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Abstract

The LDA topic model is being used to model
corpora of documents that can be represented
by bags of words. Here we extend the LDA
model to deal with documents that are rep-
resented by bags of continuous descriptors.
Given a finite dictionary of words, our ex-
tended LDA model allows for the soft as-
signment of descriptors to (many) dictionary
words. We derive variational inference and
parameter estimation procedures for the ex-
tended model, which closely resemble those
obtained for the original model, with two
important differences: First, the histogram
of word counts is replaced by a histogram
of pseudo word counts, or sums of respon-
sibilities over all descriptors. Second, pa-
rameter estimation now depends on the aver-
age covariance matrix between these pseudo-
counts, reflecting the fact that with soft as-
signment words are not independent. We
use this approach to address the detection of
novel video events, where we seek to identify
video events with low posterior probability.
Using a benchmark dataset for novelty detec-
tion, we show a very significant improvement
in the detection of novel events when using
our extended LDA model with soft assign-
ment to words as against hard assignment
(the original model), achieving state of the
art novelty detection results.

1. Introduction

This work is motivated by the following general ques-
tion: how do we catalogue a collection of multi media
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documents of continuous data (such as still images,
video or music), discovering along the way the un-
derlying structure in order to address such tasks as
summarization, similarity computation, and novelty
detection? We are particularly interested in novelty
detection, where the task is to decide whether a new
document, never seen before, is unlike any other docu-
ment in the training sample. One way to address this
question for discrete data employs the generative LDA
model.

Latent Dirichlet Allocation (Blei et al., 2003) is a gen-
erative probabilistic model which recovers structure
from a collection of discrete data, such as text doc-
uments. Documents are represented as bags of words,
maintaining only the count of each word in the doc-
ument (thus ignoring the order of words). The gen-
erative process of document sampling assumes a set
of topics, where each document is sampled from a
mixture of topics, and each topic defines some unique
multinomial probability over the words in the dictio-
nary. When fitting a corpus of documents with the
LDA model, the topics which are discovered often
reveal insightful information about the relations and
shared structure between documents.

The LDA model has proven very useful for modeling
text documents. With other documents such as images
and video, it has been noted that these documents can
often be described by bags of descriptors, where a de-
scriptor is typically represented by a vector in Rd for
some d. In order to get a ’bag of words’ from such ’bag
of descriptors’, one typically starts by defining a dic-
tionary of descriptors, obtained by vector quantization
(or clustering) of the set of observed descriptors. Now
each descriptor in the bag can be assigned a word (us-
ing, e.g., nearest neighbor in Rd), and a bag of words
representation is obtained (Csurka et al., 2004). This
procedure is very effective, and has led to intriguing
use of the basic LDA model and its extensions with
non-textual data, see for example (Sivic et al., 2005;
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Fei-Fei & Perona, 2005; Sivic et al., 2008; Wang et al.,
2009; Tuytelaars et al., 2010; Philbin et al., 2011) and
(Wang & Grimson, 2007; Sudderth et al., 2005; Cao &
Fei-Fei, 2007) for extensions which consider the spatial
location of image patches.

However, the assignment of each descriptor to a single
word can be problematic, and often it seems more ap-
propriate to describe a descriptor by a mixture prob-
ability over words (Farquhar et al., 2005; Perronnin,
2008; Philbin et al., 2008; van Gemert et al., 2010). In
particular, when one is interested in the modeling of
new documents never seen before, as we do here, some
descriptors in the bag of the new document may not
correspond well to any word in the dictionary, but can
still be effectively modeled by a mixture of words.

Can we still use LDA to model documents when this
soft assignment representation is used? This is the
technical question we address in this paper. In Sec-
tion 2 we describe the extended LDA model, where
documents are described as bags of continuous vector
descriptors in Rd, and each descriptor is modeled by
a mixture probability over words. Thus defined, infer-
ence in this model can be achieved using MC meth-
ods and Gibbs sampling (Griffiths & Steyvers, 2004).
Pursuing the complementary path and deterministic
approximations, in Section 3 we derive effective varia-
tional algorithms for inference and parameter estima-
tion in this model.

Our method is a generalization of the variational infer-
ence and parameter estimation algorithms described in
(Blei et al., 2003) of similar low complexity. The main
difference is that pseudo-counts of words (or summed
responsibility) take the role of word counts (bin his-
tograms), and the derivation requires further approx-
imations as discussed in Section 3.2. Interestingly, for
parameter estimation, our algorithm uses in addition
the average covariance matrix between the pseudo-
count vectors. Consequently inference and parameter
estimation depend on both the first and second order
statistics of pseudo-counts of words in the document.

In this work it is assumed that the dictionary is given
- it is a collection of words, each defining a probability
distribution over the space Rd of descriptors. This as-
sumption may be questioned, in particular in light of
the body of work on dictionary learning in the context
of sparse coding which may be of relevance here (Ol-
shausen et al., 1997; Ramirez et al., 2010). It may seem
appealing to define a single framework where dictio-
nary learning and topic modeling are done simultane-
ously, as is done for example in (Larlus & Jurie, 2009).
(Rematas et al., 2012) goes a step further and mod-
els the distribution of descriptors non-parametrically.

Both methods solve more difficult problems and rely
on stochastic methods and Gibbs sampling, with many
local minima and the ensuing dependence on initializa-
tion.

We chose to separate the problems and assume a pre-
computed dictionary for a number of reasons. The
primary reason is computational. On the one hand,
simultaneous dictionary learning and topic modeling
poses a rather difficult non convex optimization prob-
lem. On the other hand, given soft assignment to
words in the dictionary, it would seem that any dic-
tionary which can approximate the distribution of de-
scriptors effectively via a mixture model will do well
enough for the task. We therefore chose to use an
approximate (possibly non optimal) dictionary and
spend more effort on topic learning with soft assign-
ment to words. The second reason lies in our appli-
cation - novelty detection; optimal dictionary for the
training data may not be optimal for truly novel ex-
amples.

In this work, therefore, dictionary learning is done dur-
ing pre-processing of the training data. The dictionary
is a set of words which act as the components of a mix-
ture distribution, and the task of dictionary learning
boils down to the task of estimating the components
of a mixture distribution which models the empirical
distribution of the observed descriptors in the training
set. The distribution of each component (or word) can
be estimated using, for example, a generative paramet-
ric approach such as Gaussian Mixture Modeling. In
the application pursued in this paper we describe ex-
periments with one such approach, and an alternative
one which employs generative words and models de-
scriptors with a generative probabilistic model called
dynamic texture (Doretto et al., 2003). In the latter
approach dictionary learning resorts to the selection of
a fixed number of DT’s, which can generate with high
likelihood most of the observed video events (Chan &
Vasconcelos, 2008).

It is not easy to evaluate the efficacy and success of
topic models, since there is no ground truth of ac-
tual topics to compare with. We chose to evaluate our
method in the task of novelty detection. In Section 4
we use the method described above to model video
data and identify novel video events. Video events are
represented using a dictionary of ISA or dynamic tex-
ture features. We test our ability to identify novel
events using a benchmark dataset designed for the
evaluation of novelty detection algorithms (Mahade-
van et al., 2012), demonstrating significant improve-
ment obtained by soft assignment as compared with
hard assignment (for the same dictionary).



LDA Topic Model with Soft Assignment of Descriptors to Words

2. Extended LDA Model

2.1. Notations

We use notations very similar to the language of text
collections, making the necessary distinctions along
the way. Our goal is to provide a generative model
for a collection of documents, each represented by a
set of un-ordered descriptors. Like in the bag of words
model, the bag of descriptors model ignores the order
and relative location of descriptors. Unlike the bag of
words model, a descriptor is not a discrete word but a
continuous measurement, whose distribution we model
by a generative process as well - a mixture over a set
of discrete components which we will henceforce call
words. In other words, the given dictionary is a col-
lection of generative word models (aka components),
and each word assigns a probability to every measured
descriptor (aka responsibility).

Formally, the model is described as follows:

• A descriptor x is a basic unit of continuous data.
It is modeled by a vector of probabilities, based on
V categorical distributions {wj , 1 ≤ j ≤ V } that
we call words. Thus we represent a descriptor by a
vector f ∈ RV , where element fj , 0 ≤ fj ≤ 1 de-
notes the probability that the descriptor has been
generated by word wj . This probability function
is known apriori, and it is part of the given dic-
tionary.

• A document is a sequence of N descriptors x =
{x1, x2, . . . , xN}, represented by their probability
vectors F = {f1, f2, . . . , fN}.

• A corpus is a collection of M documents repre-
sented by D = {F1,F2, . . .FM}.

As in other topic models, we aim to find a probabilistic
model of the corpus that assigns high probability to
similar documents which we have not yet seen.

2.2. LDA with Soft Word Assignment

In many ways, our model is similar to the original
LDA model described in (Blei et al., 2003). Docu-
ments are represented as mixtures over latent ’topics’,
and each topic is characterized by a distribution over
’words’. There is one additional step, where the de-
scriptor is sampled from the generative word model.
Thus the model assumes the following generative pro-
cess for each document F in the corpus (see Fig. 1):

1. Choose probability coefficients over topics θ ∼
Dir(α).

2. For each of the N descriptors xn in the bag of
descriptors for document F :

(a) Choose one of k topics zn ∼Multinomial(θ).

(b) Choose one of V words wj from the multino-
mial distribution p(w | zn, β).

(c) Choose descriptor xn from the conditional
distribution p(xn | wj) defined by the gen-
erative word model of wj .

Figure 1. The generative Latent Dirichlet Allocation model
with generative words.

The difference between this model and the original
LDA model lies in step 2c, the last box in Fig. 1. Un-
like before, each descriptor is not assigned to a single
word, but is itself generated by a mixture model of
discrete words. Thus, the probability of the obser-
vation xn is the mixture probability p(xn | zn, β) =∑V

j=1 p(wj | zn = i, β)p(xn | wj) =
∑

j βijp(xn | wj).

Importantly, we assume that the dictionary is given,
in terms of the mixture components. The dictionary is
therefore a list of V probability functions, from which
we compute fnj = p(xn | wj); here xn are the observ-
ables, α, β are the model’s parameters, and θ, z, w
its hidden variables.

Given the parameters α, β, the joint distribution of
the observables and the hidden variables is:

p(θ, z,w,x | α, β) =

p(θ | α)

N∏
n=1

p(zn | θ)p(wj | zn, β)p(xn | wj) (1)

The probability of the corpus is the following

p(D | α,β) =

M∏
d=1

∫
p(θd | α)

 Nd∏
n=1

∑
zdn

∑
j

p(zdn | θd)p(wj | zdn, β)p(xdn | wj)

)
dθd
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3. Inference and Parameter Estimation

We now describe variational inference and param-
eter estimation algorithms for the model described
above, extending the procedures described in (Blei
et al., 2003) and using the same variational param-
eters. Interestingly, the ensuing inference algorithm
gives misleadingly similar update rules of similar com-
plexity. For parameter estimation we provide a new
lower bound which, when maximized, once again gives
update rules very similar to those obtained for the
original LDA model. Finally, we show how inference
and parameter estimation can be efficiently used with
a representation similar to bag of words, where each
word is represented by its pseudo-count - the sum of
its likelihood over all descriptors in the document.

We start by stating our goal, which is to estimate the
probability

p(x | α, β) =

∫ ∑
z

∑
w

p(θ, z,w,x | α, β)dθ

Estimating this probability is intractable, and we fol-
low (Blei et al., 2003) and their choice of variational
inference to approximate this function.

3.1. Variational Inference

Since, given descriptor xn, the dictionary provides
the vector of conditional probabilities fn where fnj =
p(xn | wj), we marginalize over the hidden variable w
and attempt to infer θ, z. To accomplish this goal, we
define the following variational distribution

q(θ, z | γ, φ) = q(θ | γ)

N∏
n=1

q(zn | φn) (2)

where q(θ) ∼ Dir(γ) and q(zn) ∼ Multinomial(φn).
The function q(θ, z | γ, φ) is a surrogate for the poste-
rior distribution (marginalized over w) p(θ, z,x | α, β).

Following (Blei et al., 2003)), we use Jensen inequal-
ity to obtain a lower bound on log p(x | α, β) for any
surrogate function q(θ, z | γ, φ):

log p(x | α, β) = log

∫ ∑
z

p(θ, z,x | α, β)

q(θ, z)
q(θ, z)dθ

= logEq

[
p(θ, z,x | α, β)

q(θ, z)

]
≥ Eq[log p(θ, z,x | α, β)]− Eq[log q(θ, z)]

= L(γ, φ;α, β)

In order to approximate log p(x | α, β), one maximizes
the lower bound L(γ, φ;α, β) with respect to all pa-
rameters γ, φ, α, β.

Specifically, let

L(γ, φ;α, β) = Eq[log p(θ | α)] + Eq[log p(z | θ)]
+ Eq[log p(x | z, β)] (3)

− Eq[log q(θ)]− Eq[log q(z)]

This expression is almost identical to the one we get
with the original LDA model, with one difference in
the third term above:

Eq[log p(x | z, β)] =

N∑
n=1

k∑
i=1

φni log[

V∑
j=1

βijfnj ] (4)

After substituting the expressions for the functions
p, q, we may take derivatives with respect to the vari-
ational parameters and set them to 0, thus obtaining:

φni ∝ (

V∑
j=1

βijfnj) exp(Ψ(γi)−Ψ(

k∑
l=1

γl)) (5)

γi = αi +

N∑
n=1

φni (6)

where Ψ is the digamma function.

3.2. Parameter Estimation

Next, we wish to estimate the model parameters α, β
given corpus D following the same Bayesian proce-
dure and variational approximation. Differentiating
(3) with respect to α, one still gets

∂L
∂αi

=M

(
Ψ(

k∑
l=1

αl)−Ψ(αi)

)
+

M∑
d=1

(
Ψ(γdi)−Ψ(

k∑
l=1

γdl)

)
which can be solved with the Newton-Raphson algo-
rithm as in (Blei et al., 2003).

In order to compute β, we need to maximize (4)
summed over all the documents, and subject to the
constraint that the columns of β sum to 1. Adding
Lagrange multipliers, a solution can be obtained by
differentiating

M∑
d=1

Nd∑
n=1

k∑
i=1

φdni log[

V∑
j=1

βijfdnj ] +

k∑
i=1

µi(

V∑
j=1

βij − 1)

(7)

with respect to βij and µi, and setting the derivatives
to 0. This turns out to be hard to do in closed form,
and the solution can be approximated using gradient
descent.
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Instead, we derive a lower bound on the function we
aim to maximize. Using the concavity of the log func-
tion, it follows that

log[

V∑
j=1

βijfdnj ] = log[(

V∑
a=1

fdna)(

V∑
j=1

βij
fdnj∑V
a=1 fdna

)]

≥ log(Fdn) +

V∑
j=1

fdnj
Fdn

log βij (8)

where Fdn =
∑V

a=1 fdna. We maximize this function
with respect to β under the normalization constraint,
to obtain

βij ∝
M∑
d=1

Nd∑
n=1

φdni
fdnj
Fdn

(9)

It is now possible to improve this estimate of βij using
gradient ascent with respect to (7).

3.3. Pseudo-count Histograms for Bags of
Descriptors

When computing variational inference for the LDA
model as described in (Blei et al., 2003), it follows from
the exchangeability assumption that it is not necessary
to keep an account of the actual list of words in the
document, but only the count of words (or word his-
togram). In this section we will show that the same
holds for our extended LDA model, where the count
is replaced by ’pseudo-count’ - the sum of word prob-
abilities over the document.

In the original LDA model, we first note that due to
exchangeability, φn for a given document (we omit the
index d for clarity) is the same for all word locations
n where the same word wa is observed in the original
bag of words model. We can therefore define a vector
of length V φ̂a, where φn = φ̂a for every word ’a’ such
that wn

a = 1 (i.e., word wa is observed in location n).

The update rules for φ̂ remains:

φ̂ai ∝ βia exp(Ψ(γi)−Ψ(

k∑
l=1

γl)) (10)

We can express both variational parameters in terms
of φ̂, since γi = αi +

∑V
a=1 φ̂aicnt(a) for cnt(a) the

number of times word wa appeared in the document.
Thus, the original LDA variational inference algorithm
essentially relies only on word counts in the document.

In the extended model, we can still define φ̂ and update
it as in (10). We then derive very similar update rules

for the variational parameters:

φni =

V∑
j=1

φ̂jifnj (11)

γi = αi +

N∑
n=1

(

V∑
a=1

βiafna) exp(Ψ(γi)−Ψ(

k∑
l=1

γl))

= αi +

V∑
a=1

βia exp(Ψ(γi)−Ψ(

k∑
l=1

γl))

N∑
n=1

fna)

= αi +

V∑
a=1

φ̂aiPseudoCnt(a)

where PseudoCnt(a) =
∑N

n=1 fna =
∑N

n=1 p(xn | wa)
denotes the sum of probabilities for word wa over all
descriptors in the document.

As to be expected by now, parameter estimation is
more complicated in the extended model. The com-
putation of α depends only on the variational param-
eters, and can therefore be done using the histogram
of pseudo-counts. The approximation of β in Eq. (9)
can be done as follows:

βij ∝
M∑
d=1

Nd∑
n=1

φdni
fdnj
Fdn

=

M∑
d=1

Nd∑
n=1

V∑
a=1

φ̂daifdna
fdnj
Fdn

=

M∑
d=1

V∑
a=1

φ̂dai

Nd∑
n=1

fdna
fdnj
Fdn

(12)

where (11) is used in the transition from the first to
the second line.

Let Ad denote the average scaled covariance matrix for
the words in document d:

Ad =

N∑
n=1

fdn · fTdn∑V
a=1 fdna

Then (12) can be written as

βij ∝
M∑
d=1

V∑
a=1

φ̂daiA
d
aj

In vector notation, where ~βi denotes the probabilities
for word assignment in topic i and ~φdi the variational
vector of probabilities for word assignment in docu-
ment d for topic i,

~βi ∝
M∑
d=1

Ad~φdi (13)
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In conclusion, in order to infer the hidden variables of
the modified LDA model with the variational approx-
imation, we do not need to keep the vector fn for each
word, but only the histogram of word pseudo-counts -
a histogram h where h(a) =

∑N
n=1 fna for 1 ≤ a ≤ V

the index of the word in the dictionary. In order to ap-
proximate the model parameter β, we also need matrix
Ad which measures the covariance between the words
in document d.

3.4. Smoothing and LDA

In (Blei et al., 2003) Blei et al. described a slightly
different model where they proposed to place a Dirich-
let prior on the hyper parameter β. This model
turned out to be better suited for online implemen-
tation (Hoffman et al., 2010), and we use it here for
the same purpose with an online algorithm and the
extended LDA model. In this model the probability of
the data becomes:

p(D | α, η) =

∫ k∏
i=1

p(βi | η)p(D | α, β)dβ (14)

where p(D | α, β) corresponds to the LDA model de-
scribed above.

Now, the variational distribution takes the form:

q(β1:k, z1:M , θ1:M |λ, φ, γ)

=

k∏
i=1

Dir(βi|λi)
M∏
d=1

qd(θd, zd|φd, γd), (15)

It can easily be verified that the update equation for
λ and φ become:

λij = η +

M∑
d=1

Ad~φdi,

φ̂ai ∝ exp(log(βia|λi) exp(Ψ(γi)−Ψ(

k∑
l=1

γl)) (16)

= exp(Ψ(λia)−Ψ(

V∑
j=1

λj)) exp(Ψ(γi)−Ψ(

k∑
l=1

γl))

4. Novelty Detection in Video Data

Successfully identifying novel video events can be very
useful for such applications as video surveillance and
video annotation. An effective way to identify novel
events is to use extended recordings to learn the ’nor-
mal’ state of the system, and then identify those events
whose posterior probability with respect to the learnt
model is low. In this section we use the extended LDA
model described above to model the given collection
of video recordings.

4.1. Representation of Video Events

In order to represent video events, each video doc-
ument is decomposed into a set of spatio-temporal
patches extracted from the video. Each spatio-
temporal patch is represented via the ISA features
(Le et al., 2011), or the generative Dynamic Textures
model which readily assigns a probability to each 3D-
patch. The dictionary is a set of words pre selected
based on the respective representation of all patches
in the training data, and each spatio-temporal video
patch is represented as a mixture of these categori-
cal words. In estimating the model parameters, and
in particular the parameter β, we effectively learn the
mixture coefficients of the words in each topic.

More specifically, for ISA spatio-temporal features we
use first layer features trained on Hollywood2 dataset
as provided by the authors (Le et al., 2011). We obtain
a dictionary with the k-means algorithm (Euclidean
distance) using subset of the train set. We estimate
p(x|w) for each of the words in the dictionary by fit-
ting a 1D Gaussian, using distances between features
assigned to w by the k-means algorithm.

Dynamic Texture (DT) (Doretto et al., 2003) is a video
generative model that captures both the dynamic and
the texture of the video. It consists of a random pro-
cess containing an observed variable yt, which encodes
the appearance component (video frame at time t),
and a hidden state variable xt, which encodes the dy-
namics (evolution of the video over time). The state
and observed variables are related through the linear
dynamical system defined by:{

xt+1 = Axt + vt

yt = Cxt + wt

(17)

where xt ∈ Rn denotes the hidden state variable, yt ∈
Rm the observable, A ∈ Rn×n the state transition
matrix, and C ∈ Rm×n an observation matrix. vt ∈
Rn and wt ∈ Rm denote additive zero-mean Gaussian
noise in the hidden and the observed states.

Given a training set of video sequences, each se-
quence is divided into a set of video events which are
object-size spatio-temporal video pieces, see Fig. 2.
Each video events is further divided into small spatio-
temporal 3D-patches; these patches together define the
ensemble of basic video units, which are used to learn
the words in the dictionary using the k-means algo-
rithm. With the DT representation we use the follow-
ing initialization procedure: we pick V random 3D-
patches, learn for each patch the DT that maximizes
its likelihood, and use these V DT’s as initial centers
for the k-means algorithm.
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Figure 3. Examples of abnormal events.

Figure 2. A video sequences (left) is divided into video
events (marked with green border). Each event is divided
to small spatio-temporal patches, and each patch is repre-
sented by a mixture of basic words.

4.2. Database

To evaluate our algorithm we used the UCSD Ped2
dataset (Mahadevan et al., 2012), consisting of videos
taken while monitoring a crowded pedestrian walkway
scene. The dataset consists of 16 training videos con-
taining only pedestrians, and 12 test videos containing
also abnormal events such as bicycles and skateboard
riders; examples of abnormal events detected by our
algorithm are shown in Fig. 3. The dataset also con-
tains frame level ground truth of frames that contain
abnormal events, and there is a subset of 9 videos pro-
vided with pixel-level binary masks.

Each video has 120-180 frames of resolution 360×240.
We split each video to events of size 24 × 24 × 21
(21 is the temporal length). With DT features each
event is decomposed into 4 × 4 × 3 3D-patches of
size 9× 9 × 10, with a spatial/temporal displacement
of 5 pixels/frames between each two events and 3D-
patches. With ISA features each event is decomposed
into 3×3×4 3D-patches of size 16×16×10 (Le et al.,
2011). To improve performance we filtered out events
and 3D-patches with no movement. From the collec-
tion 3D-patches a dictionary was computed.

When determining the dictionary size, we seek the

smallest dictionary which will allow for good perfor-
mance and will benefit generalization. At the same
time, hard assignment to words would appear to ben-
efit from a larger dictionary size when competing with
the richer soft assignment to words. We therefore
choose the size of the dictionary based on the perfor-
mance of the hard assignment algorithm on the train
set, searching for the best size over a feasible range.
For both feature types the optimal dictionary size was
75 words. With DT words we used hidden state size of
10 learnt as described in Section 4.1, see Fig. 4.

Figure 4. Illustration of one DT word, which captures a leg
moving to the left (frames are ordered from left to right).
First row: a synthetic 3D-patch generated from the DT.
Subsequent rows: three 3D-patches whose most likely word
assignment was identified as this DT.

4.3. LDA Model and Results

Given the dictionary, each 3D-patch was assigned a
vector of soft probabilities, reflecting the likelihood
that each word generated the patch. In soft assign-
ment of this nature it is customary to set to zero some
of the lower assignment, typically those below the av-
erage assignment (Coates et al., 2010). Here it was
necessary to use a higher threshold and set to zero up
to 95% of the lower assignments, because the DT dic-
tionary words in particular have high overlap. Next,
each video event in the dataset was encoded according
to the 3D-patches composing it as described in Sec-
tion 2. Finally, using events from the training video
an extended LDA model was learnt as described in
Section 3, and subsequently used to estimate the like-
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lihood of each event in the test videos.

Figure 5. ROC curves for frame level analysis (top) and
pixel level (bottom).

Using event likelihood, we identify those events whose
likelihood is below some threshold as abnormal events.
Varying the threshold value, we obtained the ROC
curves shown in Fig. 5. Following (Mahadevan et al.,
2010), we tested our method using frame-level and
pixel-level measurements, where in the former a de-
tection in a frame is successful regardless of the ab-
normality location within the frame, and in the later
a detection is successful if at least 40% of the truly
anomalous pixels are detected. The frame level EER
values, compared with the results reported in (Ma-
hadevan et al., 2010), are tabulated in Table 1. Some
examples of successful detection are displayed in Fig. 3.

method EER

SF (Mahadevan et al., 2010) 42%
MPPCA (Mahadevan et al., 2010) 30%

SF-MPPCA (Mahadevan et al., 2010) 36%
Adam (Adam et al., 2008) 42%

MDT (Mahadevan et al., 2010) 25%

Hard assignment, DT batch 35%
Soft assignment, DT batch 20%
Soft assignment, DT online 16%
Soft assignment, ISA online 17.6%

Table 1. Frame level EER values for different methods, see
text.

We report results with hard assignment to words, soft
assignment to words with the batch LDA algorithm
described in Sections 3.1-3.2, and soft assignment to
word with an online LDA algorithm (Hoffman et al.,
2010) which computes the smooth LDA model with
pseudo-count representation as outlined in Section 3.4.
The online algorithm used both types of features, DT
and ISA. In our comparisons soft assignment achieved
top performance, better than alternative methods and
much better than hard assignment.

4.4. Discussion

The most interesting result for evaluating the added
value of the new model presented in this paper, is seen
in the big difference in performance between soft and
hard assignments of visual words. Using the same dic-
tionary and all else being equal, hard assignment of
video patches to words and the original LDA model
achieved poor performance in novelty detection, while
soft assignment and the extended LDA model (either
batch or online) achieved state of the art performance.
Moreover, this result was seen for two very different
kinds of representation, one with generative feature
model (DT) and one with an adaptive model trained
on a different dataset (ISA). We note that the number
of soft assignments had to be restricted in order for
the batch LDA algorithm to converge to a non-trivial
solution (i.e., non degenerate topic distribution).

5. Summary

Latent Dirichlet Allocation has proven very effective in
modeling text and other multi-media documents. Here
we extended this model to allow for a richer represen-
tation, to answer a need when dealing with videos and
images which are less naturally represented by bags of
words. Documents are now represented by bags of con-
tinuous descriptors, and each descriptor is represented
by its vector of affinities to the words in the dictionary.
We derived variational inference and parameter esti-
mation procedures for this model, which resemble the
original algorithm in an appealing way. We demon-
strated how the incorporation of soft assignment to
words very significantly improved the effectiveness of
the LDA model in the detection of novel video events.
Specifically, when using the same data and the same
dictionary, the traditional LDA model achieved poor
performance in novelty detection, while our extended
LDA method achieved state of the art performance.
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