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Abstract

The lack of training data is a common chal-
lenge in many machine learning problems,
which is often tackled by semi-supervised
learning methods or transfer learning meth-
ods. The former requires unlabeled images
from the same distribution as the labeled
ones and the latter leverages labeled images
from related homogenous tasks. However,
these restrictions often cannot be satisfied.
To address this, we propose a novel robust
and discriminative self-taught learning ap-
proach to utilize any unlabeled data with-
out the above restrictions. Our new ap-
proach employs a robust loss function to learn
the dictionary, and enforces the structured
sparse regularization to automatically select
the optimal dictionary basis vectors and in-
corporate the supervision information con-
tained in the labeled data. We derive an
efficient iterative algorithm to solve the op-
timization problem and rigorously prove its
convergence. Promising results in extensive
experiments have validated the proposed ap-
proach.

1. Introduction

Traditional machine learning methods usually work
well when sufficient training data are available. How-
ever, because manually labeling data is both expensive
and time-consuming, it is desirable to have new tech-
niques to learn a classifier with high accuracy but from
only a limited number of labeled training data. Semi-
supervised learning methods (Zhu, 2006) exploit unla-
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beled data to remedy the lack of labeled data, which,
however, requires that the unlabeled data are under
the same distribution as the labeled. Typical trans-
fer learning methods (Pan & Yang, 2009) relax this
restriction to learn useful representations from data
under different distributions, which, though, still re-
quire the further labeled data from related homoge-
nous tasks. For example, the images from horse, dol-
phin, bear classes can help categorizing other animal
images, such as armadillos, tigers, zebras images. In
this paper, we ask how unlabeled data from heteroge-
neous classes, which are much easier to be obtained,
to be used for helping classification tasks. For exam-
ple, given unlimited access to unlabeled and randomly
chosen images, e.g., those downloaded from Internet
(probably none of which contains the object of inter-
est), can we do better in an existing image categoriza-
tion task?

Motivated by the observation (Raina et al., 2007;
Raina, 2009; Lee et al., 2009) that many randomly
downloaded images can still contain the basic visual
patterns (such as edges) that are similar to those in
existing training images, as shown in Figure 1, one can
learn a succinct and higher-level feature representation
of the unlabeled data, which could potentially improve
the existing image categorizations. Our new approach
belongs to an emerging machine learning topic of self-
taught learning (STL) (Raina et al., 2007; Dai et al.,
2008; Raina, 2009; Lee et al., 2009), a special type of
transfer learning. Because self-taught learning places
fewer restrictions on unlabeled data, it has much more
applications than traditional transfer learning or semi-
supervised learning methods. For example, it is far
easier to obtain 10,000 Internet images than obtain
10,000 images of tigers or armadillos.

The flexibility of self-taught learning makes it of par-
ticular use in practice, which, though, also brings new
challenges. First, because the unlabeled data are ran-
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Figure 1. Diagram of the proposed RD-STL method: high-level image patterns (a dictionary) are learned to transfer
knowledge from an auxiliary domain with unlimited access of inexpensive images to a target domain in which we are
interested to classify images. Different to existing STL methods, (1) we use the robust ℓ2,1-norm loss function that is
insensitive to outliers, which are abundant in the unlabeled auxiliary data due to the nature of STL; (2) we employ the
structured sparse regularizations to incorporate the supervision information in the target domain without introducing
additional parameter and automatically select the data specific optimal dictionary bases.

domly obtained from Internet or other inexpensive
sources, these data could be very different the tar-
get objects. Consequently, noises and outlier samples
abound in the unlabeled data by nature, which, com-
pared to standard supervised classification tasks, re-
quires more robustness on the learning model. Second,
existing self-taught learning methods (Raina et al.,
2007; Lee et al., 2009) unsupervisedly learn the feature
dictionary and ignore the supervision information con-
tained in labeled images. Thus, effectively utilizing the
labeling information is another challenging yet impor-
tant issue. To tackle these difficulties, in this paper we
propose a novel robust and discriminative self-taught
learning approach with the following contributions:

1. Instead of using traditional squared ℓ2-norm loss
function when learning the feature dictionary, we use
the ℓ2,1-norm loss function, which is robust to out-
lier samples (Ding et al., 2006; Nie et al., 2010). To
our best knowledge, we are the first to learn a robust
dictionary in both self-taught learning and dictionary
learning areas.

2. Different to existing methods that incorporate prior
knowledge by introducing additional terms into the ob-
jectives, we propose a new dictionary learning objec-
tive to leverage the labeling information by imposing
structured sparsity on the representation coefficients
via the ℓ2,1-norm regularizations (Bradley & Bagnell,
2009; Jia et al., 2010), such that no extra parameter
is involved and our model is easier to fine tune. More-
over, through the selected prominent basis vectors due
to the ℓ2,1-norm regularization, the optimal dictionary
size is automatically determined.

3. We derive a new efficient iterative solution algo-
rithm, whose convergence is rigorously proved.

2. Robust and Discriminative
Self-Taught Learning (RD-STL)

In this section, we will first briefly review the tradi-
tional self-taught learning method, from which we will
systematically develop our new robust and discrimina-
tive self-taught learning model.

Notations and problem formalization. Through-
out this paper, we will write matrices as bold upper-
case characters and vectors as bold lowercase charac-
ters. Given a matrix M = [mij ], we denote its i-th
row and its j-th column as mi and mj , respectively.

In self-taught learning, we are given a labeled training
set

{(

xl
i,y

l
i

)}n

i=1
(in the target domain as shown in

Figure 1) drawn independently and identically from a
certain distribution D. xl

i ∈ R
p is a feature vector as-

sociated to its binary label indicator yl
i ∈ {0, 1}K for

K classes of interest, such that yl
i (k) = 1 if xl

i belongs
to the k-th class, and 0 otherwise. In addition, we also
have a set of m unlabeled data {xu

i ∈ R
p}

m

i=1 in the
auxiliary domain. Crucially, we do not assume that
the data from the auxiliary and target domains share
the same distribution or class labels. Our goal is to
learn from the labeled data

{

xl
i,y

l
i

}n

i=1
and the unla-

beled data {xu
i }

m

i=1 a function that is able to predict
labels for an unseen data point x drawn from the dis-
tribution D in the target domain as shown in Figure 1.
For convenience, we write Xk ∈ R

p×nk (1 ≤ k ≤ K)
as the data matrix of the k-th class, whose columns
are the nk labeled images belonging to the k-th class.
We also write X0 = [xu

1 , . . . ,x
u
m] for unlabeled images.

2.1. A Brief Review of Traditional STL

In self-taught learning (Raina et al., 2007), we first
learn a set of r basis vectors, {dj ∈ R

p}
r

j=1, forming
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a dictionary D = [d1, . . . ,dr] ∈ R
p×r (allowing r > p

to make the dictionary over-complete), from unlabeled
data by minimizing the following objective:

Ju (D,a
u
i ) =

m∑

i=1

(
‖xu

i −Da
u
i ‖

2
2 + λ ‖au

i ‖1

)
,

s.t. ‖dj‖2 ≤ 1, ∀ 1 ≤ j ≤ r ,

(1)

where λ > 0 is a parameter and aui ∈ R
r is the

representation coefficient vector of xu
i with respect to

the dictionary D. Here we constrain dj to avoid de-
generate solution, because the reconstruction errors
in the first term of Ju are invariant to simultane-
ously scaling D by a scalar and aui by its inverse (Lee
et al., 2007). Due to the ℓ1-norm regularization on
aui , it is sparse with very few non-zero entries (Tib-
shirani, 1996; Candès & Wakin, 2008). Therefore,
dj (1 ≤ j ≤ r) are considered as high-level feature pro-
totypes learned from the unlabeled data, which could
be more discriminative and convey more semantic in-
formation (Raina et al., 2007; Mairal et al., 2009).

Then the labeled data can be represented with respect
to the learned dictionary D by minimizing:

Jl

(
a
l
i

)
=

∥∥∥xl
i −Da

l
i

∥∥∥
2

2
+ λ

∥∥∥al
i

∥∥∥
1
, ∀ 1 ≤ i ≤ n , (2)

where ali ∈ R
r is the new representation of xl

i with
respect to D. Again, ali is sparse due to the ℓ1-norm
regularization.

Finally, the learned
{

ali
}n

i=1
are fed into a classifier,

e.g., support vector machine (SVM) as in (Raina et al.,
2007), to classify unseen images under the distribution
D. Despite a number of imperfections in the current
implementations, compared to directly classifying the
original feature vectors

{

xl
i

}n

i=1
, self-taught learning

have demonstrated better performance in a number
of learning tasks (Raina et al., 2007; Raina, 2009; Lee
et al., 2009; Bengio et al., 2009). In the rest of this sec-
tion, we will discuss the weaknesses of the current self-
taught learning methods and develop our new method
to address them.

2.2. Learning Robust and Adaptively

Discriminative Dictionary

Learning robust dictionary with both labeled

and unlabeled data. In existing self-taught learning
methods (Raina et al., 2007; Raina, 2009; Lee et al.,
2009), the dictionary to transfer knowledge is learned
from some unlabeled data as in Eq. (1) and used for
the labeled data as in Eq. (2), separately. Because
the final classification is performed on unseen data un-
der the same distribution as the labeled data, it could
be beneficial to learn the dictionary and sparse data

representations from both unlabeled and labeled data
together by minimizing the following objective:

J1

(
D,a

u
i ,a

l
i

)

D∈C

=
m∑

i=1

(
‖xu

i −Da
u
i ‖

2
2 + λ ‖au

i ‖1

)

+

n∑

i=1

(∥∥∥xl
i −Da

l
i

∥∥∥
2

2
+ λ

∥∥∥al
i

∥∥∥
1

)
,

(3)

where, for notation brevity, we denote C =
{

D| ‖dj‖2 ≤ 1, ∀ 1 ≤ j ≤ r
}

as the feasible domain of
the problem.

Because J1 in Eq. (3) uses the squared ℓ2-norm loss
function to measure reconstruction errors, which is no-
toriously known in statistical learning to be sensitive
to outlier training samples, following (Ding et al., 2006;
Nie et al., 2010) we consider to use a robust loss func-
tion to minimize the following objective:

J2

(
D,a

u
i ,a

l
i

)

D∈C

=
m∑

i=1

(
‖xu

i −Da
u
i ‖2 + λ ‖au

i ‖1
)

+
n∑

i=1

(∥∥∥xl
i −Da

l
i

∥∥∥
2
+ λ

∥∥∥al
i

∥∥∥
1

)
.

(4)

Denote X = [X0,X1, . . . ,XK ], and A =
[A0,A1, . . . ,AK ] where A0 = [au1 , . . . , a

u
m] and Ak =

[

al1, . . . , a
l
nk

]

, we can write J2 in a more succinct form
using matrices as following:

JR (D,A)
D∈C

=
∥∥∥(X−DA)T

∥∥∥
2,1

+ λ ‖A‖1 , (5)

Because the reconstruction error terms in Eq. (4) and
Eq. (5) are not squared, the outlier samples have less
influences and our objectives are more robust.

Learning adaptive dictionary. Because the ℓ1-
norm regularizations used in Eqs. (1–5) flatly enforce
sparsity, all the basis vectors, i.e., the underlying
data patterns, in the learned dictionary D are evenly
treated and used in the learning process. To cap-
ture all potential data patterns, following the theory
of compressed sensing (Candès & Wakin, 2008), the
dictionary is routinely designed to be over-complete
thereby redundant, which makes the subsequent tasks
computationally inefficient. Several attempts (Lee
et al., 2007; Mairal et al., 2009; 2008; 2010) have been
successfully made to address this to learn a compact
dictionary with smaller dictionary size. A crucial is-
sue of these methods is that the dictionary size has
to be specified by heuristics. The important issue to
determine the optimal dictionary size was never taken
into account. In this paper, motivated by (Bradley
& Bagnell, 2009; Jia et al., 2010) we present a princi-
pled method to seek the optimal dictionary basis vec-
tors. Most importantly, following the same idea, the
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supervision information can be incorporated with no
additional parameter introduced.

Suppose we have an over-complete dictionary D, the
basis vector selection can be formalized as:

min
DX,A

∥∥∥(X−DXA)T
∥∥∥
2,1

+ λ ‖A‖1 ,

s.t. DX ∈ D, |DX| = m ,

(6)

where DX is the optimal compact dictionary and m is
its size. However, three problems impede us to solve
Eq. (6) directly. First, D is not known in a priori,
which also needs to be learned. Second, the under-
lying high-level patterns, i.e., the number of dictio-
nary basis m, are also not known beforehand. Last,
Eq. (6) is a combinatorial optimization problem, which
is NP-hard. To tackle these difficulties, we first rewrite
Eq. (6) in its equivalent form as follows:

min
D∈C,A

∥∥∥(X−DA)T
∥∥∥
2,1

+ λ ‖A‖1 , s.t. ‖A‖2,0 = m ,

(7)

where ‖M‖2,0 is defined as the number of non-zero
rows of the matrix M.

Recent theoretical progresses (Tibshirani, 1996;
Candès & Wakin, 2008) show that ‖M‖2,1 is the min-
imum convex hull of ‖M‖2,0. When M is row-sparse
enough, one can always minimize ‖M‖2,1 to obtain the
same result as minimizing ‖M‖2,0. Thus, we propose
to learn D and A from X by minimizing the following
objective:

JRA (D,A)
D∈C

=
∥∥∥(X−DA)T

∥∥∥
2,1

+ λ ‖A‖2,1 . (8)

In Eq. (8), the second term uses the ℓ2,1-norm reg-
ularization, which, different from the flat penalty in-
troduced by the ℓ1-norm regularization as in Eqs. (5–
7), penalizes all n representation coefficients (i.e., all
entries in ai) corresponding to one single basis vec-
tor of D as a whole, and compute the ℓ1-norm over

a =
[∥

∥a1
∥

∥

2
, . . . , ‖ar‖2

]T
. Consequently, sparsity is

conferred on a, and the basis vectors in D correspond-
ing to the non-zero entries of resulted a are automati-
cally selected for succeeding data representation. De-
note DX =

{

di |
∥

∥ai
∥

∥

2
> 0

}

, i.e., DX is a subset of
the columns (basis vectors) ofD that correspond to the
nonzero entries of a, we may construct DX ∈ R

p×|DX|

by using all di ∈ DX as its columns. As a result, DX is
compact and only the relevant basis vectors specific to
the input data are selected, whose number automat-
ically determines the dictionary size. As shown later
(in Section 3 of supplementary document due to space
limit), we only need to roughly specify a preliminary
size ofD, which does not impact the dictionary quality
of DX in a large selection range.

Learning discriminative dictionary. In self-taught
learning, because we have both unlabeled and labeled
data, we could take advantage of the supervision infor-
mation in labeled data to make the learned dictionary
discriminative thereby benefit the succeeding classifi-
cations. Instead of using an additional term to in-
corporate label information as in most, if not all, prior
studies (Mairal et al., 2009; 2008; 2010), we enforce the
structured sparsity on the coefficient matrix A upon
the supervision knowledge, such that no extra param-
eter is required. Specifically, we learn D and A from
X by minimizing the following objective:

JRD (D,A)
D∈C

=
∥∥∥(X−DA)T

∥∥∥
2,1

+ λ

K∑

k=0

‖Ak‖2,1 . (9)

Upon solution, let Dk =
{

di |
∥

∥aik

∥

∥

2
> 0

}

where aik is
the i-th row of Ak, we construct the k-th class spe-
cific dictionary Dk ∈ R

p×|Dk| using all di ∈ Dk as its
columns. Obviously, D0 is the dictionary learned for
the unlabeled data and Dk(1 ≤ k ≤ K) is discrimina-
tively specific to the data belonging to the k-th class,
although all of them are constructed from the globally
learned super dictionary D. Again, the size of Dk is
automatically determined by |Dk|.

Because the labeled and unlabeled data come different
distributions in self-taught learning, it is reasonable to
use ℓ2,1-norm to group the unlabeled data together in
dictionary learning. If our model is applied to semi-
supervised learning problems, the ℓ1-norm should be
used between labeled and unlabeled data. From this
point, we can also see the differences between self-
taught learning and semi-supervised learning.

Finally, we call JRD in Eq. (9) as the proposed Ro-
bust and Discriminative Self-Taught Learning (RD-
STL) approach, because the learned dictionaries
Dk (1 ≤ k ≤ K) (D0 is not used for classification) are
both robust to outlier training samples and adaptively
discriminative with respect to the classes in the target
domain. Our approaches bridges the unlabeled (aux-
iliary domain) and labeled (target domain) data and
transfers knowledge from the former to the latter as
shown in Figure 1, where, crucially, we allow data to
come from different distributions.

2.3. Optimization Algorithm and Its Analysis

Because our new objective JRD in Eq. (9) comprises
multiple terms of ℓ2,1-norms, it is difficult to solve in
general by existing optimization algorithms. Hence
we derive a alternately iterative algorithm to solve the
problem1, which employs the same mechanism of the

1The algorithm derivation is supplied in Section 2 of the
supplementary document due to space limit.
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iteratively re-weighted method (Gorodnitsky & Rao,
1997; Nie et al., 2010; Wang et al., 2011; 2012b;c; 2013)
to deal with the non-smooth ℓ2,1-norm terms.

First, when fixing A, we need to solve the following
optimization problem:

min
D∈C

∥∥∥(X−DA)T
∥∥∥
2,1

. (10)

Then, when we fix D, JRD in Eq. (9) is decoupled into
the following subproblems for each k (0 ≤ k ≤ K):

min
Ak

∥∥∥(Xk −DAk)
T
∥∥∥
2,1

+ λ ‖Ak‖2,1 . (11)

We alternately solve the problems in Eq. (10) and
Eq. (11) to minimize the objective JRD in Eq. (9).
Our algorithm is described in Algorithm 1, whose con-
vergence is guaranteed by the follow theorem.

Algorithm 1 An efficient iterative algorithm to solve
the objective value of Eq. (9).

Input: X ∈ R
p×ñ.

Output: D ∈ R
p×r and A ∈ R

r×ñ.
1. t = 1. Initialize diagonal matrices U(t) ∈ R

ñ×ñ and

V
(t)
k (0 ≤ k ≤ K) ∈ R

r×r. Initialize A(t) ∈ R
r×ñ.

while not converge do

2. Compute X̂ = X(U(t))
1
2 and Â = A(U(t))

1
2 .

Compute D(t+1) = argmin
D∈C

∥∥∥(X̂−DÂ)T
∥∥∥
2

F
.

3. For each k (0 ≤ k ≤ K), compute the i-th

column of A
(t+1)
k by u

(t)
ii (u

(t)
ii (D(t+1))TD(t+1) +

V
(t)
k )−1(D(t+1))T (Xk)i, where uii is the i-th diago-

nal element of U(t) and (Xk)i is the i-th column of

Xk. Construct A
(t+1) by A

(t+1)
k (1 ≤ k ≤ K).

4. Compute the diagonal matrix U(t+1), where the
i-th diagonal element is 1

2

√

∥

∥

∥xi−D(t+1)(A(t+1))
i

∥

∥

∥

2

2
+ζ

.

5. For each k (0 ≤ k ≤ K), compute the diagonal

matrix V
(t+1)
k , where the i-th diagonal element is

(Vk)ii =
1

2

√

∥

∥

∥

∥

(

A
(t+1)
k

)

i
∥

∥

∥

∥

2

2

+ξ

.

6. t = t+ 1.
end while

Theorem 1 Algorithm 1 decreases the objective value
JRD in Eq. (9) in each iteration till converges.

Proof : We define L(i) =
∑K

k=0 Tr((A
(i)
k )TV

(t)
k A

(i)
k ),

where i = t or t+ 1. In each iteration t, according to
the Step 2 in the Algorithm 1, we know that

Tr((X̃−D(t+1)Ã(t))U(t)(X̃−D(t+1)Ã(t))T ) + λL(t)

≤ Tr((X̃−D(t)Ã(t))U(t)(X̃−D(t)Ã(t))T ) + λL(t) .

(12)

According to Step 3 we know,

Tr((X̃−D(t+1)Ã(t+1))U(t)(X̃−D(t+1)Ã(t+1))T ) + λL(t+1)

≤ Tr((X̃−D(t+1)Ã(t))U(t)(X̃−D(t+1)Ã(t))T ) + λL(t) .

(13)

Based on Eq. (12) and Eq. (13), we know

Tr((X̃−D(t+1)Ã(t+1))U(t)(X̃−D(t+1)Ã(t+1))T ) + λL(t+1)

≤ Tr((X̃−D(t)Ã(t))U(t)(X̃−D(t)Ã(t))T ) + λL(t) .

(14)

Because it can be verified that (Wang et al., 2012d)

for function f (x) = x − x2

2α , given any x 6= α ∈ R,
f (x) ≤ f (α) holds, together with the definitions of

U(t) and V
(t)
k (1 ≤ k ≤ K), we can derive that

∥∥∥(X̃−D
(t+1)

Ã
(t+1))T

∥∥∥
2,1

− Tr((X̃−D
(t+1)

Ã
(t+1))U(t)(X̃−D

(t+1)
Ã

(t+1))T ) ≤
∥∥∥(X̃−D

(t)
Ã

(t))T
∥∥∥
2,1

− Tr((X̃−D
(t)

Ã
(t))U(t)(X̃−D

(t)
Ã

(t))T )
(15)

and

K∑

k=1

∥∥∥A(t+1)
k

∥∥∥
2,1

− L
(t+1) ≤

K∑

k=1

∥∥∥A(t)
k

∥∥∥
2,1

− L
(t)

. (16)

Adding Eqs. (14)–(16) in the both two sides, we have

∥∥∥(X̃−D(t+1)Ã(t+1))T
∥∥∥
2,1

+ λ
K∑

k=1

∥∥∥A(t+1)
k

∥∥∥
2,1

≤
∥∥∥(X̃−D(t)Ã(t))T

∥∥∥
2,1

+ λ
K∑

k=1

∥∥∥A(t)
k

∥∥∥
2,1

.

(17)

Note that, the equalities in Eqs. (12–17) hold if and
only if the objective value converges. Because JRD

in Eq. (9) is obviously lower bounded by 0, the ob-
jective value of JRD is decreased in each iteration till
converges, which completes the proof of Theorem 1. �

2.4. Classification of Test Images

Given a test image x in target domain and the learned
dictionaries Dk (1 ≤ k ≤ K), we can compute the
sparse representation of x for the k-th class, a(k), by

solving mina(k)

∥

∥x−Dka
(k)

∥

∥

2

2
+ λ

∥

∥a(k)
∥

∥

1
. Thus the

reconstruction error of x with respect to the k-th class
is computed as e(k) =

∥

∥x−Dka
(k)

∥

∥

2
. Following the

same way, we can compute the reconstruction errors

e
(k)
i for labeled images. Then we can compute the

adaptive decision boundary (Wang et al., 2009; 2012a)
to classify the test image, which can be applied to both
single-label and multi-label data sets.
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3. Related Methods

Transfer learning and self-taught learning. From
machine learning perspective of view, our approach be-
longs to the important topic of transfer learning, which
aims to make use of knowledge, either unsupervised or
supervised, from another domain with different distri-
bution to improve the learning in the current domain
of interest. We refer readers to (Pan & Yang, 2009)
for a comprehensive survey.

Self-taught learning is an emerging branch of transfer
learning, which was first formalized in (Raina et al.,
2007) and further developed in (Dai et al., 2008; Raina,
2009; Lee et al., 2009). Self-taught learning aims to
utilize unlabeled data with as minimum restrictions
as possible. The proposed approach is motivated by
and closely related to (Raina et al., 2007), yet different
from it in a number of important aspects as detailed in
Section 2.2, including (1) joint data utilization, (2) ro-
bustness to outliers samples that abound in unlabeled
images by nature, (3) dictionary discriminativity and
(4) optimal dictionary size selection.

Sparse coding and dictionary learning. Sparsity
is one of the intrinsic properties of real world data
(Tibshirani, 1996), which makes it useful in many ma-
chine learning and computer vision tasks, such as face
recognition (Mairal et al., 2009), image classification
(Bengio et al., 2009), digital art authentication (Mairal
et al., 2010), and many others.

Recent studies (Lee et al., 2007) have demonstrated
that decomposing a signal using a few atoms of learned
dictionary often leads to state-of-the-art results in real
world applications, which aroused considerable inter-
est in the machine vision community (Lee et al., 2007;
Bengio et al., 2009; Mairal et al., 2010; 2009). Al-
though a variety of aspects of dictionary learning have
been addressed by these previous works, none of them
takes into account the dictionary robustness problem.
Moreover, these methods typically pre-specify the dic-
tionary size heuristically or by prior knowledge, while
how to determine the optimal dictionary size in a prin-
cipled way is much less studied (Bradley & Bagnell,
2009; Jia et al., 2010). In addition, existing supervised
dictionary learning methods routinely employ an ad-
ditional term to incorporate the labeling information,
which inevitably complicates the learning models and
makes them less practically useful. Contrastly, our
new RD-STL approach gracefully solves all these im-
portant yet challenging problems in a unified frame-
work via joint ℓ2,1-norm minimizations, which makes
our model of particular use in real-world applications.

4. Experimental Results

In this section, we experimentally evaluate the pro-
posed approach, where our goal is to examine its ca-
pability to improve the classification performance in
the target domain by taking advantage of unlabeled
data that come from an inexpensive source with dis-
tributions (possibly) different from the target data.

Unlabeled images in auxiliary domain. We ran-
domly downloaded 5000 images from the LabelMe

data set and use them as unlabeled images in the aux-
iliary domain. Because the more than 10 thousands
images in the LabelMe data set come from numerous
resources, including Internet, video clips, daily photo,
etc., it is an ideal source for unlabeled images in self-
taught learning.

Labeled and test images in target domain.

We use TRECVID 2005, MSRC-v2 and NUS-

WIDE-Object images data sets as target data sets,
which are broadly used in computer vision studies.
The details of the data sets are supplied in Section 1 of
the supplementary document due to space limit. Our
goal is to classify the test images in these data sets
using the proposed RD-STL model.

4.1. Study of the Size of the Preliminary

Dictionary |D|

In the proposed method, a preliminary dictionary D

is learned, from which we adaptively select discrimi-
native basis vectors specific for each class. Therefore,
although the sizes of the ultimate output dictionar-
ies Dk (0 ≤ k ≤ K) are automatically determined by
the learned patterns in Ak (0 ≤ k ≤ K), we still need
to pre-specify the size of D, same as in existing re-
lated works (Raina et al., 2007; Raina, 2009; Bengio
et al., 2009; Lee et al., 2007; Mairal et al., 2009; 2008;
Zhang & Li, 2010; Pham & Venkatesh, 2008; Mairal
et al., 2010). However, different from these prior stud-
ies that directly use D for data representation and
classification, the qualities, i.e., the subsequence clas-
sification accuracies, of learned adaptive dictionaries
Dk (0 ≤ k ≤ K) do not heavily rely on the size of D.
As shown in Figure 2, when the sizes of the preliminary
dictionaries vary in a large range, the classification ac-
curacies of the proposed method remain considerably
stable. This demonstrates that our new method is able
to adaptively learn class specific dictionary for classifi-
cation, which do no rely on the preliminary dictionary
size as long as it is not too small. Empirically, when
|D| ≥ 2K, the subsequent classification accuracy is
generally satisfactory. In all our experiments, we set
|D| = min {1000, n}.
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Figure 2. Classification accuracies of the proposed RD-STL method on the three experimental data sets with respect to
the size of the preliminary dictionary |D|.

4.2. Improved Image Categorization

We compare our approach to the following related
methods: supervised learning method (1) SVM as
baseline; two widely used semi-supervised learning
methods including (2) transductive SVM (TSVM)
(Joachims, 1999) method and (3) the Green’s func-
tion (GF) method (Ding et al., 2007); and three trans-
fer learning methods including (4) knowledge transfer
by words (KTW) method (Li et al., 2009), (5) self-
taught clustering (STC) method (Dai et al., 2008) and
(6) self-taught learning (STL) method (Raina et al.,
2007). STL method needs to use SVM to classify the
learned target data representations. We implement
these compared methods and fine tune their param-
eters following their original works. For SVM and
TSVM methods, we use the Gaussian kernel (i.e.,

K (xi,xj) = exp
(

−γ ‖xi − xj‖
2
)

), and fine tune γ

and the regularization parameter C in the range of
{

10−5, . . . , 10−1, 1, 101, . . . , 105
}

. Because these meth-
ods are single-label classification methods while the
target image data sets are multi-label data sets, follow-
ing (Wang et al., 2010a) we employ the one-vs .-other
strategy to deal with multi-label data.

In addition, we also compare our approach against
two most recent multi-label classification methods
including (7) multi-label feature transform (MLFT)
(Wang et al., 2010b) method and (8) Multi-Label
Least Square (MLLS) (Ji et al., 2010) method.

We implement five versions of the proposed approach
to evaluate the usefulness of its component terms as
following: (A) the simplest joint self-taught learning
method using J1 in Eq. (3), denoted as “J-STL”; (B)
robust self-taught learning method using JR in Eq. (5),
denoted as “R-STL”; (C) robust and adaptive self-
taught learning method using JRA in Eq. (8), denoted
as “RA-STL”; (D) Discriminative self-taught learn-
ing method but not taking into account robustness
against outlier samples that minimizes JD (D,A)

D∈C

=

∥

∥

∥
(X−DA)

T
∥

∥

∥

2

F
+ λ

∑K

k=0 ‖Ak‖2,1, denoted as “D-

STL”; and (E) the proposed RD-STL approach using
JRD in Eq. (9). Note that, the first three methods are
unsupervised learning methods, therefore we employ
SVM to classify the learned target data representa-
tions, same as the STL method (Raina et al., 2007).
For the last two methods, we classify unseen images
using the rules introduced in Section 2.4. For all the
five methods, we fine tune the parameter λ by search-
ing the grid of

{

10−5, . . . , 10−1, 1, 101, . . . , 105
}

.

Performance metrics. Because we experiment with
multi-label data sets, following (Wang et al., 2009;
2010a;b), we use the four standard multi-label classifi-
cation performance metrics, macro averaged precision
and F1 score, and micro averaged precision and F1
score, to evaluate the compared methods.

Experimental results. We perform standard 5-fold
cross-validation to evaluate the compared methods on
the three target data sets. An internal 5-fold cross-
validation is conducted in the training data of each of
the 5 trials to fine tune the parameters of the compared
methods. The experimental results are reported in
Table 1, from which we have a number of interesting
observations as following.

First, the proposed methods are consistently better
than other compared methods, which demonstrate
their effectiveness in the task of automatic image cat-
egorization.

Second, SVM, TSVM and GF methods do not have
satisfactory classification performance. This can be
explained as follows. SVM is a supervised method,
which can be learned only from the target data while
the large amount of auxiliary data are not used. Al-
though the two semi-supervised methods employ both
axuliary and target data, they assume them to come
from a same distribution, which, however, is not true
in both this experiment and many real world applica-
tions. That is, a simple mixture of the auxiliary and
target data can not leads to satisfactory classification
performance.

Third, the two transfer learning methods, KTW and
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Table 1. Classification results of compared methods on the three multi-label image data sets.

Methods
TRECVID 2005 MSRC-v2 NUS-WIDE-Object

Macro avg. Micro avg. Macro avg. Micro avg. Macro avg. Micro avg.

Prec. F1 Prec. F1 Prec. F1 Prec. F1 Prec. F1 Prec. F1

SVM 0.269 0.236 0.252 0.291 0.247 0.275 0.234 0.293 0.312 0.314 0.337 0.332
TSVM 0.315 0.298 0.304 0.322 0.253 0.286 0.252 0.303 0.329 0.321 0.349 0.361
GF 0.108 0.151 0.107 0.167 0.121 0.144 0.130 0.161 0.301 0.311 0.320 0.322
MLFT 0.421 0.398 0.420 0.521 0.256 0.304 0.259 0.312 0.360 0.409 0.411 0.426
MLLS 0.272 0.275 0.279 0.295 0.255 0.291 0.256 0.301 0.359 0.406 0.404 0.420
KTW 0.403 0.280 0.272 0.273 0.231 0.286 0.244 0.294 0.334 0.376 0.381 0.401
STC 0.404 0.281 0.270 0.275 0.236 0.284 0.247 0.289 0.342 0.381 0.387 0.411
STL 0.425 0.315 0.357 0.296 0.261 0.306 0.267 0.311 0.365 0.413 0.417 0.435

J-STL 0.426 0.320 0.359 0.303 0.265 0.311 0.271 0.316 0.369 0.417 0.420 0.438
R-STL 0.451 0.353 0.361 0.337 0.276 0.326 0.287 0.323 0.381 0.436 0.434 0.451
RA-STL 0.452 0.375 0.389 0.461 0.279 0.337 0.295 0.327 0.383 0.435 0.437 0.450
D-STL 0.438 0.336 0.361 0.423 0.270 0.319 0.276 0.321 0.377 0.430 0.429 0.441
RD-STL 0.463 0.411 0.442 0.520 0.285 0.351 0.304 0.334 0.397 0.451 0.449 0.462

STC, also do not work well in the experiments. This is
because typical transfer learning methods, such as the
two used in our experiments, require labeled images
in auxiliary data and aim to transfer such knowledge.
When prior knowledge are not available in auxiliary
data, these two methods actually perform unsuper-
vised clustering on the target data, though with the
aid from the auxiliary data. These results clearly show
the necessity of STL.

Fourth, compared to STL method, joint self-taught
learning by J-STL method does not essentially im-
prove the classification accuracy, which can be seen
by the fact that the target data are much less than the
unlabeled auxiliary data.

Five, R-STL, RA-STL and RD-STL show much better
results than other compared methods, which demon-
strate that enhancing robustness against the noises
and outliers in the unlabeled source data does im-
prove the classification performance significantly, as
expected. In addition, although labeling information
is used in D-STL method, its performance is inferior
due to not taking into account robustness. Finally,
robustness plus discriminativity, i.e., the propose RD-
STL approach, achieves the best classification perfor-
mances, which concretely confirm that these two issues
are the most important impact factors to the classifi-
cation performance of self-taught learning. (See more
experimental results and discussion on the robustness
of the proposed RD-STL model in Section 4 of the
supplementary document due to space limit.)

Last, but not least, although RA-STL method does
not outperform R-STL method very much in terms of
classification accuracy, the dictionary size of the for-
mer is much smaller than that of the latter. The sizes
of the learned dictionary DX for the three data sets
are 46, 29 and 26 respectively, which are much smaller

than the preliminary dictionary size forD as 1000, 591,
and 1000 respectively. The same observation also ap-
plies to the proposed RD-STL approach. We explain
this observation as follows. In traditional sparse learn-
ing, motivated by compressed sensing, dictionaries are
generally designed to be over-complete. However, the
number of underlying patterns of most real-world data
is usually small. From information theory perspective,
many basis vectors in the learned dictionary are indeed
redundant, which might be detrimental to the subse-
quent sparse solver. To address this, our new method
uses data adaptation via the ℓ2,1-norm regularization
to find out the most representative dictionary basis
vectors, which leads to a small number of significant
dictionary bases and reduces the computational loads
in subsequent data representations for test data.

5. Conclusions

To tackle the difficulty of lacking training data in
real-world applications, we proposed a novel RD-STL
approach to leverage unlabeled images. Different
from traditional semi-supervised learning and trans-
fer learning methods, our new approach places signif-
icantly fewer restrictions on the unlabeled data. We
addressed two important issues in existing self-taught
learning methods, including the robustness against
noisy and outlier samples in unlabeled data and the
usage of supervision information in the target data, by
a joint ℓ2,1-norms minimization framework. Promising
results of extensive empirical studies demonstrated the
effectiveness of the proposed approach.
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