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Abstract

In this paper we address the widely-
experienced difficulty in tuning Monte Carlo
sampler based on simulating Hamiltonian dy-
namics. We develop an algorithm that al-
lows for the adaptation of Hamiltonian and
Riemann manifold Hamiltonian Monte Carlo
samplers using Bayesian optimization that al-
lows for infinite adaptation of the parameters
of these samplers. We show that the resulting
samplers are ergodic, and that the use of our
adaptive algorithms makes it easy to obtain
more efficient samplers, in some cases pre-
cluding the need for more complex solutions.
Hamiltonian-based Monte Carlo samplers are
widely known to be an excellent choice of
MCMC method, and we aim with this paper
to remove a key obstacle towards the more
widespread use of these samplers in practice.

1. Introduction

Hamiltonian Monte Carlo (HMC) (Duane et al.,
1987) is widely-known as a powerful and efficient
sampling algorithm, having been demonstrated to
outperform many existing MCMC algorithms, espe-
cially in problems with high-dimensional, continuous,
and correlated distributions (Chen et al., 2001; Neal,
2010). Despite this flexibility, HMC has not been
widely adopted in practice, due principally to the sen-
sitivity and difficulty of tuning its hyperparameters.
Tuning HMC has been reported by many experts to
be more difficult than tuning other MCMC methods
(Ishwaran, 1999; Neal, 2010). In this paper we aim to
remove this obstacle in the use of HMC by providing
an automated method for determining these tunable
parameters, paving the way for a more widespread
application of HMC in statistics and machine learning.

There are few existing works dealing with the
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automated tuning of HMC. Two notable approaches
are: the No U-turn sampler (NUTS) (Hoffman &
Gelman, 2011), is an adaptive algorithm that aims
to find the best parameter settings by tracking the
sample path and preventing HMC from retracing
its steps in this path; and Riemann manifold HMC
(RMHMC) (Girolami & Calderhead, 2011), which
provides adaptations using Riemannian geometry.

In this paper, we follow the approach of adapting
Markov chains in order to improve the convergence
of both HMC and RMHMC. Our adaptive strategy
is based on Bayesian optimization; see for example
Brochu et al. (2009) and Snoek et al. (2012) for a
comprehensive introduction to Bayesian optimization.
Bayesian optimization has been proposed previously
for the adaptation of general MCMC samplers by Ma-
hendran et al. (2012) and Hamze et al. (2013). To
guarantee convergence, these works were limited to
a finite adaptation of the Markov chain. This finite
adaptation can result in the sampler being trapped in
suboptimal parameter settings, leading to inefficient
sampling, and we address this limitation in this paper.

We describe Hamiltonian-based Monte Carlo samplers
(sect. 2), and then make the following contributions:

• We present an algorithm for adaptive HMC in
which we allow for infinite adaptation of the
Markov chain, thus avoiding parameter traps due
to finite adaptation (section 3).

• Importantly, we prove that the adaptive MCMC
samplers we present are ergodic in this infinite
adaptation setting (section 4).

• We provide a comprehensive set of experiments
demonstrating that the adaptive schemes perform
better across a diverse set of problems (section 5).

• We use a version of the expected squared jumping
distance (Pasarica & Gelman, 2010) as the ob-
jective function for adaptation. In section 5, we
also introduce a new approach based on predictive
measures, for use in settings where it is possible
to perform cross-validation.
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2. Hamiltonian-based Monte Carlo
Sampling

Hamiltonian (or Hybrid) Monte Carlo (Duane et al.,
1987; Neal, 2010), has become established as a pow-
erful, general purpose Markov chain Monte Carlo
(MCMC) algorithm for sampling from general, contin-
uous distributions. Its efficiency is due to the fact that
it makes use of gradient information from the target
density to allow for an ergodic Markov chain capable
of large transitions that are accepted with high prob-
ability. This efficiency and flexibility is demonstrated
by the wide range of applications to which HMC has
been applied, including: Bayesian generalized linear
models (Ishwaran, 1999), Bayesian neural networks
(Neal & Zhang, 2006), Gaussian process regression and
classification (Rasmussen & Williams, 2006), exponen-
tial family PCA and factor analysis (Mohamed et al.,
2008), and restricted Boltzmann machines (Ranzato &
Hinton, 2010), amongst others.

For HMC, we are required to specify a potential energy
function, which is the log of the joint distribution we
wish to sample from, U(x) = − log p(x) and a kinetic
energy function, most typically, K(p) = pTM−1p/2,
with momentum vector p and a positive definite mass
matrix M. For standard HMC, the mass matrix is
set to the identity. We defer the technical details of
HMC to existing work (Neal, 2010), and present only
the algorithm here (Alg. 1).

HMC requires the selection of two free parameters: a
step-size ε and a number leapfrog steps L. The ac-
cepted guidance is to choose the step-size to ensure
that the sampler’s rejection rate is between 25%-35%.
It is also preferable to have a large L, since this reduces
the random walk behavior of the sampler (Neal, 2010),
but too large an L results in unnecessary computa-
tion. In this paper, we consider a slight variation of
the HMC algorithm: instead of performing L leapfrog
steps at each iteration, we perform a random num-
ber of leapfrog steps, chosen from the discrete uniform
distribution over {1, · · · , L}, i.e. Lr ∼ U(1, L) steps.
This approach amounts to using a mixture of L differ-
ent HMC transition kernels, thus preserving detailed
balance (Andrieu et al., 2003).

HMC is known to be highly sensitive to the choice of ε
and L. We demonstrate HMC’s sensitivity to these pa-
rameters by sampling from a bivariate Gaussian with
correlation coefficient 0.99. We consider three settings
(ε, L) = {(0.16, 40), (0.16, 50), (0.15, 50)} and show the
behavior of the sampler as well as the autocorrelation
plot in figure 1. While the first setting exhibits good
behavior and low auto-correlation, small changes to
these settings results in poor mixing and high auto-
correlation, as seen in the other graphs. Theoreti-

Algorithm 1 Hamiltonian Monte Carlo Algorithm

1: Given: M , L, ε, and x1.
2: for t = 1, 2, · · · do
3: Sample pt ∼ N (0,M) and Lr ∼ U(1, L)
4: Let x0 = xt and p0 = pt + ε

2
∂U
∂x

∣∣
x0

5: for l = 1, 2, · · · , Lr do
6: xl = xl−1 + εM−1pl−1

7: pl = pl−1 + ε ∂U
∂x

∣∣
xl

8: end for
9: pl = pl−1 − ε

2
∂U
∂x

∣∣
xl

10: Draw u ∼ U(0, 1)

11: if u < min[1, eU(xt)+K(pt)−U(xl)−K(pl)] then
12: Let (xt+1,pt+1) = (xl,pl)
13: else
14: Let (xt+1,pt+1) = (xt,pt)
15: end if

16: end for
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Figure 1. 1000 samples from a bivariate Gaussian distribu-
tion generated using HMC. We show the trajectory and
auto-correlation of the samples for 3 parameter settings.

cal results concerning the optimal acceptance rate for
HMC exist, having been described by Beskos et al.
(2010) and Neal (2010), with both concluding a rate
around 0.65 as optimal. Such results, however, would
not help in choosing the best sampler out of the three
in Figure 1, since all three samplers in this demonstra-
tion have an acceptance rate around 0.7, leaving little
guidance for finding the most efficient sampler.

To address the problem of choosing these parame-
ters, we will introduce a method for automatically and
adaptively tuning the parameters of HMC, reducing
the need for time-consuming, expert tuning. An ex-
isting approach for automatic tuning of HMC was in-
troduced by Hoffman & Gelman (2011), referred to as
the No U-turn sampler (NUTS). NUTS allows for au-
tomatic tuning of both HMC’s parameters by tuning
the stepsize ε during the burn-in phase, after which
it is fixed and the number of leapfrog steps is ad-
justed thereafter for every iteration. ε is chosen using
a stochastic approximation method referred to as dual
averaging, and L is chosen for every sample using a
recursive algorithm in which the number of leapfrog
steps is allowed to increase until the proposal trajec-
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tory taken by the sampler begins to move back towards
its initial point, thus preventing U-turns and allowing
for the good mixing of the chain.

Riemann manifold HMC (RMHMC) (Girolami &
Calderhead, 2011) is a sampling method derived from
HMC, and provides an adaptation mechanism by ex-
ploiting the Riemannian geometry of the parameter
space. Rather than adapting ε and L, RMHMC ac-
counts for the local structure of the joint density by
adapting the mass matrix M used in HMC. Since
RMHMC automatically adapts its mass matrix, the
stepsize ε is usually fixed and the number of leapfrog
steps L, which is a single scalar, can be chosen using
the rejection rate. While the sensitivity to these pa-
rameters is greatly reduced, they must still be set and
there is no general guidance on how these parameters
should be chosen, making it desirable to have a fully
automatic method for RMHMC as well.

3. Adaptive Hamiltonian Monte Carlo

In order to adapt the MCMC parameters L and ε for
HMC, we need to (i) define an objective function and
(ii) choose a suitable optimization method.

As pointed out in Pasarica & Gelman (2010), a natu-
ral objective function for adaptation is the asymptotic
efficiency of an MCMC sampler, (1 + 2

∑∞
k=1 ρk)−1,

where ρk is the auto-correlation of the sampler with
lag k. Despite its appeal, this measure is problematic
because the higher order auto-correlations are hard to
estimate. To circumvent this problem, Pasarica & Gel-
man (2010) introduced an objective measure called the
expected squared jumping distance (ESJD):

ESJD(γ) = Eγ‖xt+1 − xt‖2,

where γ = (L, ε) denotes the set of parameters for
HMC. Maximizing the above objective is equivalent to
minimizing the first-order auto-correlation ρ1. In prac-
tice, the above intractable expectation with respect to
the Markov chain is approximated by an empirical es-
timator, as outlined in Pasarica & Gelman (2010).

The ESJD measure is efficient in situations where the
higher order auto-correlations increase monotonically
with respect to ρ1. However, it is not suitable for
tuning HMC samplers since by increasing the number
of leapfrog steps one can almost always generate better
samples. What we need is a measure that also takes
computing time into consideration. With this goal in
mind, we introduce the following objective function:

f(γ) =
ESJD(γ)√

L
=

Eγ‖xt+1 − xt‖2√
L

.

This function simply normalizes the ESJD by the num-
ber of leapfrog steps L, thus taking both statistical

efficiency and computation into consideration. Most
of our experiments will use this measure as we have
found it to work very well in practice. Many works in
the adaptive MCMC literature have considered match-
ing empirical and theoretical acceptance rates in order
to adapt MCMC samplers; see for example Andrieu &
Robert (2001) or Vihola (2010). We have found this
strategy to perform poorly in the case of HMC, where
samplers with the same acceptance rate can exhibit
different mixing behavior (figure 1). When discussing
Bayesian neural networks in our experiments (section
5.4), we will introduce an alternative objective func-
tion based on predictive performance. Such a measure
does however only apply in predictive domains and is,
consequently, less general than the normalized ESJD
objective.

Now that we are armed with an objective function,
we need to address the issue of optimization. Since
the objective is only available point-wise (that is, it
can be evaluated but its exact form is intractable), re-
searchers typically use stochastic approximation. We
use Bayesian optimization to optimize the objective.
A discussion contrasting these two alternatives is pre-
sented in Hamze et al. (2013).

Bayesian optimization is an efficient gradient-free opti-
mization tool well suited for expensive black box func-
tions. Our objective function (normalized ESJD) is of
this nature. As mentioned earlier, normalized ESJD
involves an intractable expectation that can be approx-
imated by sample averages, where the samples are pro-
duced by running HMC for a few iterations. Each set
of HMC samples for a specific set of hyper-parameters
γ ∈ Γ results in a noisy evaluation of the normalized
ESJD: r(γ) = f(γ) + ε, where we assume that the
measurement noise is Gaussian ε ∼ N (0, σ2

η).

Following the standard Bayesian optimization method-
ology, we set Γ to be a box constraint such that

Γ = {(ε, L) : ε ∈ [bεl , b
ε
u], L ∈ [bLl , b

L
u ]}

for some interval boundaries bεl ≤ bεu and bLl ≤ bLu . The
parameter L is discrete. The parameter ε is continu-
ous, but since it is one-dimensional, we can discretize
it using a very fine grid.

Since the true objective function is unknown,
we specify a zero-mean Gaussian prior over it:
f(·) ∼ GP (0, k(·, ·)), where k(·, ·) is the covariance

function, which forms the covariance matrix:

K =

k(γ1,γ1) . . . k(γ1,γi)
...

. . .
...

k(γi,γ1) . . . k(γi,γi)

 ,
and k = [k(γ,γ1) . . . k(γ,γi)]

T . In this
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Algorithm 2 Adaptive HMC.

1: Given: Γ, m, k, α, and γ1.
2: for i = 1, 2, . . . , do
3: Run HMC for m iterations with γi = (εi, Li).
4: Obtain the objective function value ri using the

drawn samples.
5: Augment the data Di = {Di−1, (γi, ri)}.
6: if ri > supj∈{1,··· ,i−1} rj then
7: s = α

ri
8: end if
9: Draw u ∼ U([0, 1])

10: let pi = (max{i− k + 1, 1})−0.5, with k ∈ N+.
11: if u < pi then
12: γi+1 := arg maxγ∈Γ u(γ, s|Di).
13: else
14: γi+1 := γi
15: end if

16: end for

work, we adopt a Gaussian ARD covariance func-
tion with k(γi,γj) = exp(− 1

2γ
T
i Σ−1γj) where

Σ is a positive definite matrix. We set Σ =

diag
(

[κ(bεu − bεl )]
2

;
[
κ(bLu − bLl )

]2)
, where κ = 0.2.

Given noisy evaluations of the objective function
{rk}ik=1 where evaluated at points {γk}ik=1, we form
the dataset Di =

(
{γk}ik=1, {rk}ik=1

)
. Using Bayes

rule, we arrive at the posterior predictive distribution
over the unknown objective function:

f |Di,γ ∼ N (µi(γ), σ2
i (γ))

µi(γ) = kT (K + σ2
ηI)−1ri

σ2
i (γ) = k(γ,γ)− kT (K + σ2

ηI)−1k

For more details on Gaussian processes, please refer to
Rasmussen & Williams (2006).

The Gaussian process simply provides a surrogate
model for the true objective. The surrogate can be
used to efficiently search for the maximum of the ob-
jective function. In particular, it enables us to con-
struct an acquisition function u(·) that tells us which
parameters γ to try next. The acquisition function
uses the Gaussian process posterior mean to predict
regions of potentially higher objective values (exploita-
tion). It also uses the posterior variance to detect re-
gions of high uncertainty (exploration). Moreover, it
effectively trades-off exploration and exploitation. Dif-
ferent acquisition functions have been proposed in the
literature (Močkus, 1982; Srinivas et al., 2010; Hoff-
man et al., 2011). We adopt a variant of the Upper
Confidence Bound (UCB) (Srinivas et al., 2010), mod-
ified to suit our application:

u(γ, s|Di) = µi(γ, s) + piβ
1
2
i+1σi(γ).

As in standard UCB, we set βi+1 =

2 log

(
(i+1)

d
2
+2π2

3δ

)
, where d is the dimension of

Γ and δ is set to 0.1. The parameter pi ensures that
the diminishing adaptation condition for adaptive
MCMC (Roberts & Rosenthal, 2007) is satisfied.
Specifically, we set pi = (max{i − k + 1, 1})−0.5 for
some k ∈ N+. As pi goes to 0, the probability of
Bayesian optimization adapting γ vanishes as shown
in Algorithm 2.

It could be argued that this acquisition function could
lead to premature exploitation, which may prevent
Bayesian optimization from locating the true optimum
of the objective function. There is some truth to
this argument. Our goal when adapting the Markov
chain, however, is less about finding the absolute best
hyper-parameters but more about finding sufficiently
good hyper-parameters given finite computational re-
sources. Given enough time, we could slow the an-
nealing schedule thus allowing Bayesian optimization
to explore the hyper-parameter space fully. However,
under time constraints we must use faster annealing
schedules. As pi decreases, it becomes increasingly dif-
ficult for Bayesian optimization to propose new hyper-
parameters for HMC. Consequently, the sampler ends
up using the same set of hyper-parameters for many
iterations. With this in mind, we argue, it is more
reasonable to exploit known good hyper-parameters
rather than exploring for better ones. This intuition
matches our experience when conducting experiments.

The acquisition function also includes a scalar
scale-invariance parameter s, such that µi(γ, s) =
kT (K + σ2

ηI)−1ris. This parameter is estimated au-
tomatically so as to rescale the rewards to the same
range each time we encounter a new maximal reward.

Gaussian processes require the inversion of the covari-
ance matrix and, hence, have complexity O(i3), where
i is the number of iterations. Fortunately, thanks to
our annealing schedule, the number of unique points in
our Gaussian process grows sub-linearly with the num-
ber of iterations. This slow growth makes it possible to
adopt kernel specification techniques, as proposed by
Engel (2005), to drastically reduce the computational
cost without suffering any loss in accuracy.

Even our adaptive strategy has hyperparameters that
must be set. Of all these, the length scale of the kernel
is the most important. In all our experiments, we set
α = 4, k = 100, m = B

k , where B is the number of
burn-in samples. In our experience, our algorithm is
highly robust to these settings and we use the same
parameter settings for all of our experiments, with the
exception of Γ. Γ is easy to set, since one can choose
the bound to be large enough to contain all reason-
able ε and L, while allowing the adaptive algorithm
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enough time to explore. Alternatively, one could gauge
the hardness of the sampling problem at hand and set
more reasonable bounds. In general, harder sampling
problems require a smaller ε and a larger L. We follow
this second strategy throughout our experiments and
found that most sensible bounds led to performance
similar to the ones reported.

4. Analysis of Convergence

The proof of ergodicity of the adaptive HMC algorithm
capitalizes on existing results for Langevin diffusions
and adaptive MCMC on compact state spaces. The
method of proof is based on the standard Lyapunov
stability functions, also known as drift or potential
functions.

We assume that our target distribution is compactly
supported on M. In practice, for target distributions
that are not compactly supported, we could set M
large enough to contain most of the mass of our tar-
get distribution. The sampler is restricted to M by
following this standard approach of rejecting all pro-
posals that fall outside M.

Let {Pγ}γ∈Γ be a collection of Markov chain kernels,
each admitting π as the stationary distribution. That
is, for each value of γ = (ε, L), we have one such kernel.
Moreover, let Pnγ denote the n-step Markov kernel.
Our proof requires the following classical definitions:

Definition 1. (Small set) A subset of the state space
C ⊆ X is small if there exists n0 ∈ N+, ξ > 0 and a
probability measure ν(.) such that Pn0(x, ·) ≥ ξν(·)
∀x ∈ C.

Definition 2. (Drift condition) A Markov chain
satisfies the drift condition if for a small set C, there
exist constants 0 < λ < 1 and b < ∞, and a function
V : X → [1,∞] such that ∀x ∈ X∫

X
P (x, dy)V (y) ≤ λV (x) + b1C(x).

Having defined the necessary concepts, we now move
on to show the ergodicity of our adapted approach.

Proposition 3. Suppose that Pγ , when restricted to
a compact set M, admits the stationary distribution π
for all γ ∈ Γ. If π is continuous, positive and bounded
on M, and |Γ| is finite, then the adaptive HMC sam-
pler is ergodic.

Proof. To show that adaptive HMC converges on a
compact set, we first show that M is a small set.

The transition kernel of the random time HMC algo-
rithm can be written as Pγ(x, .) =

∑L
l=1

1
LQl,ε(x, .)

where Ql,ε(x, .) is the transition kernel of an HMC

sampler that takes l leapfrog steps with parameter
ε. In particular Q1,ε(x, .) is the transition kernel of
Metropolis adjusted Langevin algorithm (MALA). As
π is bounded, and the proposal distribution of MALA
is positive every where, we have that Q1,ε is µLeb-
irreducible. By a slight modification of Theorem 2-2
in Roberts & Tweedie (1996), for Markov chains de-
fined by MALA, and any compact set C with posi-
tive Lebesgue measure (i.e. µLeb(C) > 0) there exists
ξ > 0 and a probability measure ν(·) such that ∀x ∈ C
Q1

1,ε(x, .) ≥ ξν(.). Hence, M is a small set since

P 1
γ (x, .) ≥ 1

L
Q1

1,ε(x, .) ≥
1

L
ξν(.)

for any compact set C where µLeb(C) > 0. The drift
condition is trivially satisfied by each HMC sampler
when we choose C to be M, and V to be such that
V (x) = 1 for all x.

Having proved these conditions, we can now appeal to
Theorem 15.0.1 of Meyn & Tweedie (1993) to conclude
that ‖Pnγ (x, ·) − π(·)‖ < RγV (x)ρnγ for all n and for
0 < ργ < 1. Since V (X) = 1 ∀x, we have

‖Pnγ (x, ·)− π(·)‖ < Rγρ
n
γ .

DefineRmax = supγ∈ΓRγ and ρmax = supγ∈Γ ργ , then
∀x ∈M and ∀γ ∈ Γ we have

‖Pnγ (x, ·)− π(·)‖ < Rmaxρ
n
max.

We have shown that the kernels {Pγ(x, ·)}γ∈Γ are si-
multaneously uniformly ergodic. Also, the adaptive
HMC sampler has diminishing adaptation by design.
By Theorem 5 of Roberts & Rosenthal (2007), these
two conditions imply the claim of our proposition.

In general two sets of conditions together guarantee
ergodicity of an adaptive MCMC algorithm (Roberts
& Rosenthal, 2007; Atchadé & Fort, 2010). First, the
adaptation has to diminish eventually. The second
set of conditions is usually placed on the underlying
MCMC samplers. In Roberts & Rosenthal (2007), the
samplers are required to be either simultaneously uni-
formly or geometrically ergodic. Without restricting
the state space to be compact, it is unlikely that HMC
is uniformly ergodic. Also, to the best of our knowl-
edge, no theoretical results exist on the geometric er-
godicity of HMC when the state space is not com-
pact. However, Roberts & Stramer (2002) showed
that Langevin diffusion, which is closely related to
HMC, is geometrically ergodic. Thus one potential
challenge would be to prove or disprove geometric er-
godicity of HMC in general state spaces. Atchadé &
Fort (2010) weakened the conditions required, still re-
quiring diminishing adaptation, but the requirements



Adaptive Hamiltonian and Riemann Manifold Monte Carlo Samplers

on the underlying MCMC samplers were reduced to
sub-geometric ergodicity. Although these conditions
are weaker, it remains hard to check whether HMC
satisfies them.

5. Results

We show the performance of our adaptive algorithm
on four widely-used models. We evaluate the perfor-
mance of the samplers using the effective sample size
(ESS) using: ESS = R (1 + 2

∑
k ρk), where R is the

number of posterior samples, and
∑
k ρk is the sum of

K monotone sample auto-correlations computed using
the monotone sequence estimator (Girolami & Calder-
head, 2011). We adopt the total number of leapfrog
steps used in producing the set of samples as a proxy
for computational demand, since the computation is
dominated by the gradient evaluation required for each
leapfrog step. An efficient sampler will result in the
highest ESS for the least computation, and we will
thus report the effective sample size per leapfrog step
used (ESS/L), similarly to Hoffman & Gelman (2011),
since this takes into account computational require-
ments. We compute the ESS/L over all dimensions of
the target distribution and report the minimum, me-
dian and maximum ESS obtained. While we report
all three summary statistics, we focus on the mini-
mum ESS/L as the most useful measure, since this
allows us to evaluate the efficiency of the most con-
fined coordinate, and is more indicative of ESS jointly
over all coordinates rather than, as computed, over ev-
ery coordinate independently (Neal, 2010; Girolami &
Calderhead, 2011).

We compare our adaptive HMC to NUTS, and ex-
tend our approach and compare an adaptive version
of RMHMC to the standard RMHMC. For NUTS,
we tuned the free parameters of its dual averaging
algorithm to obtain the best performance, and for
RMHMC we use the experimental protocol and code
used by Girolami & Calderhead (2011). We do this
for all experiments in this section. Code to reproduce
these results will be available online1.

5.1. Bayesian Logistic Regression

We consider a data set X consisting of N observations
and D features or covariates, and a binary label y.
Using regression coefficients β and bias β0 the joint
distribution for the logistic regression model is:

log p(X,y,β,β0)∝ log p(y|X,β,β0)+log p(β, β0)

=−
∑
i

log
(
1+exp

(
−yi(β0+x>i β)

))
− β2

0

2σ2
−β>β

2σ2
, (1)

1http://www.cs.ubc.ca/~ziyuw/ahmc/index.html
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Figure 2. Box plots comparing ESS/L for Bayesian logis-
tic regression. Top row: AHMC vs NUTS. Bottom row:
ARMHMC vs RMHMC.

where yi ∈ {−1, 1}, and σ2 is the prior variance of
the regression coefficients. We present results on five
data sets from the UCI repository. The data sets have
varying characteristics with features D ranging from
2 to 24, and the number of observations N from 250
to 1000. For each data set, we generate 5000 samples
after a burnin phase of 1000 samples, and repeat this
process 10 times using differing starting points. The
top row of figure 2 compares the performance of our
adaptive HMC (AHMC) to NUTS, while the bottom
row compares our adaptive RMHMC (ARMHMC) to
RMHMC. For this experiment, for AHMC, we set Γ
such that ε ∈ [0.01, 0.2] and L ∈ {0, · · · , 100}, and for
ARMHMC, we use ε ∈ [0.1, 1] and L ∈ {1, · · · , 12}.

The columns of figure 2 show box plots of the
minimum, median and maximum ESS/L values ob-
tained. We see that the adaptive methods (AHMC
and ARMHMC) exhibit good performance. For the
minimum ESS/L, AHMC has better (higher) values
that NUTS for all the data sets, and this behavior is
consistent across most other data sets for the other
summary statistics. Thus AHMC typically provides
better performance and a higher effective number of
samples per unit of computation used than NUTS. We
also see that the ARMHMC can improve RMHMC and
provide better ESS/L on what is already a highly effi-
cient sampler.

5.2. Log-Gaussian Cox Point Process

We model a data set Y = {yij} that consists of counts
at locations (i, j), i, j = 1 . . . , d in a regular spatial grid
using a log-Gaussian Cox point process (LGC) (Chris-
tensen et al., 2005; Girolami & Calderhead, 2011). Ob-
servations yij are Poisson distributed and condition-
ally independent given a latent intensity process Λ =
{λij} with means sλij = s exp(xij), where s = 1

d2 .
The rates X = {xij} are obtained from a Gaussian
process with mean function m(xij) = µ1 and covari-

http://www.cs.ubc.ca/~ziyuw/ahmc/index.html
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Figure 3. Comparing minimum (red), median (blue) and
maximum (black) ESS/L for the Log-Gaussian Cox model.
Each of the colored glyphs represents one of the 10 chains
generated.

ance function Σ(xij , xi′j′) = σ2 exp (−δ(i, i′, j, j′)/βd),

where δ(i, i′, j, j′) =
√

(i− i′)2 + (j − j′)2. The joint
probability log p(y,x|µ, σ, β) is proportional to:∑

i,j

yijxij−d exp(xij)−
1

2
(x−µ1)>Σ−1(x−µ1). (2)

We generate samples jointly for x, σ, µ, β using a grid
of size d = 64, using a synthetic data set obtained by
drawing from the generative process for this model.
We generate 5000 samples after a burnin of 1000
samples. For this model, we use L ∈ {1, · · · , 500},
ε ∈ [0.001, 0.1] for AHMC, and use L ∈ {1, · · · , 60},
ε ∈ [0.01, 1] for ARMHMC. We compare the perfor-
mance of the adaptive method we presented in terms
of ESS per leapfrog step in figure 3. We compare
AHMC versus NUTS and ARMHMC versus RMHMC,
showing the minimum, median and maximum ESS
per leapfrog step obtained for 10 chains with dis-
persed starting points. We see that almost all points
lie below the diagonal line, which indicates that the
AHMC and ARMHMC have better ESS/L compared
to NUTS and RMHMC, respectively. Thus even for
high-dimensional models with strong correlations our
adaptive method allows for automatic tuning of the
sampler and consequently the ability to obtain higher
quality samples than with competing methods.

We examine the quality of the posterior distribution
obtained for AHMC and NUTS in figure 4, by visualiz-
ing the latent field and its variance, and comparing to
the true data (which is known for this data set). The
top row shows the true latent fields. The true data
observations are shown in top right corner and we see
that there are few data points in this region, and thus
we expect to have a high variance in this region. The
average of the samples obtained using AHMC shows
that we can accurately obtain samples from the latent
field x, and that the samples have a variance matching
our expectations. While NUTS is able to also produce
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Figure 4. Comparing quality of posterior distributions
from samples obtained using AHMC and NUTS for the
log-Gaussian Cox model. The top-right image shows the
locations of the true data.

good samples of the latent field, the variance of the
field is not well captured (bottom right image).

5.3. Stochastic Volatility

We consider a stochastic volatility model described by
Kim et al. (1998) and Girolami & Calderhead (2011),
in which we consider observations yt, regularly spaced
in time for t = 1, . . . , T . Each yt is specified using a
latent variable xt, which represents the log-volatility
following auto-regressive AR(1) dynamics. The model
is specified as:

yt =εtβ exp (0.5xt) , εt ∼N (0, 1) (3)

xt+1 =φxt + ηt+1, ηt+1 ∼N (0, σ2) (4)

x1 ∼N
(

0,
σ2

1− φ2

)
, p(β) ∝ 1

β
. (5)

|φ| < 1 to ensure stationarity of the log-volatility, and
the standard deviation σ > 0, whose priors we set
to φ+1

2 ∼ Beta(20, 1.5) and σ2 ∼ inv-χ2(10, 0.05), re-
spectively. The parameters to be sampled by HMC are
thus Θ = {x, β, φ, σ2}, and the joint probability is:

p(y,Θ)=

T∏
t=1

p(yt|xt, β)p(xt|xt−1, φ, σ
2)p(β)p(σ2)p(φ). (6)

We make use of the transformations σ = exp(γ) and
φ = tanh(α) to ensure that we sample using uncon-
strained variables; the use of this transformation re-
quires the addition of the Jacobian of the transforma-
tion of variables. We generate samples jointly using
AHMC, using training data with T = 2000. For our
experiments, we use a burnin period of 10, 000 samples
and thereafter generate 20, 000 posterior samples. We
restrict our box constraint such that L ∈ {1, · · · , 300},
ε ∈ [10−4, 10−2]. We show the results comparing ESS
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Table 1. Comparative results for stochastic volatility.
ESS per Leapfrog

Sampler minimum median maximum
AHMC 1.3 ± 0.1 6.9 ± 0.7 14.9 ±1.4
NUTS 0.7 ± 0.3 3.5 ±1.6 9 ±2.8

for the two methods in table 1. These results again
show higher values for ESS per leapfrog step, demon-
strating that a better performing sampler can be ob-
tained using AHMC – further demonstrating the ad-
vantages of AHMC methods for sampling from com-
plex hierarchical models.

5.4. Bayesian Neural Networks

We demonstrate the application of our adaptive ap-
proach using Bayesian neural networks (BNNs) to
show that AHMC allows for more effective sampling
of posterior parameters even when compared to sam-
plers finely tuned by an expert. We make use of the
Dexter data set from the NIPS 2003 feature selection
challenge, which is a subset of the well-known Reuters
text categorization benchmark. The winning entries
submitted by Neal & Zhang (2006) used a number of
feature selection techniques followed by a combination
of Bayesian Neural Networks and Dirichlet diffusion
trees. The entry that used only BNNs was placed sec-
ond and achieved highly competitive results (Guyon
et al., 2005).

The BNN model consists of 295 input features and
2 hidden layers with 20 and 8 hidden units respec-
tively. The input features are selected from the full set
of features through univariate feature selection. The
weights and bias as well as a few other parameters of
this particular network adds up to form a 6097 dimen-
sional state space for the HMC sampler.

For this model, we use cross-validation to construct
the reward signal. We divide the data into n sets,
and train n BNNs each on n − 1 sets and test them
on the remaining set like in the case of normal cross-
validation. The cross-validation error is then used to
calculate the reward. To take computation into ac-
count, we always evaluate the reward over the same
number of leapfrog steps, i.e. for each evaluation of
the reward we use a different number of samples and
a different number of leapfrog steps for each sample,
but the product of the two remains constant.

We compare the results in table 2, where the perfor-
mance measure is the prediction error on a test set
(unknown to us) and was obtained after submission
to the competition system. The improved results ob-
tained using the AHMC strategy are clear from the ta-
ble, also demonstrating that good adaptation can be
preferable to the introduction of more sophisticated
models.

Table 2. Classification error on the Dexter test data set.
We show the mean and the median prediction errors of the
8 BNNs trained by cross-validation. The majority vote of
these networks achieves slightly lower error than a more
sophisticated model using Dirichlet diffusion trees.

Method Error
Expert-tuned HMC for BNN 0.0510
AHMC for BNN (Mean error) 0.0498
AHMC for BNN (Median error) 0.0458
Winning entry (using Dirichlet Diffusion Trees) 0.0390
AHMC for BNN + Majority Voting 0.0355

6. Discussion and Conclusion

We described the use of the expected squared jumping
distance, which is a general objective suitable for mod-
els used both for inferential and predictive tasks, e.g.,
generalised regression. We also presented predictive
measures as an alternative when prediction is the key
task, e.g. neural networks, and where sufficient data is
available for cross-validation. Several other objectives,
such as the mean update distance, cross-validation er-
ror and the cumulative auto-correlation, are also suit-
able, and their use depends on the particular modelling
problem. In many machine learning tasks, researchers
design MCMC algorithms to estimate model param-
eters and, subsequently, evaluate these models using
cross-validation, such as the competition task in sec-
tion 5.4. In this paper, we demonstrate the use of pre-
dictive losses, such as cross-validation error, to guide
the adaptation. Moreover, researchers often modify
their samplers so as to reduce test set error. Hence, it
is natural to use predictive performance on such pre-
dictive tasks to improve the exploration of the poste-
rior distribution. This approach, although never re-
ported before to the best of our knowledge, simply
makes the tuning process followed by many researchers
explicit.

We addressed the widely-experienced difficulty in tun-
ing Hamiltonian-based Monte Carlo samplers by de-
veloping algorithms for infinite adaptation of these
Markov chains using Bayesian optimization. The
adaptive Hamiltonian Monte Carlo and adaptive Rie-
mann manifold HMC we developed automate the
process of finding the best parameters that control
the performance of the sampler, removing the need
for time-consuming and expert-driven tuning of these
samplers. Our experiments show conclusively that
over a wide range of models and data sets, the use of
adaptive algorithms makes it easy to obtain more effi-
cient samplers, in some cases precluding the need for
more complex approaches. Hamiltonian-based Monte
Carlo samplers are widely known to be an excellent
choice of MCMC method, and we hope that this paper
removes a key obstacle towards the more widespread
use of these samplers in practice.
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