generate 5 instances, the reported val-
ues are the averaged errors. For the noise level we use
10 values in the interval [0.01, 0.35], since we consider
binary data, higher noise level may contain very little
structure. We tried several values of temperature T
and update schemes, and finally choose the run with
the lowest final monochromatic cost.

On each dataset instance we run the solvers DA and
DA-no-auxiliary (see section 6.1), until convergence
(determined by a fixed number of iterations with no
change to the lowest cost found). On the largest data
set, some of the runs of DA-no-auxiliary did not con-
verge within a limit of 8 hours. We report the lowest
values obtained within the time limit.

Figure 1 presents the results of the synthetic data ex-
periment. Both variants achieve the expected optimal
cost on the smallest dataset. On the other two, DA

achieves a lower cost compare to DA-no-auxiliary. In
terms of running-time DA-no-auxiliary is on average
at least 10 times slower (partially did not converge)
compared to DA.

7.2. Feature-Animal Dataset

In this experiment we use the deterministic annealing
solver DA, on the Osherson dataset of animal-features
matrix gathered in a psychological experiment (Osh-
erson et al., 1991), and used in (Kemp & Tenenbaum,
2006). The rows of the matrix correspond to 50 ani-
mals and the columns to 85 features of the animals, in-
cluding physical properties, behavioral elements, affin-
ity to different habitats etc’. The entries of the origi-
nal matrix are real values in the interval 0− 100. We
threshold the values to obtain a binary matrix, we use
25 as a threshold, which is the integer with lowest sum
of squared errors to resulting class means. We use
K = 11 and L = 15, these values peaked in the reduc-
tion of the overall cost as a function of the number of
clusters introduced. In (Kemp & Tenenbaum, 2006)
the number of animal clusters used was 12, while the
number of feature clusters was much higher.

The monochromatic solution on this data is presented
in Figure 2. The partition of the animals is very sim-
ilar to the one given in (Kemp & Tenenbaum, 2006).
In terms of the feature partitions, the monochromatic
partition seems very reasonable. In (Kemp & Tenen-
baum, 2006) many features are assigned to a singleton
cluster, which essentially means that they do not take
part in the lower dimensionality structure. This could
be a result of their specific choice of the parameter
that controls the penalty for new clusters.

8. Conclusions

We introduce a formulation of bi-clustering which is
both natural, in the sense that it captures the aim of
most existing bi-clustering works, and offers a conve-
nient framework to analyze the bi-clustering task from
a theoretical point of view. We show that the resulting
optimization problem is NP-hard but can be approx-
imated up to any multiplicative factor in polynomial
time. We also provide an efficient deterministic an-
nealing solver based on ideas from the PTAS.
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Figure 1. Comparison of the average monochromatic cost on synthetic data with varying sizes and number of bi-clusters.
Both methods are deterministic annealing schemes for the monochromatic bi-clustering problem. DA uses auxiliary
variables to represent the block majorities and performs sampling to determine their value. DA-no-auxiliary is a straight
forward deterministic annealing scheme with no auxiliary variables. The dotted line represents the expected optimal
monochromatic cost, which is the amount of noise introduced. Left : data size: 50× 50, K = 5, L = 5, Middle: data size:
500× 500, K = 10, L = 10, Right : data size: 1000× 1000, K = 10, L = 10.

F0 chewteeth, walks, quadrapedal, oldworld, ground

F1 flippers, swims, fish, coastal, ocean, water

F2 big, strong, muscle

F3 vegetation, timid, group

F4 blue, strainteeth, plankton, skimmer, arctic

F5 gray, hairless

F6 small, forager, forest

F7 toughskin, bulbous, slow, inactive

F8 lean, fast, active, agility, smart

F9 black, brown, furry, tail, newworld

F10 hooves, longleg, horns, grazer, plains, fields

F11 hands, smelly, bipedal, jungle, tree, nestspot

F12 paws, meatteeth, claws, meat, hunter, stalker, fierce, solitary

F13 white, buckteeth, tunnels, weak, nocturnal, hibernate, domestic

F14 orange, red, yellow, patches, spots, stripes, pads, longneck, tusks,

flys, hops, insects, scavenger, desert, bush, mountains, cave

A0 polar bear

A1 blue whale, humpback whale, walrus

A2 antelope, horse, zebra, deer

A3 gorilla, chimpanzee, giant panda

A4 hippopotamus, elephant, rhinoceros, pig

A5 spider monkey, squirrel, bat

A6 moose, ox, sheep, giraffe, buffalo, cow

A7 skunk, mole, hamster, rabbit, mouse

A8 killer whale, beaver, seal, otter, dolphin
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wolf, bobcat, lion, collie

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Figure 2. The monochromatic deterministic annealing solution DA, for the Osherson dataset of animal and features
(50 · 85). Upper Left : The original (binarized) matrix. Upper right : The partition of the features into 15 clusters. Lower
left : The partition of the animals into 11 clusters. Lower right : The permuted matrix according to the bi-clustering
solution.
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