Regularization of Neural Networks using DropConnect
Supplementary Material

1. Preliminaries

Definition 1 (DropConnect Network). Given data
set S with ¢ entries: {Xi1,Xa,...,X¢} with labels
{y1,y2,.-.,ye}, we define DropConnect network as a
mizture model:

o:Zp(M

Each network f(x;0, M) has weights p(M) and net-
work parameters are 0 = {W,, W, W,}. Wy are the
softmaz layer parameters, w are the DropConnect
layer parameters and Wy are the feature extractor pa-
rameters. Further more, m is the DropConnect layer
mask.

[0, M) =By, [f(x;0,M)] (1)

Remark 1. when each element of M; has equal proba-
bility of being on and off (p = 0.5), the mizture model
has equal weights for all sub-models f(x;0, M), oth-
erwise the mizture model has larger weights in some
sub-models than others.

Reformulate cross-entropy loss on top of soft-max into
a single parameter function that combines soft-max
output and labels. Same as logistic.

Definition 2 (Logistic Loss). The following loss func-
tion defined on k-class classification is call logistic loss
function:

where y is binary vector with it" bit set on

Lemma 1. Logistic loss function A has the following
properties:

1. Ay(0)=Ink
2. =1 < Aj(0) <1
3. Ay(0) >0

The first one says A(0) is depend on some constant
related with number of labels. The second one says A
is Lipschitz function with L = 1. The third one says
A is a convex function w.r.t x.

Definition 3 (Rademacher complexity). For a sample
S ={x1,...,2¢} generated by a distribution D on set

X and a real-valued function class F in domain X, the
empirical Rademacher complexity of F is the random
variable:
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where sigma = {o1,...,04} are independent uniform

{£1}-valued (Rademacher) random wvariables. The
Rademacher complezity of F is Ry(F) = Eg [Rg (.7-")} .

Theorem 1 ((Koltchinskii and Panchenko, 2000)).
Fiz 6 € (0,1) and let F be a class of functions mapping
from M to [0,1]. Let (M;)t_, be drawn independently
according to a probability distribution D. Then with
probability at least 1 — 6 over random draws of samples
of size £, every f € F satisfies:
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2. Bound Derivation

Theorem 2 ((Ledoux and Talagrand, 1991)). Let F
be class of real functions. If A: R — R is Lipschitz
with constant L and satisfies A(0) = 0, then Ry(Ao
F) < 2LR(F)

Lemma 2. Let F be class of real functions and H =
[]-'j];?:l be a k-dimensional function class. If A: RF —
R is a Lipschitz function with constant L and satisfies
A(0) = 0, then Ry(AoH) < 2kLRy(F)

Lemma 3 (Classifier Generalization Bound). Gener-
alization bound of a k-class classifier with logistic loss
function is directly related Rademacher complexity of
that classifier
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Proof. From Lemma 1, Logistic loss function (A —
¢)(xz) € Adue to (A—c¢)(z) <land (A—¢)(0)=0
with some constant ¢. By Lemma 2: Ry((A—¢)oF) <
2k Ry (F) O
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Lemma 4. For all neuron activations: sigmoid, tanh
and relu, we have: Ry(ao F) < 2R, (F)

Lemma 5 (Network Layer Bound). Let G be the class
of real functions R® — R with input dimension F, i.e.
G = []-'j];l:l and Hp is a linear transform function
parameterized by W with ||W ||z < B, then Rg(Hog) <
VABR(F)

Proof.
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Remark 2. Given a layer in our network, we denote
the function of all layers before as G = [ F, }ji 1- This
layer has the linear transformation function H and ac-
tivation function a. By Lemma 4 and Lemma 5, we
know the network complezity is bounded by:

Ry(H 0 G) < eVdBRy(F)

where ¢ = 1 for identity neuron and ¢ = 2 for others.

Lemma 6. Let Fy; be the class of real functions that
depend on m, then Ry(Eyr [Far]) < En {R@(]:M)}

Proof.

Ry(By [Fu)) =

ke (Soon ) < T
Z Ip(M

because of common fact: 1) Ry(cF)
Re(32; Fi) < 32, Ra(

Theorem 3 (DropConnect Network Complexity).
Consider the DropConnect neural network defined in
Definition 1. Let Ry(G) be the empirical Rademacher
complexity of the feature extractor and Rg(f ) be the
empirical Rademacher complezity of the whole net-
work. In addition, we assume:
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1. weight parameter of DropConnect layer |W| < By,
2. weight parameter of s, i.e. |Ws| < By (L2-norm of
it is bounded by vV dkBs).

Then we have:

Re(F) <p (NEdBSm/&Bh) Re(Q)

Proof.
Re(F) = Re(Bar [f(x; 0, M])
< B [Re(f(x:0. M)
- Eu [Rg(s 0a0 hm og)]
< (VdkBs)VdEw [Re(a 0 B © g)]
= 2VkdB.Exs [Re(hm © 9) (4)

where h,, = (M o W)v. Equation (2) is based on
Lemma 6, Equation (3) is based on Lemma 5 and
Equation (4) follows from Lemma 4.
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where D)y in Equation (5) is an diagonal matrix with
diagonal elements equal to m and inner product prop-
erties lead to Equation (6). Thus, we have

Ro(F) <p (2\/Estn\/&Bh> Re(G)

O

Remark 3. Theorem 3 implies that p is an additional
reqularizer we have added to network when we convert
a normal neural network to a network with DropCon-
nect layers. Consider the following extreme cases:

1. p = 0: the network generalization bound equals to
0, which is true because classifier does not depends on
mput any more

2. p=1: reduce to normal network
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Symbol | Description Related Formula
Y Data Label, can either be integer label for bit vec-
tor(depends on context)
T Network input data
g()) Feature extractor function with parameter W
v Feature extractor network output v=g(x,Wy)
M DropConnect connection information parameter
(weight mask)
h(.) DropConnect transformation function with parame-
ter W, M
U DropConnect output u=h(v;W, M)
al(.) DropConnect activation function
r DropConnect after activation r=a(u)
s(.) Dimension reduction layer function with parameter
W
0 Dimension reduction layer output (network output) | o = s(r; Wy)
0 All parameter of network expect weight mask 0= {W,, W, W,}
fO) Overall classifier(network) output o= f(x;0, M)
A Weight penalty
A() Data Loss Function Alo—y)
L() Over all objective function L(z,y) = >, Alo; — yi) + 1/2M\|[W 13
n Dimension of feature extractor output
d Dimension of DropConnect layer output
k number of class dim(y) =k

Table 1. Symbol Table
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