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Abstract

An effective approach to structure learn-
ing and parameter estimation for Gaussian
graphical models is to impose a sparsity prior,
such as a Laplace prior, on the entries of the
precision matrix. Such an approach involves
a hyperparameter that must be tuned to con-
trol the amount of sparsity. In this paper, we
introduce a parameter-free method for esti-
mating a precision matrix with sparsity that
adapts to the data automatically. We achieve
this by formulating a hierarchical Bayesian
model of the precision matrix with a non-
informative Jeffreys’ hyperprior. We also
naturally enforce the symmetry and positive-
definiteness constraints on the precision ma-
trix by parameterizing it with the Cholesky
decomposition. Experiments on simulated
and real (cell signaling) data demonstrate
that the proposed approach not only auto-
matically adapts the sparsity of the model,
but it also results in improved estimates of
the precision matrix compared to the Laplace
prior model with sparsity parameter chosen
by cross-validation.

1. Introduction

The structure learning problem for Markov random
fields is to infer the graph structure of a model, i.e.,
the conditional dependencies between the random vari-
ables, from observed data. In the case of Gaussian
graphical models (GGMs) (Rue & Held, 2005), this is
equivalent to estimating which entries of the precision
matrix are nonzero. These nonzero entries correspond
to the edges in the graphical model. For many ap-
plications, especially those involving high-dimensional
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data, it is desirable to prevent overfitting by utilizing
priors that favor parsimonious models. Such models
should exhibit as few interactions between variables
as possible, which in the GGM case corresponds to
a sparse precision matrix. A recent approach to si-
multaneously learn the structure and estimate the pa-
rameters in GGMs has been to augment the Gaussian
likelihood with a penalty on the L1 norm of the preci-
sion matrix (Banerjee et al., 2008; Duchi et al., 2008;
Friedman et al., 2008; Meinshausen & Bühlman, 2006;
Rothman et al., 2008; Yuan & Lin, 2007). This can
also be thought of as a maximum a posteriori (MAP)
estimation problem with a Laplace prior on the entries
of the precision matrix.

One challenge with these methods is that they re-
quire selection of a parameter that controls the amount
of sparsity by weighting the penalty term. Fried-
man et al. (2008) select this parameter through cross-
validation by either minimizing prediction error or
maximizing likelihood of the left-out data. Foygel
et al. (2010) propose an extended Bayesian informa-
tion criterion (EBIC) for choosing the regularization
parameter. Fan and Li (2001) discuss the general
setting of coefficient selection and estimation in sta-
tistical models using penalized likelihood functions.
They point out that one issue with all Lp penalties
is that the resulting estimates of large coefficients will
be shrunk, i.e., biased towards zero. They introduce
a penalty function called the smoothly-clipped abso-
lute deviation (SCAD), which mitigates this bias for
large estimates but still requires parameter tuning of
the weight on the penalty. Scaled lasso from Sun and
Zhang (2012) estimates noise level and regression co-
efficients to find an appropriate penalty level, but this
again faces issues with L1 penalty’s biasedness.

We propose a hierarchical Bayesian model for sparse
precision matrix estimation in GGMs that has several
attractive features. First, it does not require any pa-
rameter tuning—the sparsity of the model is adapted
automatically to the data. Sparsity is achieved by
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modeling the precision matrix with a hierarchical scale
mixture of Gaussians prior with a parameter-free Jef-
freys’ hyperprior. Second, we show that this hierar-
chical prior does not suffer from the bias problem in-
herent to L1 penalties. Finally, we naturally enforce
the symmetry and positive-definiteness of the precision
matrix by utilizing a Cholesky decomposition. Most
importantly, we show empirically that our model es-
timates have improved performance over the widely-
used GLASSO (Friedman et al., 2008) method with
optimal sparsity parameter chosen by cross-validation.
We test performance of the different estimators on sim-
ulated data, by measuring error to the correct solu-
tion, and on real data from a cell-signaling experiment,
where we measure performance based on the ability of
the trained model to explain a left-out test set.

2. Adaptively Sparse Precision Matrix
Estimation

Let x denote the n×d matrix of observed data, which
we think of as realizations of a multivariate Gaussian
random variable X = (X1, . . . , Xd) ∼ N(0,Ω−1). Our
goal is to estimate the precision matrix Ω, while con-
trolling the complexity of the model. First, we re-
view the L1-penalized likelihood approach for favoring
sparse Ω estimates. This is given by the estimation
problem

Ω̂ = arg min
Ω

ln |Ω| − tr(ΩS)− ρ‖Ω‖1, (1)

where S is the sample covariance matrix of x, and ρ
is a parameter that controls the amount of sparsity.
Due to its computational efficiency, the most popular
algorithm for solving this estimation problem is the
graphical least absolute shrinkage and selection oper-
ator (GLASSO) method (Friedman et al., 2008). This
is equivalent to a MAP estimate with a Laplacian prior
on the entries of Ω. That is, Ωij ∼ Laplace(0, λ), with
λ = 2ρ/n, which gives the prior density

p(Ω|λ) =

(
λ

2

)d

exp (−λ‖Ω‖1) .

In this section we formulate a Bayesian hierarchical
model that is designed to induce sparsity on Ω while
removing the need for parameter tuning. We begin
with a discussion of a natural parameterization of the
Gaussian likelihood using the Cholesky decomposition.
Next, we formulate a hierarchical prior on the entries
of Ω, which extends the adaptive sparsity prior devel-
oped in (Figueiredo, 2003) for sparse regression prob-
lems. Finally, we develop a MAP estimation procedure
using the Expectation Maximization (EM) algorithm,

which we show has closed-form coordinate ascents for
the maximization step.

2.1. Gaussian Likelihood Parameterized by
the Cholesky Decomposition

Denote the Cholesky decomposition of Ω as Ω = LLT ,
where L is lower triangular. Using this decomposition,
the multivariate Gaussian model can be naturally for-
mulated in the form of a regression problem (Rue &
Held, 2005). Define the coefficients βij = −Lij/Ljj

and the precision of Xj as ωj = 1/σ2
j = L2

jj . Then the
lower triangular entries of Ω are given by

Ωij =

j∑
k=1

LikLjk =

j∑
k=1

βikβjkωk, for i ≥ j. (2)

Now the multivariate Gaussian model N(0,Ω−1) is
equivalent to the set of regression problems,

Xj = µj +
∑
i>j

βij(Xi − µi) + εj ,

εj ∼ N(0, ω−1
j ), j = 1, . . . , d. (3)

We use these βij and ωj coefficients to parameterize
the Gaussian precision matrix in our proposed model.
This formulation naturally enforces the symmetry and
positive-definiteness of the precision matrix. The ma-
trix Ω = LLT is clearly symmetric for any choice of
coefficients. Also, the ωj coefficients are the eigenval-
ues of Ω, so Ω being positive-definite is equivalent to
the ωj being strictly positive. This is satisfied for any
reasonable prior that does not shrink the ωj to zero,
which we demonstrate holds for our model below.

A more practical form of the multivariate Gaussian
likelihood utilizes the sufficient statistic, the sample
covariance matrix S. Computations involving the sam-
ple covariance matrix are more efficient than those us-
ing the full data matrix (which is typically larger). The
multivariate Gaussian log-likelihood is given by

`(Ω|x) ∝ n ln |Ω| − n tr(ΩS).

Note that the Gaussian likelihood written this way
would technically involve the biased sample covariance
matrix, i.e., with a factor of (1/n). We rewrite this
form of the Gaussian log-likelihood in terms of the β
and ω coefficients as

`(β, ω|x) ∝ n
d∑

j=1

lnωj − n
d∑

i=1

d∑
j=1

ΩijSij (4)

= n

d∑
j=1

lnωj − n
d∑

i=1

(
2

i−1∑
j=1

j∑
k=1

Sijβikβjkωk

+

i∑
k=1

Siiβ
2
ikωk

)
(5)
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The two terms inside the parentheses of (5) correspond
to the off-diagonal terms in Ω, which arise in pairs, and
the diagonal terms, which appear just once.

2.2. Adaptive Sparsity Prior

As first described by Andrews and Mallows (1974),
the Laplace distribution is equivalent to the marginal
distribution of a scale mixture of Gaussians, with ex-
ponential scale distribution. More specifically, let θ be
a random variable with the hierarchical distribution

p(θ|τ) ∼ N(0, τ),

p(τ |γ) ∼ Exp
(γ

2

)
.

Then the marginal distribution of θ with respect to γ
integrates to

p(θ|γ) =

∫ ∞
0

p(θ|τ)p(τ |γ)dτ

=

√
γ

2
exp (−√γ|θ|) ,

giving us the Laplace distribution with ρ =
√
γ/2.

The level of sparsity in LASSO regression depends
upon the parameter on the L1 penalty. In this
hierarchical-Bayes context, sparsity is controlled by γ.
Figueiredo (2003) has proposed to remove γ by re-
placing the exponential hyperprior on τ by a Jeffreys’
noninformative hyperprior, i.e.,

p(τ) ∝ 1

τ

This is equivalent to a log penalty on θ, which yields
sparse solutions and is nearly unbiased for large coeffi-
cients. Although this hyperprior is improper, it has the
advantages that it is scale-invariant and parameter-
free. This modified hierarchical model is no longer
equivalent to the Laplace prior, but has been shown
in (Figueiredo, 2003) to be effective in regression and
classification problems. The same hierarchical prior
has also been used by Park and Casella (2008) in a
Bayesian formulation of the LASSO model for regres-
sion. Adopting this prior for the Gaussian precision
matrix estimation problem, we use the following hier-
archical model for an adaptive sparsity estimation of
Ω:

X ∼ N(0,Ω),

Ωij ∼ N(0, τij), for i > j, (6)

p(τij) ∝
1

τij
.

Notice that we only put a prior on the off-diagonal
entries of Ω. In other words, we do not seek to shrink

the diagonal elements, although the model could easily
be changed to include this. In what follows, we will
treat the τij as latent variables that are integrated out.
This leaves us with a posterior p(Ω|x) that does not
have any parameters that need to be tuned, which is
a main advantage over the Laplace prior.

Also, the following simple example demonstrates that
the hierarchical model in (6) does not suffer from the
bias problem for large coefficients that plagues the
Laplace prior. We note that this approximate unbi-
asedness of the MAP estimate comes at the cost of a
non-convex posterior function. As Fan and Li (2001)
show, convex penalty functions cannot simultaneously
satisfy the properties of sparsity, continuity, and ap-
proximate unbiasedness. Consider a 2 × 2 sample co-
variance matrix,

S =

(
1 s
s 1

)−1

,

where s is a scalar parameter satisfying |s| < 1
to ensure positive-definiteness. Then the maximum-
likelihood estimate (MLE) of Ω is just given by the
inverse of S. Now consider the L1-penalized Gaussian
likelihood model in (1), but with the L1 penalty only
on the off-diagonal element, Ω12 = Ω21. Because the
diagonal entries of Ω will remain equal, we can param-
eterize Ω with two unknown coefficients a = Ω11 = Ω22

and b = Ω12 = Ω21. Then the estimate of Ω under the
L1-penalized likelihood is

Ω̂ =

(
â b̂

b̂ â

)
= arg max

(a,b)
n ln(a2 − b2)

−2n(aS11 + bS12)− |b|. (7)

The solution to this problem for the two unique en-
tries a, b of Ω is shown in Figure 1 for varying values
of the parameter s in the sample covariance and for a
sample size of n = 10. This is compared to the MLE
solution, which has solution â = 1 and b̂ = s, and
to the MAP estimate of the posterior under the pro-
posed model (6). The proposed model estimate was
computed using the EM algorithm described in the
next subsection. There are two important features to
notice in these plots. First, the L1 solution for the
off-diagonal b entry gives the familiar “soft-threshold”
rule, which forces the estimate to be zero below some
threshold, but is biased towards zero by an additive
constant for larger coefficient values. Second, the di-
agonal a entry is nearly perfect (error within 10−4)
for the proposed MAP estimate, while the a estimate
for the L1 penalty estimate is biased downwards away
from s = 0. This is the case even though there is no



Adaptive Sparsity in Gaussian Graphical Models

−0.4 −0.2 0.0 0.2 0.4

0.94

0.95

0.96

0.97

0.98

0.99

1.00

s

â
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Figure 1. Comparison of estimates corresponding to Gaussian likelihood (dotted line), Laplace prior (dashed line), and
proposed hierarchical prior (solid line) for the 2× 2 matrix example. Estimates of both the diagonal entry (left plot) and
off-diagonal entry (right plot) are shown.

L1 penalty directly on the a entry, and it arises from
the interaction between a and b in the log-determinant
term in (7).

2.3. Expectation Maximization Algorithm

We develop an EM algorithm to estimate a sparse Ω
as the maximizer of the posterior defined in (6). Al-
though the prior on the precision matrix in (6) is writ-
ten in terms of the entries Ωij , we will find it conve-
nient to rewrite this in terms of the βij and ωj coeffi-
cients discussed in Section 2.1. We can pass back and
forth between the two parameterization of Ω using the
relationship (2).

E step: The EM algorithm iteratively maximizes
the Q function, which is a lower bound on the log-
posterior, ln p(β, ω|x), that we wish to maximize. The
Q function is defined as the expectation over the la-
tent variables τij of the complete log-posterior, given
the current estimate of the parameters at iteration t,
which we denote β̂(t), ω̂(t). Thus, we have

Q(β, ω|β̂(t), ω̂(t))

=

d∑
i=1

i−1∑
j=1

∫
ln p(β, ω|x, τij)p(τij |x, β̂(t), ω̂(t))dτij .

We can split the complete log-posterior inside the in-
tegral above into the sum of the log-likelihood, which

does not depend on τ , and the log-prior, which does.
Then the Q function breaks into two terms,

Q(β, ω|β̂(t), ω̂(t)) = `(β, ω|x) + E(β, ω), (8)

where `(β, ω|x) is the log-likelihood given by (4), and
E(β, ω) corresponds to the integral of the log-prior
term. It is given by

E(β, ω) =

d∑
i=1

i−1∑
j=1

∫
ln p(β, ω|τij)p(τij |x, β̂(t), ω̂(t))dτij

=

d∑
i=1

i−1∑
j=1

∫
ln p(Ωij |τij)p(τij |x, Ω̂ij(t))dτij

=

d∑
i=1

i−1∑
j=1

∫
1
2τ
−2
ij Ω2

ijN(Ω̂ij(t)|0, τ−1
ij )dτij∫

τ−1
ij N(Ω̂ij(t)|0, τ−1

ij )dτij

=

d∑
i=1

i−1∑
j=1

Ω̂−2
ij(t)Ω

2
ij

=

d∑
i=1

i−1∑
j=1

Ω̂−2
ij(t)

(
j∑

k=1

βikβjkωk

)2

.

Here we have used (2) in the last line to write the
final expression in terms of the β and ω coefficients.
The evaluation of the integral above follows the same
derivation as in (Figueiredo, 2003).
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M step: The maximization step cannot be done in
closed form for the entire set of β and ω coefficients
at once. However, we derive a closed-form solution
for the maximization of Q along a single coordinate
at a time, i.e., a single βij or ωj , keeping the other
coordinates fixed. We begin by taking the derivate of
the Q function (8) with respect to the βab. First, the
derivative of the log-likelihood term is given by

d

dβab
`(β, ω|x) = −2n

(
a−1∑
j=1

Sajβjbωb + Saaβabωb

)
.(9)

Next, the derivative of the E term in the Q function
is given by

d

dβab
E(β, ω) = 2

a−1∑
j=b

βjbωb

|Ω̂aj(t)|2

j∑
k=1

βakβjkωk

+2

d∑
i=a+1

βibω
2
b

|Ω̂ia(t)|2

a∑
k=1

βikβakωk.(10)

Both equations (9) and (10) are linear in βab. So,
maximization of the Q function with respect to βab is
equivalent to solving a linear equation k1βab + k0 = 0,
that is, setting βab = −k0/k1, with

k0 = −2n

a−1∑
j=1

Sajβjbωb

+2

a−1∑
j=b

βjbωb

|Ω̂aj(t)|2

j∑
k=1
k 6=b

βakβjkωk

+2

d∑
i=a+1

βibωb

|Ω̂ia(t)|2

a∑
k=1
k 6=b

βikβakωk, (11)

k1 = −2nSaaωb

+2ω2
b

a−1∑
j=b

β2
jb

|Ω̂aj(t)|2
+

d∑
i=a+1

β2
ib

|Ω̂ia(t)|2

 .(12)

Next, the derivative of Q with respect to ωm is

dQ

dωm
=

n

ωm
− n

d∑
i=1

2

i−1∑
j=1

Sijβimβjm − Siiβ
2
im


−

d−1∑
j=m

d∑
i=j+1

2βimβjm

|Ω̂ij(t)|2

(
j∑

k=1

βikβjkωk

)
.

Setting to zero and multiplying through by ωm, this
becomes a quadratic in ωm. So, the maximum of Q

with respect to ωm is a solution to the equation c2ω
2
m+

c1ωm + c0 = 0, with

c0 = n, (13)

c1 = −n
d∑

i=1

2

i−1∑
j=1

Sijβimβjm − Siiβ
2
im


−

d−1∑
j=m

d∑
i=j+1

2βimβjm

|Ω̂ij(t)|2

 j∑
k=1
k 6=m

βikβjkωk

 , (14)

c2 = −
d−1∑
j=m

d∑
i=j+1

2β2
imβ

2
jm

|Ω̂ij(t)|2
. (15)

Notice that c2 is always negative, and thus the dis-
criminant of the quadratic formula, c21 − 4c0c2, is al-
ways positive, and both solutions are real. Also, the
fact that c0 is always nonzero ensures that ωm = 0 is
never a solution, and therefore the estimate Ω̂ is guar-
anteed to remain strictly positive-definite. An impor-
tant implementation detail is that many of the entries
of Ω̂(t) will be driven to zero, but we need to divide by
them in the above calculations. A similar issue arises
in quadratic approximations of penalized likelihoods.
Following the approach in (Hunter & Li, 2005), we add
a small epsilon to the denominator to ensure numer-
ical stability. This gives the following fast gradient
ascent algorithm, which iterates over each coordinate
and updates them one at a time using the above equa-
tions (linear in βab and quadratic in ωm).

Algorithm 1 Expectation Maximization for Sparse
Gaussian Estimation

Input: Sample covariance matrix S

1. Initialize β̂, ω̂ to MLE, given by solutions to the
d regression problems in (3)

2. Use (2) to initialize Ω̂(0)

3. Until convergence, i.e., until gradient is zero:

a. Set each β̂ab = −k0/k1, using (11), (12).

b. Set each ω̂m = (c2 +
√
c21 − 4c2c0)/2c2,

using (13), (14), (15).

c. Update Ω̂(t), using (2)

3. Experiments

3.1. Simulated Data

We generate data from a range of precision matrices
of varying size and sparsity levels and compare our
results with that of ordinary least squares (OLS), i.e.,
the Gaussian MLE, and GLASSO. The sizes of the pre-
cision matrices are d2 = 102, 202, and 402. We test on
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Table 1. Results on simulated data.

FROBENIUS NORM OF ERRORS
Matrix Size 10x10 20x20 40x40
% L nonzero 5% 10% 20% 5% 10% 20% 5% 10% 20%
OLS 1.008 1.502 2.569 1.387 2.031 2.788 1.335 3.063 4.367
GLASSO 0.689 2.176 2.501 1.370 1.978 2.702 1.308 2.901 4.084
Proposed 0.420 0.942 1.614 0.529 1.010 1.628 0.457 1.538 3.395

NONZERO ERROR
Matrix Size 10x10 20x20 40x40
% L nonzero 5% 10% 20% 5% 10% 20% 5% 10% 20%
OLS 0.142 0.211 0.341 0.109 0.173 0.178 0.054 0.097 0.129
GLASSO 0.163 0.418 0.330 0.106 0.168 0.172 0.052 0.091 0.121
Proposed 0.112 0.184 0.242 0.084 0.116 0.121 0.040 0.071 0.117

ZERO ERROR
Matrix Size 10x10 20x20 40x40
% L nonzero 5% 10% 20% 5% 10% 20% 5% 10% 20%
OLS 0.092 0.117 0.158 0.063 0.076 0.096 0.031 0.067 0.082
GLASSO 0.031 0.044 0.156 0.063 0.075 0.094 0.030 0.063 0.076
Proposed 0.010 0.010 0.010 0.002 0.012 0.015 0.000 0.005 0.014

% NONZERO PREDICTION ACCURACY
Matrix Size 10x10 20x20 40x40
% L nonzero 5% 10% 20% 5% 10% 20% 5% 10% 20%
OLS 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.99
GLASSO 100.0 99.62 100.0 100.0 100.0 99.94 100.0 99.78 99.98
Proposed 100.0 79.23 83.18 89.74 91.94 78.20 93.69 85.46 87.41

% ZERO PREDICTION ACCURACY
Matrix Size 10x10 20x20 40x40
% L nonzero 5% 10% 20% 5% 10% 20% 5% 10% 20%
OLS 0.12 0.14 0.00 0.25 0.18 0.14 0.35 0.12 0.17
GLASSO 57.56 44.86 0.27 0.46 0.43 0.43 0.85 1.18 1.33
Proposed 100.0 99.59 98.75 99.59 96.77 95.27 99.99 96.82 94.29

precision matrices composed from lower triangle ma-
trices with levels of 5, 10, and 20% non-zero entries in
the off-diagonals. The diagonal entries are Gaussian
distributed with µdiag = 1 and σdiag = 0.1, and the
non-zero off-diagonal entries are Gaussian distributed
with µ\diag = 0 and σ\diag = 1. This ensures that the
precision matrices we work with are positive definite.
For each of the nine scenarios, we test our method on
twenty different sets of data, each having 1.5d2 sample
points. We run a first pass of our algorithm initializ-
ing from the OLS solution with an epsilon value of 1e-3
and a stopping criterion of when the maximum change
in the estimated entries is less than 1e-7. We then re-
peat the algorithm initializing from the output of the
previous step with epsilon values of 1e-5 and 1e-7. This
three-step refinement to lower epsilons while maintain-
ing numerical stability serves to avoid local minima
and confirms that the choice of epsilon does not af-
fect the solution. The MAP estimate should correctly
set sparse entries exactly to zero, such as is shown
in Figure 1 (right plot). However, because we solve
the MAP with a gradient descent, some zero entries

may not be numerically exactly zero. To differentiate
between truly nonzero entries and zero entries that nu-
merically off, we maximize the posterior with respect
to a numerical zero threshold value (i.e., a value for
which all entries numerically smaller get set to zero).
We stress that this is simply part of the optimization
process, and that the MAP estimates do truly pro-
duce sparse solutions. In all experiments initializing
from the OLS solution, the EM algorithm converges
to a local maximum that is better than the GLASSO
and OLS solutions. This improvement in the solutions
says that we converge to a reasonable answer, even
if the EM algorithm does not guarantee we find the
global maximum. All computations are done in R.

The GLASSO models used for comparison are selected
through tenfold cross-validation for the regularization
parameter ρ that maximizes likelihood. Friedman et
al. (2008) use the list of ten ρ values suggested by glas-
sopath() function in the GLASSO package for their
cross-validation. Because we have found that the op-
timal ρ sometimes lies below this range, we expand
the range of glassopath() values with ten more equally
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spaced ρ values starting from 1e-4 to the minimum
glassopath() value to make sure that the optimal ρ is
within range.

The first metric we use to rate the performance of our
proposed method is the Frobenius norm of the differ-
ence of the estimations from the true Ω, i.e., the root
mean squared error, ‖Ω−Ω̂‖F . We also split this error
to see how much of it results from what should be zero
versus nonzero terms in the true Ω. With the thresh-
old that maximizes the MAP estimate, we then calcu-
late the percentage of zero entries in the true solution
our method identifies correctly. The results have been
averaged over the twenty different trials from each sce-
nario and are summarized in Table 1.
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Figure 2. Comparison of specificity/sensitivity of our
method (red dots) to the ROC for GLASSO (black curves)
on the 40x40, 5% nonsparse, synthetic data (20 random
data sets). Correctly detected sparse entries are consid-
ered true positives.

From the results, we can see that our method has the
best performance in terms of errors and zero predic-
tion in all scenarios, whereas GLASSO tends to fail
especially in denser and larger matrices. The bias
from the Laplace prior in GLASSO shrinks entries that
should be nonzero as described in Section 2.2, whereas
our method mitigates this bias for large entries. This
can be seen in the comparison of the nonzero errors,
where in some cases of the experiment, GLASSO has
a higher nonzero error than the OLS estimate. For
the error and prediction accuracy of zero entries, our
method performs the best by far. It is known that
cross-validation parameter selection for ρ in GLASSO
is overly-conservative, i.e., it does not strongly induce
sparsity, which can be seen in the poor performance
for GLASSO on zero prediction and zero entry er-
ror. Another reason for GLASSO’s poor performance
is that for even only moderately dense matrices, cross-
validation yields ρ values very close to 0, and thus gives

results near that of the OLS, as can be observed in the
similar zero error rates between OLS and GLASSO
for the denser matrices. Because of our hierarchical
prior that adaptively induces sparsity, our method is
able to consistently predict with mid-90% accuracy the
zero entries in Ω across the various sparsity scenarios.
In the nonzero accuracy numbers, GLASSO is consis-
tently close to 100%, but this is because its overly-
conservative sparsity finds far too many entries to be
nonzero. We note that a large majority of the en-
tries in the matrices are zero, so the zero accuracy
contributes more to the overall accuracy. Figure 2
shows ROC curves for GLASSO generated by vary-
ing the sparsity parameter ρ. Our method achieves
higher specificity/sensitivity than GLASSO, over all
parameter values.

3.2. Cell Signaling Data

To show how our method works on real-world data,
we run our algorithm on the protein signaling dataset
from (Sachs et al., 2005). This is the same dataset an-
alyzed in (Friedman et al., 2008). The d = 11 protein
dataset has n = 7466 samples. In both GLASSO and
our proposed method, the likelihood term dominates
the prior because of the large sample size. We find
that the optimal ρ for running GLASSO on all of the
data is 0, which is what Friedman et al. (2008) have re-
ported. Therefore, OLS, GLASSO, and our proposed
method produce almost identical results.

The estimated graph presented in (Sachs et al., 2005)
is conventionally accepted by biology experts. A more
interesting experiment is to train on smaller data sam-
ples and test whether GLASSO and our proposed
method would yield estimates similar to what biol-
ogists expect, keeping in mind that Sachs’ directed
graph with only binary values may not be an exact
ground truth for direct comparison. Sachs’ graph con-
tains 43 edges and 78 pairs of nodes without edges.

We train both GLASSO and our method on samples
of 200 points. Averaging over 100 runs, we calculate
the percentage of zero and nonzero entries in agree-
ment between the Sachs’ model and both GLASSO
and our proposed model. For our method, we re-
peat the same three-step epsilon refinement procedure
that we do for synthetic data experiments with epsilon
down to 1e-9 because the entries in the precision ma-
trix of the cell signaling data are much smaller by a
factor of 1/1000. For GLASSO, we do leave-one-out
cross-validation (LOOCV) on the subsample over the
range of ρ from glassopath augmented with ten evenly
spaced values from 1e-4 to the minimum glassopath
value to find the optimal ρ. Also, as we do with the
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Table 2. Results on zero and nonzero entry prediction of
cell signaling data.

% Zero % Nonzero % Overall
Prediction Prediction Prediction
Accuracy Accuracy Accuracy

GLASSO 34.576% 77.418% 49.800%

Proposed 71.512% 68.744% 70.527%

simulated data experiment, to account for numerical
error we apply a threshold of delta according to the
maximum posterior. We also try this for GLASSO,
but GLASSO’s optimization attains its maximum pos-
terior with no thresholding necessary. We note that
the results from GLASSO are not symmetric positive
definite. The average relative difference between cor-
responding off-diagonal entries is 19%, calculated by
(Ω̂ij − Ω̂T

ij)/(Ω̂ij + Ω̂T
ij).

For calculating the prediction accuracies relative to
Sachs’ model, we convert the MAP estimates for
GLASSO and our method into binary matrices where
all nonzero entries are coded into ones. The predic-
tion accuracies of the zero and nonzero entries for
both methods are displayed in Table 2, along with the
combined prediction accuracies for all entries of the
precision matrix. The results are consistent with the
accuracy rates from synthetic experiments. Our pro-
posed method performs much better than GLASSO
with the zero prediction but slightly worse with the
nonzeros. We observe that for GLASSO the cross-
validation can at times choose a model with a ρ very
close to zero, resulting in a precision matrix that is
not sparse. Overall, our proposed method gives esti-
mations with higher similarity to the conventionally-
accepted graph from (Sachs et al., 2005).

Because of the large sample size in the full set of data,
the OLS precision matrix based on the entire dataset
is a good approximation to the true precision matrix.
The fit of the models to the left-out test data is mea-
sured by the Gaussian log-likelihood, `(Ω̂|xtest). An-
other experiment we do is to calculate as a measure of
the error rate the Frobenius norms of the differences
between the OLS precision matrix based on the entire
dataset and the estimated models trained from sub-
sampling via GLASSO and our method. Again, we
use the three-step epsilons up to 1e-9 for our method
and do LOOCV for GLASSO over the same range of ρ
as the previous cell data experiment. Results are av-
eraged over twenty trials. Table 3 shows these results.

Table 3. Likelihood test from cell signaling data.

Likelihood Frobenius
Norm of Error

OLS -4.47319e5 5.60782e-3

GLASSO -4.48852e5 5.12098e-3

Proposed -4.45147e5 5.06741e-3

Compared to OLS and GLASSO, our method has a
higher likelihood and a lower norm difference from the
OLS precision matrix from all of the dataset.

4. Conclusions

In this paper, we have introduced a hierarchical
Bayesian model for the estimation of a sparse precision
matrix in a Gaussian graphical model. The primary
advantage of our approach, in comparison to the com-
monly used L1 penalty methods, is the ability of our
model to adapt to different levels of sparsity without
the need for parameter tuning. In fact, this adaptive
sparsity proved to give much improved structure learn-
ing (zero identification) over GLASSO with optimal
sparsity parameter chosen by cross-validation in exper-
iments on simulated data. In addition, we showed that
the estimated coefficients from the proposed model do
not suffer from the same bias problems that L1 penal-
ties display.

There are several avenues for future work. First, it
would be nice to understand what theoretical guar-
antees can be derived from the proposed hierarchical
model, e.g., asymptotic consistency. To the best of
our knowledge, this has not been worked out for such
priors even in the regression case. Such guarantees do
exist for L1-penalized likelihoods. Finally, we expect
that the true benefits of our proposed model will be
evident in applications where the dimension is much
greater than the sample size, for example, in genetics
analysis and in identifying functional brain networks.
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