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Abstract

Millions of people search daily for movies,
music, and books on the Internet. Unfortu-
nately, non-personalized exploration of items
can result in an infeasible number of costly
interaction steps. We study the problem of
efficient, repeated interactive search. In this
problem, the user is navigated to the items of
interest through a series of options and our
objective is to learn a better search policy
from past interactions with the user. We pro-
pose an efficient learning algorithm for solv-
ing the problem, sequential Bayesian search
(SBS), and prove that it is Bayesian optimal.
We also analyze the algorithm from the fre-
quentist point of view and show that its re-
gret is sublinear in the number of searches.
Finally, we evaluate our method on a real-
world movie discovery problem and show that
it performs nearly optimally as the number of
searches increases.

1. Introduction

Millions of people search daily for movies, books, and
music on the Internet. Existing recommender systems,
like Netflix and Pandora, typically allow their users to
browse their collections of content in some predefined
taxonomy, from general item categories, such as movie
genres, to more specific ones. When the users look for
items in obscure and niche categories, they are usually
hard to find. This is unfortunate since such items are
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often of the highest value. The ability to find relevant
content fast is important, and would ultimately lead to
better recommendations, user experience, and content
monetization.

In modern recommender systems, the number of item
categories is often large, and they can be very general
or specific. In the movie recommender system Netflix,
the categories range from Romance to Nature Family-
Time TV. In the music recommender system Pandora,
the categories range from Classical to East Coast Hip
Hop. To navigate through these categories, the user is
first asked to choose a broad area, such as Drama or
Comedy, and then chooses from more specific options,
such as Independent or Romantic Drama. This policy
for navigating the space of content can be represented
by a tree, where the nodes and branches are the user’s
options and choices, respectively. We refer to this tree
as a taxonomic tree.

In this work, we study how to learn better taxonomic
trees over time based on the user’s behavior. Suppose
that the user enjoys Cult Horror. This movie genre is
not widely popular. So in a taxonomic tree that is not
personalized, the user would have to navigate through
many options before getting to relevant movies. If the
tree was personalized, Cult Horror could be one of the
options at the root, and therefore the user would find
relevant content faster.

Our learning problem is a repeating interactive game,
which comprises of episodes. In each episode, we navi-
gate the user to the item of interest by asking a series
of questions. The questions depend on searched items
in the past episodes and the answers to the questions
in the current episode. We interact with the user until
we can identify a single target item, the item of user’s
interest. Then we update our estimator of user pref-
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erences Pt and the game proceeds to the next episode.
Assuming that the user repeatedly searches for similar
content, we expect to learn a better policy for content
search over time.

We solve our problem by Bayesian learning and hence
we refer to our solution as Sequential Bayesian Search
(SBS). Our solution has several nice properties. First,
it is computationally efficient. In particular, we show
that the posterior Pt over user preferences π∗ can be
updated by counting. Even more importantly, nearly
optimal policies for finding items with respect to Pt,
a distribution over user preferences, can be derived as
efficiently as with respect to any particular preference
π. Second, we show that our solution is Bayesian op-
timal. Third, we analyze it from the frequentist point
of view and prove that its regret, additional questions
asked due to not knowing the true user preferences,
is O(

√
t ln(t)), sublinear in the number of episodes t.

Finally, we evaluate our solution on a movie discov-
ery problem and show how it improves with training
episodes.

This paper is organized as follows. In Section 2, we in-
troduce the notion of interactive search. In Section 3,
we discuss related work. In Section 4, we propose se-
quential Bayesian search, discuss how to implement it,
and show its Bayesian optimality. In Section 5, we an-
alyze our approach from the frequentist point of view
and bound its regret. In Section 6, we evaluate it on a
real-world problem. Finally, we conclude in Section 7.

2. Problem Setup and Notation

In this section, we discuss how the problem of content
discovery can be viewed as a game, where the content
discovery system asks the user a sequence of questions
to find the target item of interest. We assume that the
user has a target item i∗ in mind. This item belongs
to a set of M items I = {1, · · · ,M}. The preferences
of the user for the items are modeled by a probability
distribution π∗ over I and the target item i∗ is drawn
i.i.d. from this distribution.

Our goal is to identify the item i∗ by asking the user
a sequence of yes-or-no questions q. The questions are
modeled as functions q : I → {0, 1} such that q(i) = 1
when the item i has the attribute q and q(i) = 0 when
it does not. The set of all questions is referred to as
the question pool Q. We assume that all items can be
uniquely identified by a subset of questions from Q.

The search for the target item i∗ proceeds as follows.
First, we ask a question q1 and the user replies q1(i∗).
Second, we ask another question q2 and get an answer
q2(i∗). Note that the choice of the second question q2
may depend on the answer q1(i∗) to the first question.
In general, at time ` we choose a question q` based on

all questions and answers up to time `, (qj , qj(i
∗))`−1j=1.

Formally, a policy for choosing questions is a function:

T : 2Q × {0, 1}|Q| → Q, (1)

where 2Q is the index set of the question pool Q and
{0, 1}|Q| is a vector of |Q| answers. The policy can be
represented by a decision tree T , where the nodes and
branches correspond to the asked questions and user’s
answers, respectively (Golovin & Krause, 2011).

The search continues until only one item in I satisfies
all answers thus far. In other words, the cardinality of
the version space U` at time `:

U` = {i ∈ I :

`−1∧
j=1

(qj(i) = qj(i
∗))} (2)

is one. We let:

N(T, i) = arg min
`

[U` = {i∗} | T, i∗ = i] (3)

be the number of questions after which the item i is
uniquely identified by the policy T .

Interaction with the user is usually costly. As a result,
good content discovery systems should be able to find
target items in as few interactions as possible. In this
work, we focus on learning systems that minimize the
expected number of interactions with the user:

T ∗ = arg min
T

Ei∼π∗ [N(T, i)] (4)

given user preferences π∗.

Consider the case where we want to determine the best
decision tree T given prior knowledge of the user pref-
erences π∗. This case is well studied in stochastic con-
trol, where it can be formulated as a Markov decision
process (MDP) and solved by dynamic programming
(Bertsekas, 2012). While dynamic programming can
be used to learn the optimal policy T ∗, it is computa-
tionally intractable for large question pools due to the
curse of dimensionality (Bertsekas, 2012). If the sys-
tem is allowed to ask arbitrary questions, not confined
to a specific question pool Q, then the optimal policy
T ∗ can be found efficiently by Huffman coding (Cover
& Thomas, 2006). Note that this approach cannot be
applied to our problem due to the restricted question
set.

3. Related Work

Our content discovery problem is an instance of gener-
alized binary search (GBS) (Dasgupta, 2005; Nowak,
2011). In GBS, the goal is to learn a policy that finds
items in a collection of items in the minimum number
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Algorithm 1 GBS(I,Q, π∗)
Greedy generalized binary search.

Input: Items I, questions Q, and user preferences
π∗

U1 ← I
`← 1
while |U`| > 1 do

Split the version space U` closest to two halves:

q` = arg min
q

∣∣∣∣∣∑
i∈U`

(21{q(i) = 1} − 1)π∗(i)

∣∣∣∣∣
Ask the question q` and observe the reply q`(i

∗)
Reduce U` based on the answer:

U`+1 = U` ∩ {i ∈ I : q`(i) = q`(i
∗)}

`← `+ 1
end while

Output: Target item i∗ ∈ U`

of queries. The optimal policy is NP-hard to compute,
both in the worst and average cases. A nearly-optimal
policy can be computed greedily by an algorithm that
always selects the query that divides the version space
closest to two halves. We refer to this solution as GBS
(Algorithm 1).

The number of queries in Algorithm GBS was bounded
both in the worst (Dasgupta et al., 2003) and average
(Dasgupta, 2005) cases. The average-case analysis was
later improved (Golovin & Krause, 2011) based on the
notion of adaptive submodularity. The resulting upper
bound is presented below.

Lemma 1. [Theorem 5.8 (Golovin & Krause, 2011)]
Let π∗ be a probability distribution over items. Let T ∗

be the optimal policy with respect to π∗ and T g be the
greedy policy generated by Algorithm GBS. Then:

Ei∼π∗ [N(T g, i)] ≤ (1− ln(π∗min))Ei∼π∗ [N(T ∗, i)],

where π∗min = mini∈I π
∗(i).

In practice, the distribution π∗ is usually unknown. In
our paper, we study the problem where π∗ is revealed
sequentially through interactions with the user. This is
the first work that derives performance guarantees for
this setting and shows how the quality of GBS policies
improves over time with more interactions.

Yue & Guestrin (2011) show how to learn policies that
cover items of user’s interest based on interaction with
the user. Our paper is related since both problems are
submodular and involve learning of user preferences.
Our work differs from Yue & Guestrin (2011) in several
aspects. First, we study a variant of the minimum set
cover problem. The problem in Yue & Guestrin (2011)
is a maximum coverage problem. Second, we guide the

user to the items of interest by questions, rather than
recommending k items at once. So naturally, both our
solution and its analysis differ significantly from those
of Yue & Guestrin (2011).

The problem of learning trees in the online setting has
been studied before, for instance in the framework of
experts (Section 5.3 in Cesa-Bianchi & Lugosi (2006)).
In this setting, the best tree can be found by learning
|Q|(2D+1− 1) weights, where |Q| is the number of the
experts at each node of the tree and D is the depth of
the tree. In our setting (Section 2), the trees can be as
deep as min{M, |Q|}. Therefore, online learning with
tree experts would be exponential in the quantities of
interest, min{M, |Q|}, and impractical for solving our
problem.

4. Sequential Bayesian Search

In most real-world problems, the user preferences π∗

are initially unknown. By repeatedly interacting with
the user, we can learn the preferences and reduce the
number of asked questions to find target items. In this
section, we propose a novel algorithm for interactive
search that learns user preferences. We refer to it as
Sequential Bayesian Search (SBS).

We employ Bayesian learning for two reasons. First,
note that the choice of the target item is not affected
by how we ask questions (Section 2). Therefore, we do
not need to explore, which implies that learning and
optimization can be separated. Second, high-quality
prior knowledge can significantly reduce the expected
number of interactions with the user in practice. So
Bayesian learning seems like an appropriate approach
to our problem.

Specifically, we assume that the system has a prior be-
lief P0 over the user preferences π∗, which is a proba-
bility density function over all the possible realizations
of π∗. The system updates its belief at the end of each
episode after observing the target item in that episode,
which is sampled i.i.d. from π∗. During episode t, the
system uses its current belief Pt to derive a policy that
minimizes the expected number of questions to find the
target item:

T ∗t = min
T

Eπ∼Pt
[Ei∼π [N(T, i)]] . (5)

In summary, we find the best policy T ∗t with respect
to the system’s belief Pt. The optimization problem
in Equation 5 can be simplified based on the notion of
the certainty-equivalent user preference π∗t .

Definition 1. Let Pt be the system’s belief over π∗ in
episode t. Then the certainty-equivalent (CE) user
preference π∗ is defined as π∗t (i) = Eπ∼Pt [π(i)] for all
i ∈ I.



Sequential Bayesian Search

Algorithm 2 SBS∗(I,Q,P0)
Optimal sequential Bayesian search.

Input: Items I, questions Q, and prior belief P0 on
user preferences

for episode t = 0, 1, 2, . . . do
Compute the CE user preference:

π∗t (i) = Eπ∼Pt [π(i)] ∀i ∈ I
Let the user find the target item it:

Solve T ∗t = arg minT Ei∼π∗t [N(T, i)]
Apply T ∗t to obtain it

Update the system’s belief Pt using Bayes’ rule:
Pt+1(π) ∝ π(it)Pt(π) ∀π

end for

Based on this definition, we make the following obser-
vation. Computing the optimal policy with respect to
belief Pt is equivalent to computing the optimal policy
with respect to the CE user preference π∗t . This ob-
servation is formalized in Lemma 2. We also note that
minT Ei∼π∗t [N(T, i)] is computationally equivalent to
finding the optimal tree, where π∗ is replaced by π∗t .

Lemma 2. The problem minT Eπ∼Pt
[Ei∼π [N(T, i)]]

is equivalent to minT Ei∼π∗t [N(T, i)] in all episodes t.

Proof. For any policy T :

Eπ∼Pt
[Ei∼π[N(T, i)]] = Eπ∼Pt

[∑
i∈I

π(i)N(T, i)

]
=∑

i∈I
N(T, i)Eπ∼Pt

[π(i)] =
∑
i∈I

π∗t (i)N(T, i) =

Ei∼π∗t [N(T, i)].

4.1. Algorithm SBS∗

In this section, we propose a novel content discovery
algorithm SBS∗ (Algorithm 2). In each episode t, the
algorithm involves three steps: (1) estimating the CE
user preference π∗t , (2) solving the optimization prob-
lem T ∗t = arg minT Ei∼π∗t [N(T, i)], and (3) updating
the belief Pt based on Bayes’ rule. Due to Lemma 2,
minT Ei∼π∗t [N(T, i)] is computationally equivalent to
finding the optimal tree. This problem can be solved
efficiently when the question pool Q is small, or if the
system can ask arbitrary questions (Section 2).

Note that the user preferences π∗ are a multinomial
distribution over items I. So the computation of the
CE user preference π∗t , and updating the belief over
π∗, can be implemented efficiently when the prior P0

is the Dirichlet distribution, the conjugate prior of the
multinomial distribution. Specifically, we assume that

Algorithm 3 SBS(I,Q,P0)
Greedy sequential Bayesian search.

Input: Items I, questions Q, and prior belief P0 on
user preferences

for episode t = 0, 1, 2, . . . do
Compute the CE user preference:

π∗t (i) = Eπ∼Pt [π(i)] ∀i ∈ I
Let the user find the target item it:

it ← GBS(I,Q, π∗t )
Update the system’s belief Pt using Bayes’ rule:

Pt+1(π) ∝ π(it)Pt(π) ∀π
end for

the system’s prior belief is modeled as a Dirichlet dis-
tribution with parameters α ∈ <M+ , denoted as Dir(α),

and we define an indicator vector Zt ∈ <M such that
Zt(i) = 1{i = it}, where it represents the target item
in episode t.

From Bayes’ rule, the posterior belief at the beginning
of episode t is:

Pt = Dir
(
α+

∑t−1
τ=0 Zτ

)
. (6)

Furthermore, from the properties of the Dirichlet dis-
tribution, we have:

π∗t (i) = Eπ∼Pt
[π(i)] =

α(i) +
∑t−1
τ=0 Zτ (i)

(
∑
i′∈I α(i′)) + t

, (7)

where α(i) is the i-th entry of α, which corresponds to
item i. So the CE user preference π∗t can be updated
by counting and re-normalization.

By design and Lemma 2, Algorithm SBS∗ is Bayesian
optimal.

Proposition 1. Algorithm SBS∗ is Bayesian optimal.
That is, for any episode t:

• Pt is the posterior belief over π∗ at the beginning
of episode t;

• T ∗t = arg minT Eπ∼Pt [Ei∼π[N(T, i)]].

4.2. Algorithm SBS

Unfortunately, for a general question set Q, computa-
tion of the optimal policy T ∗t is intractable. However,
the policy can be approximated efficiently by a greedy
algorithm (Section 3). This motivates us to propose a
near-optimal algorithm SBS (Algorithm 3) for content
discovery.

The policy generated by Algorithm SBS in episode t is
denoted by T g

t . Similarly to Algorithm SBS∗, the new
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method is computationally efficient when its belief Pt
is modeled by a Dirichlet distribution. The following
proposition claims that our method is Bayesian near-
optimal.

Proposition 2. Algorithm SBS is Bayesian near op-
timal. That is, for any episode t:

• Pt is the posterior belief over π∗ at the beginning
of episode t;

• If mini∈I π
∗
t (i) > 0, then:1

Eπ∼Pt [Ei∼π[N(T g
t , i)]] ≤[

1− ln

(
min
i∈I

π∗t (i)

)]
min
T

Eπ∼Pt [Ei∼π[N(T, i)]],

where π∗t is the CE user preference in episode t.

Proof. From Algorithm SBS, Pt is the posterior belief
over π∗. From Lemma 1, we have:

Ei∼π∗t [N(T g
t , i)] ≤[

1− ln

(
min
i∈I

π∗t (i)

)]
min
T

Ei∼π∗t [N(T, i)].

Furthermore, similarly to Lemma 2, we have:

Ei∼π∗t [N(T, i)] = Eπ∼Pt [Ei∼π[N(T, i)]]

Ei∼π∗t [N(T g
t , i)] = Eπ∼Pt

[Ei∼π[N(T g
t , i)]].

Our second claim follows directly from combining the
above three equations.

5. Analysis

In Section 4, we showed that Algorithms SBS∗ and SBS
are Bayesian optimal and Bayesian near-optimal, re-
spectively. In other words, both SBS∗ and SBS achieve
good performance with respect to the system’s current
belief. However, such results do not reflect the cost of
learning user preferences π∗. In particular, since SBS∗

and SBS learn π∗ while interacting with the user, they
incur a performance loss, ask more questions than the
optimal policy T ∗. We show that these losses are small
by analyzing our algorithms from the frequentist per-
spective. In particular, we show that the cumulative
regret of Algorithm SBS∗ and the [1− ln(π∗min)]-scaled
cumulative regret of Algorithm SBS are sublinear. Note
that from the frequentist perspective, π∗ is determin-
istic but unknown.

We assume that the system’s prior belief is a Dirichlet
distribution Dir(α). To simplify notation, we denote
the minimum expected number of interactions under

1This condition holds when P0 = Dir(α) and α(i) > 0
for all i ∈ I.

the user preferences π∗ by N∗ = minT Ei∼π∗ [N(T, i)].
Furthermore, we define the minimum user preference
probability π∗min = mini∈I π

∗(i) and α0 =
∑
i∈I α(i),

where α(i) is the i-th entry of α.

5.1. Analysis of Algorithm SBS∗

The performance of Algorithm SBS∗ is measured by its
cumulative regret.

Definition 2. For any episode τ , the cumulative re-
gret of Algorithm SBS∗ is defined as:

Reg∗(τ) =

τ∑
t=0

ET∗t [Ei∼π∗ [N(T ∗t , i)]]− (τ + 1)N∗.

The cumulative regret Reg∗(τ) is the expected cumu-
lative performance loss of Algorithm SBS∗ in the first
τ + 1 episodes, relatively to the optimum (τ + 1)N∗.
In Theorem 1, we prove that Reg∗(τ) is sublinear in
τ when τ is sufficiently large.

Theorem 1. Let P0 ∼ Dir(α) and τE be the sample
threshold of Algorithm SBS∗ defined as:

τE = min

{
t ≥ 4 :

ln(t)

t
≤
(
π∗min

6

)2

and

4

3
α0 max

i∈I

∣∣∣∣α(i)

α0
− π∗(i)

∣∣∣∣ ≤ [t ln(t)]
1
2

}
.

Then, for τ < τE, Reg∗(τ) ≤ |Q|(τ + 1). In addition,
for τ ≥ τE:

Reg∗(τ) ≤ |Q|τE +
2M |Q|
τE − 1

+
12N∗

π∗min{
[τ ln(τ)]

1
2 − [(τE − 1) ln(τE − 1)]

1
2

}
.

The proof of Theorem 1 is sketched below. The com-
plete proof can be found in Appendix.

Proof. If the CE user preference π∗t is close enough to
the true user preference π∗, the policy T ∗t in episode t
performs near optimally. Specifically, if ‖π∗−π∗t ‖∞ <
π∗min, then:

Ei∼π∗ [N(T ∗t , i)]−N∗ ≤
2‖π∗ − π∗t ‖∞

π∗min − ‖π∗ − π∗t ‖∞
N∗.

Based on Hoeffding’s inequality, ‖π∗t − π∗‖∞ is small
with high probability for t ≥ τE . Hence, the expected
regret in episode t is small. Specifically, for all t ≥ τE ,
we have:

ET∗t [Ei∼π∗ [N(T ∗t , i)]]−N∗ <
6

π∗min

[
ln(t)

t

] 1
2

N∗ +
2M |Q|
t2

.
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For t < τE , the regret can be bounded naively as:

ET∗t [Ei∼π∗ [N(T ∗t , i)]]−N∗ ≤ |Q|.

Our bound on the cumulative regret up to episode τ is
proved by summing up the above upper bounds.

Theorem 1 states that Reg∗(τ) = O([τ ln(τ)]
1
2 ) when

τ ≥ τE . Therefore, τE can be viewed as the number
of episodes after which Algorithm SBS∗ achieves good
performance. Note that τE depends on both π∗min and
the choice of P0. In particular, smaller π∗min or a poor
choice of P0 result in larger τE .

5.2. Analysis of Algorithm SBS

Note that the cumulative regret (Definition 2) is not
a good metric for evaluating the performance of Algo-
rithm SBS. Specifically, since the algorithm computes
a suboptimal solution, it can incur a large loss in com-
parison to N∗ in each episode t and this loss does not
diminish as t → ∞. Lemma 1 suggests that the algo-
rithm should be compared to the [1− ln(π∗min)] factor
of the minimum expected number of interactions N∗.
This motivates us to generalize the notion of the cu-
mulative regret to a C-scaled cumulative regret.

Definition 3. For any episode τ and C ≥ 1, the C-
scaled cumulative regret of Algorithm SBS is defined
as:

Reg(τ, C) =

τ∑
t=0

ET g
t

[Ei∼π∗ [N(T g
t , i)]]− (τ + 1)CN∗.

The regret Reg(τ, C) measures the expected cumula-
tive loss of Algorithm SBS in the first τ + 1 episodes,
relatively to the C-scaled optimum (τ + 1)CN∗. Note
that C = 1 yields the classical cumulative regret. We
would like to bound Reg(τ, 1− ln(π∗min)) from above.
In Theorem 2, we prove that Reg(τ, 1 − ln(π∗min)) is
sublinear in τ when τ is sufficiently large.

Theorem 2. Let P0 ∼ Dir(α) and τG be the sample
threshold of Algorithm SBS defined as:

τG = min

t ≥ 4 :
ln(t)

t
≤

0.0689π∗min

ln
(

e
π∗min

)
2

and

4

3
α0 max

i∈I

∣∣∣∣α(i)

α0
− π∗(i)

∣∣∣∣ ≤ [t ln(t)]
1
2

}
.

Then, for τ < τG, Reg(τ, 1 − ln(π∗min)) ≤ |Q|(τ + 1).
Moreover, for τ ≥ τG:

Reg(τ, 1− ln(π∗min)) ≤

|Q|τG +
2M |Q|
τG − 1

+ f(π∗min, N
∗, τ, τG),

where f(π∗min, N
∗, τ, τG) =

40 ln
(

e
π∗min

)
N∗

π∗min

(
[τ ln(τ)]

1
2 − [(τG − 1) ln(τG − 1)]

1
2

)
.

The proof of Theorem 2 is sketched below. The com-
plete proof can be found in Appendix.

Proof. If the CE user preference π∗t is close enough to
the true user preference π∗, the policy T g

t in episode t
performs near optimally. Specifically, if ‖π∗−π∗t ‖∞ <
π∗min, then:

Ei∼π∗ [N(T g
t , i)] ≤[

π∗min + ‖π∗ − π∗t ‖∞
π∗min − ‖π∗ − π∗t ‖∞

]2
ln

(
e

π∗min − ‖π∗ − π∗t ‖∞

)
N∗.

Based on Hoeffding’s inequality, ‖π∗t − π∗‖∞ is small
with high probability for t ≥ τG. Hence, the expected
scaled regret in episode t is small. Specifically, for all
t ≥ τG, we have:

ET g
t

[Ei∼π∗ [N(T g
t , i)]]− ln

(
e

π∗min

)
N∗ <[

8 + 12 ln

(
e

π∗min

)]
1

π∗min

[
ln(t)

t

] 1
2

N∗ +
2M |Q|
t2

.

For t < τG, the regret can be bounded naively as:

ET g
t

[Ei∼π∗ [N(T g
t , i)]]− ln

(
e

π∗min

)
N∗ ≤ |Q|.

Our bound on the cumulative regret up to episode τ is
proved by summing up the above upper bounds.

The above theorem says that Reg(τ, 1 − ln(π∗min)) =

O([τ ln(τ)]
1
2 ) when τ ≥ τG. The value of τG depends

on π∗min and the choice of P0. Specifically, smaller π∗min

or a poor choice of P0 result in larger τG.

Note that the 1
π∗min

factor in the regret bounds in The-

orems 1 and 2 originates in Lemma A-1 in Appendix
and is due to bounding the terms that grow with time
τ using N∗, as opposing to looser |Q|. This factor is
hard to eliminate because the bound in Lemma A-1 is
tight.

6. Experiments

Algorithm SBS is evaluated on a real-world movie dis-
covery problem. We perform two experiments. First,
we study how the number of questions asked by SBS
decreases over time, and compare the approach to two
baselines. Second, we show how the choice of the prior
P0 affects the quality of SBS policies.
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Figure 1. Comparison of three movie discovery policies on MovieLens dataset. The methods are compared by the average
number of questions asked up to episode τ .

Movie genres
Action Adventure Animation
Children’s Comedy Crime
Documentary Drama Fantasy
Film-Noir Horror Musical
Mystery Romance Sci-Fi
Thriller War Western

Table 1. Movie genres in MovieLens dataset.

6.1. Experimental Setup

Our experiment is conducted on a dataset of one mil-
lion ratings from the MovieLens project (Lam & Her-
locker, 2012). In this dataset, 6k users rate 4k movies
for more than one year. The movies are annotated by
19 genres (Table 1). Only 302 unique combinations of
genres exist in our dataset. In our experiments, these
are the individual items in I. Movies with the same
genre descriptors are equivalent in the sense that the
user has equal preferences for all of these movies.

We assume that each rating event is a movie viewing
event, where Algorithm SBS is used to find the target
movie, the movie that was actually watched. We ask
questions of the form “Would you like to watch X ?”,
where X represents a genre, and measure the number
of asked questions until the target movie is identified.
We learn a single preference distribution for all users.
We opt for this setup since we want to show that SBS
converges to the optimal solution when the number of
episodes is large. None of our individual users rated
enough movies to illustrate this trend.

We focus on two subsets of our data, movies belonging
to at least two, and at least three, genres. The movies
in the former set are harder to identify since they are
described by fewer attributes. These movies are rated
over 700k times, and the number of unique movies is

M = 283. The movies in the latter set are rated 300k
times, and the number of unique movies is M = 203.
To avoid bias, we partition both datasets into 30 time
periods with the same number of ratings, evaluate the
policy in each time period, and finally average the re-
sults over the periods.

6.2. Optimality

In the first experiment, we study how SBS policies im-
prove over time. Algorithm SBS is initialized with an
uninformative prior P0 = Dir(1), where 1 is a vector
of all ones. We refer to this policy as SBS0.

Our approach is compared to two baselines. The first
baseline GBS0 assumes that all items are drawn with
the same probability, GBS(I,Q, π0) where π0(i) = 1

M .
This can be viewed as an upper bound on the number
of questions asked by SBS0. The second baseline GBS∗

knows the probability π∗ with which target items are
drawn, GBS(I,Q, π∗). This can be viewed as a lower
bound on the number of questions asked by SBS0. The
performance of all policies is measured by the average
number of questions asked up to episode τ . The lower
the number, the better.

Our results are reported in Figure 1. In Figure 1a, the
average number of questions asked by SBS0 decreases
over time to 9.5. This is 0.7 questions less than GBS0,
which asks 10.2 questions, and similar to the best solu-
tion in hindsight GBS∗. Note that the Shannon entropy
H(π∗) of π∗ is a lower bound on the expected number
of questions to find a randomly chosen item from π∗.
In our case, H(π∗) ≈ 6.8. Relatively to this baseline,
the improvement from 10.2 to 9.5 is 21%.

Similar trends can be observed in Figure 1b. The aver-
age number of questions asked by SBS0 decreases over
time to 7.8. This is 0.7 questions less than GBS0, which
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Figure 2. Comparison of four movie discovery policies on MovieLens dataset. The methods are compared by the average
number of questions asked up to episode τ .

asks 8.5 questions, and similar to the best solution in
hindsight GBS∗. Relatively to H(π∗), the improvement
from 8.5 to 7.8 is 41%.

6.3. Impact of the Prior P0

In the second experiment, we study how a well-chosen
prior P0 helps in speeding up the convergence of SBS
to the lower bound GBS∗. We compare three variants
of SBS. In the first variant SBS0, the prior P0 = Dir(1)
is uninformative. In the second and third variants, the
prior is P0 = Dir(1 + c), where c ∈ <M and c(i) is the
number of occurrences of item i in 100 and 1k random
movie viewing events, respectively. We refer to these
variants as SBS100 and SBS1k, respectively.

Our results are summarized in Figure 2. In both plots,
we observe that SBS1k asks less questions on average
than SBS100, which asks less questions than SBS0. In
other words, SBS performs better when the prior P0 is
more accurate. All variants of SBS approach the lower
bound GBS∗ as time increases.

7. Conclusions and Discussion

In this work, we propose two user-adaptive algorithms
for interactive content discovery, SBS∗ and SBS. Both
algorithms learn user preferences over time as the user
interacts with them. We proved that SBS∗ is Bayesian
optimal and achieves sublinear cumulative regret; and
that SBS is Bayesian near-optimal and achieves sublin-
ear [1− ln (π∗min)]-scaled cumulative regret. We evalu-
ate SBS on a real-world problem and demonstrate that
its performance is similar to the best solution in hind-
sight.

We assume that user’s target items i∗ are drawn i.i.d.
from a stationary distribution π∗ (Section 2) to sim-
plify the exposition of our work. This assumption can

be quite easily relaxed. In particular, both of our al-
gorithms can be adapted to the target items that are
drawn from time-varying distributions or follow an ex-
ogenous Markov chain. As long as the user preferences
are exogenous, our algorithms would work. The only
difference would be that learning of more complicated
models takes more time.

This is the first work that studies learning in adaptive
submodularity (Golovin & Krause, 2011). In particu-
lar, we show that a nearly optimal policy for solving
an adaptive submodular problem whose model is ini-
tially unknown, identifying M −1 non-target items by
asking the minimum number of questions on average,
can be learned from solving the problem repeatedly.
A key observation in our solution is that the expected
gain of asking questions, conditioned on any sequence
of questions and answers, can be estimated efficiently
from another statistic, the probability of drawing tar-
get items π∗. Therefore, our learning problem reduces
to estimating π∗. We believe that this decomposition
could be useful in solving other adaptive submodular
problems.

Perhaps surprisingly, it can be shown that the cumu-
lative regret of Algorithm SBS∗ is O(1). In particular,
learning of the minimum-depth tree can be viewed as
choosing one tree out of |Q|MM ! trees of at most |Q|
depth. Based on the union bound and Hoeffding’s in-
equality, the regret of the policy that chooses in each
episode the minimum-depth tree given all past target
items is Ω(N |Q|3). This regret bound is problematic
since |Q| is often large. We believe that our bound is
much more practical because it is linear in M and |Q|,
and deriving such a bound is challenging. Even when t
is relatively large, our bound is expected to be tighter
than a higher-order polynomial O(1) bound. We leave
derivation of practical O(1) bounds for future work.
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