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Abstract

We study the problem of global maximiza-
tion of a function f given a finite number
of evaluations perturbed by noise. We con-
sider a very weak assumption on the func-
tion, namely that it is locally smooth (in
some precise sense) with respect to some
semi-metric, around one of its global max-
ima. Compared to previous works on ban-
dits in general spaces (Kleinberg et al., 2008;
Bubeck et al., 2011a) our algorithm does not
require the knowledge of this semi-metric.
Our algorithm, StoSOO, follows an optimistic
strategy to iteratively construct upper con-
fidence bounds over the hierarchical parti-
tions of the function domain to decide which
point to sample next. A finite-time analysis
of StoSOO shows that it performs almost as
well as the best specifically-tuned algorithms
even though the local smoothness of the func-
tion is not known.

1. Introduction

We consider a function maximization problem of an
unknown function f : X → R. We assume that every
function evaluation is costly, and therefore we are in-
terested in optimizing the function given a finite bud-
get of n evaluations. Moreover, the evaluations are
perturbed by noise, i.e., the evaluation of f at a point
xt ∈ X returns a noisy evaluation rt, assumed to be
independent from the previous ones, such that:

E[rt|xt] = f(xt). (1)
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One motivation for this setting is a measurement error
when dealing with a stochastic environment. Another
example is the optimization of some parametric policy
operating in a stochastic system.

We assume that there exists at least one global max-
imizer x∗ ∈ X of f , i.e. f(x∗) = supx∈X f(x). We
aim for an algorithm which sequentially evaluates f
at points x1, x2, . . . , xn in the search space X to find
a good approximation to a global maximum. After
n function evaluations the algorithm outputs a point
x(n) and its performance is measured with the loss:

Rn = sup
x∈X

(f(x))− f(x(n)) (2)

Our definition of loss is very related to the simple regret
in multi-armed bandits (Bubeck et al., 2009). Many
algorithms have been developed for this general opti-
mization problem. However, a lot of them require some
assumption on the global smoothness of f , most typi-
cally, they assume a global Lipschitz property (Pintér,
1995; Strongin & Sergeyev, 2000; Hansen & Walster,
2004; Kearfott, 1996; Neumaier, 2008). There has been
also an interest in designing sample-efficient strategies,
only requiring local smoothness around (one) of the
global maxima (Kleinberg et al., 2008; Bubeck et al.,
2011a; Munos, 2011). However, these approaches still
assume the knowledge of this smoothness, i.e., the met-
ric under which the function is smooth, which may not
be available to the optimizer.

Recently, Munos (2011) proposed the SOO algorithm
for deterministic optimization, that assumes that f
is locally smooth with respect to some semi-metric `,
but that this semi-metric does not need to be known
to the algorithm. SOO extends the DIRECT algo-
rithm (Jones et al., 1993) and other Lipschitz opti-
mization without the knowledge of the Lipschitz con-
stant (Bubeck et al., 2011b; Slivkins, 2011) to the case
of any possible semi-metric by simultaneously consid-
ering the subspaces that can contain the optimum.
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In this paper, we provide an extension of SOO to
the case of noisy evaluations, which we call Stochas-
tic SOO, or StoSOO. One major difference from SOO
is that we cannot base our exploration strategy only
on a single evaluation per cell since we are dealing
with stochastic functions. Another difference is that
we cannot simply return the highest evaluated point
we encountered as x(n) since it is subject to noise.
Our analysis shows that in a large class of functions
(precisely defined in Section 5), the loss of StoSOO is
Õ(n−1/2), which is of same order as the loss of HOO
(Bubeck et al., 2011a) or Zooming algorithm (Klein-
berg et al., 2008) when using the best possible metric.

2. Background

Optimistic optimization refers to approaches that im-
plement the optimism in the face of uncertainty princi-
ple. This principle became popular in the multi-armed
bandit problem (Auer et al., 2002) and was later ex-
tended to the tree search (Kocsis & Szepesvári, 2006;
Coquelin & Munos, 2007) where it is referred to as hi-
erarchical bandit approach. The reason is that a com-
plex problem such as global optimization of the space
X is treated as a hierarchy of simple bandit problems.
It is therefore an example of Monte Carlo tree search
which was shown to be empirically successful for in-
stance in computer Go (Gelly et al., 2012).

Optimistic optimization was also used in many other
domains, such as planning (Hren & Munos, 2008;
Bubeck et al., 2011a) or Gaussian process optimiza-
tion (Srinivas et al., 2010). This paper applies opti-
mistic approach to a global black-box function opti-
mization. Table 1 displays representative approaches
for this setting. The case when the smoothness of the
function f is known, means that the function is either
(globally) Lipschitz, weakly Lipschitz or locally Lips-
chitz around the optimum. There are numerous algo-
rithms for this setting, the most related to our work
are DOO (Munos, 2011) for the deterministic case and
Zooming (Kleinberg et al., 2008) or HOO (Bubeck
et al., 2011a) for the stochastic one1. This setting has
been also considered in a Bayesian framework, in par-
ticular the expected-improvement strategy (Osborne,
2010) which was theoretically analyzed when the as-
sumption of smoothness is data-driven (Bull, 2011).

One of the disadvantages of these algorithms is that
however strong or mild are the assumptions on f , the
quantities that express them (i.e. a prior, a Lipschitz
constant, or a semi-metric in DOO) need to be known

1Note that the loss (2) considered here is different but
related to the usual cumulative regret defined in the bandit
setting, see e.g. (Bubeck et al., 2009).

Table 1. Hierarchical optimistic optimization algorithms

deterministic stochastic

known
smoothness

DOO Zooming or HOO

unknown
smoothness

DIRECT or SOO StoSOO
this paper

to the algorithm. On the other hand, for the case of
deterministic functions there exist approaches that do
not require this knowledge, such as DIRECT or SOO.

However, neither DIRECT nor SOO can deal with
stochastic functions. Therefore, we extend the SOO
algorithm to the stochastic setting and provide a finite-
time analysis of its performance.

3. Algorithm

StoSOO is a tree-search based algorithm that itera-
tively constructs finer and finer partition of the search
space X . The partitions are represented as nodes of
a K-ary tree T and the nodes are organized by their
depths h ≥ 0, with h = 0 being the root node, and in-
dexed by 1 ≤ i ≤ Kh. We denote ◦[h, i], the i-th node
at depth h. Each of the nodes ◦[h, i] corresponds to a
cell Xh,i ⊆ X in the partitioning, i.e., to a subset of X
with an associated representative point xh,i ∈ Xh,i.

3.1. Assumptions

We now state our main assumption, which is also used
in SOO (Munos, 2011). The first part of the assump-
tion is about the existence of a semi-metric ` such that
the function f is locally smooth with respect to it. We
stress that although it quantifies the smoothness of
f , it only requires the existence of ` and not the
knowledge of it. For illustrative examples and discus-
sion on this part we refer the reader to (Munos, 2011).
The second part is about the structure of the hierar-
chical partitioning with respect to `. This partitioning
is fixed and given to the algorithm as a parameter.

Assumption There exists a semi-metric ` : X×X →
IR+ (i.e. for x, y ∈ X , we have `(x, y) = `(y, x) and
`(x, y) = 0 if and only if x = y) such that:

A1 (local smoothness of f): For all x ∈ X :

f(x∗)− f(x) ≤ `(x, x∗). (3)

A2 (bounded diameters and well-shaped cells):
There exists a decreasing sequence w(h) > 0, such
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that for any depth h ≥ 0 and for any cell Xh,i
of depth h, we have supx∈Xh,i

`(xh,i, x) ≤ w(h).
Moreover, there exists ν > 0 such that for any
depth h ≥ 0, any cell Xh,i contains a `-ball of
radius νw(h) centered in xh,i.

Assumption A1 guarantees that f does not decrease
too fast around one global optimum x∗. This can be
thought of as a one-sided local Lipschitz assumption.
Note that although we require that (3) is satisfied for
all x ∈ X , this assumption essentially sets constraints
to the function f locally around x∗, since when x is
such that `(x, x∗) > sup f− inf f , then the assumption
is automatically satisfied. Thus when this property
holds, we say that f is locally smooth with respect
to ` around its maximum.

Assumption A2 assures the regularity of the partition-
ing, in particular that the size of the cells decreases
with their depths and that their shape is not skewed
in some dimensions.

3.2. Stochastic SOO

Algorithm 1 displays the pseudo-code of the StoSOO

algorithm. The algorithm operates in the traversals
of the tree starting from the root down to the current
depth(T ), that is upper bounded by hmax, a parameter
of the algorithm. During each traversal (a whole pass
of the “for” cycle) StoSOO selects a set of promising
nodes, at most one per depth h. These nodes are then
either evaluated or expanded.

Evaluating a node at time t means sampling the func-
tion in the representative point xh,i of the cell Xh,i and
observing the evaluation rt according to (1). Expand-
ing a node ◦[h, i], means splitting its corresponding cell
into its K sub-cells corresponding to the children:

{◦[h+ 1, i1], ◦[h+ 1, i2], . . . , ◦[h+ 1, iK ]}.

We denote by L the set of leaves in T , i.e. the nodes
with no children. At any time, only the leaves are eli-
gible for an evaluation or expansion and we never ex-
pand the leaves beyond depth hmax. If the function f
were deterministic, such as in SOO (Munos, 2011), we
would expand (simultaneously) any leaf ◦[h, i] whose
value f(xh,i) is the largest among all leaves of the same
or a lower depth. The reason for this choice is that by
Assumption A1 all such nodes may contain x∗. Unfor-
tunately, we do not receive f(xh,i), but only a noisy
estimate rt. Therefore, the main algorithmic idea of
StoSOO is to evaluate the leaves several times in or-
der to build a confident estimate of f(xh,i). For this

purpose, let us define µ̂h,i(t) = 1
Th,i(t)

∑t
s=1 rs1{xs ∈

Xh,i} the empirical average of rewards obtained at

Algorithm 1 StoSOO
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Parameters: number of function evaluations n,
maximum number of evaluations per node k > 0,
maximum depth hmax, and δ > 0.
Initialization:
T ← {◦[0, 0]} {root node}
t← 0 {number of evaluations}

while t ≤ n do
bmax ← −∞
for h = 0 to min(depth(T ), hmax) do

if t ≤ n then
For each leaf ◦[h, j] ∈ L, compute its b-value:
bh,j(t) = µ̂h,j(t) +

√
log(nk/δ)/(2Th,j(t))

Among leaves ◦[h, j] ∈ Lt at depth h, select

◦[h, i] ∈ arg max
◦[h,j]∈L

bh,j(t)

if bh,i(t) ≥ bmax then
if Th,i(t) < k then

Evaluate (sample) state xt = xh,i.
Collect reward rt (s.t. E[rt|xt] = f(xt)).
t← t+ 1

else {i.e. Th,i(t) ≥ k, expand this node}
Add the K children of ◦[h, i] to T
bmax ← bh,i(t)

end if
end if

end if
end for

end while
Output: The representative point with the highest
µ̂h,j(n) among the deepest expanded nodes:

x(n) = arg max
xh,j

µ̂h,j(n) s.t. h = depth(T \ L).

state xh,i at time t, where Th,i(t) is the number of
times that ◦[h, i] has been sampled up to time t.

StoSOO builds an accurate estimate of f(xh,i) before
◦[h, i] is expanded. To achieve this, we define an upper
confidence bound (or a b-value) for each node ◦[h, i] as:

bh,i(t)
def
= µ̂h,i(t) +

√
log(nk/δ)

2Th,i(t)
, (4)

where δ is the confidence parameter. In the case
of Th,i(t) = 0, we let bh,i(t) = ∞. We refer to√

log(nk/δ)/2Th,i(t) as to the width of the estimate.
Now instead of selecting the promising nodes accord-
ing to their values f(xh,i) we select them according to
their b-values bh,i.
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Our algorithm is optimistic since it considers such
leaves for the selection whose b-value is maximal
among leaves at depth h or lower depths, since those
leaves are likely to contain the optimum x∗ at time t,
given the observed samples and Assumption A1 on f .

The important question is now how many times should
we evaluate the node before we decide to expand it.
Again, if we knew the semi-metric ` we would be able
to calculate the appropriate count for each depth h.
Since we do not know it, we instead evaluate each node
a fixed number of k times before its expansion. We ad-
dress the setting of k, hmax, and δ in Sections 4 and 5.
Our analysis shows that under appropriate assump-
tions on f (discussed in Section 5) we can bound the
expected regret as E[Rn] = O

(
log2(n)/

√
n
)

by setting

k = n/ log3(n), hmax =
√
n/k, and δ = 1/

√
n.

In the algorithm, we keep track of the number of eval-
uations t in order to finish when it reaches n, the maxi-
mum number of evaluations, i.e., the budget. Since we
are facing a stochastic setting, we cannot simply out-
put the value that received the highest reward during
n evaluations, as it is the case in most of the deter-
ministic approaches. Instead, we return the represen-
tative point xh,j of the node with the highest estimate
µ̂h,j(n) among the deepest expanded nodes, i.e., such
that h = depth(T \ L).

4. Analysis

In this section we analyze the performance of StoSOO
and upper bound the loss (2) as a function of the num-
ber of evaluations. We assume that the rewards are
bounded2 by |rt| ≤ 1 for any t. In order to derive a
loss bound we define a measure of the quantity of near-
optimal states, called near-optimality dimension. This
measure is closely related to similar measures (Klein-
berg et al., 2008; Bubeck et al., 2008). For any ε > 0,
let us write the set of ε-optimal states as:

Xε def
= {x ∈ X , f(x) ≥ f∗ − ε}.

Definition 1. The ν-near-optimality dimension is the
smallest d ≥ 0 such that there exists C > 0 such that
for any ε > 0, the maximum number of disjoint `-balls
of radius νε and center in Xε is less than Cε−d.

StoSOO maintains the upper confidence bounds (b-
values) for each cell in order to decide which cell to
sample or expand. We start by quantifying the proba-
bility that all the average estimates µ̂h,j(t) are at any
time t within those bh,j(t)-values. For this purpose we

2The analysis can be easily extended to the case when
the noise is sub-Gaussian.

define the event in which this occurs and then show
that this event happens with high probability.

Lemma 1. Let ξ be the event under which all average
estimates are within their widths:

ξ
def
=
{
∀h, i, t s.t. h ≥ 0, 1 ≤ i < Kh, 1 ≤ t ≤ n, and

Th,j(t) > 0 :
∣∣µ̂h,j(t)− f(xh,j)

∣∣ ≤√ log(nk/δ)

2Th,j(t)

}
,

then P(ξ) ≥ 1− δ.

Proof. Let m denote the (random) number of different
nodes sampled by the algorithm up to time n. Let τ1i
be the first time when the i-th new node ◦[Hi, Ji] is
sampled, i.e., at time τ1i −1 there are only i−1 different
nodes that have been sampled whereas at time τ1i , the
i-th new node ◦[Hi, Ji] is sampled for the first time.
Let τsi , for 1 ≤ s ≤ THi,Ji(n), be the time when the
node ◦[Hi, Ji] is sampled for the s-th time. Moreover,
we denote Y si = rτs

i
− f(xHi,Ji). Using this notation,

we rewrite ξ as:

ξ =

{
∀i, u s.t. , 1 ≤ i ≤ m, 1 ≤ u ≤ THi,Ji(n),

∣∣∣∣ 1u
u∑
s=1

Y is

∣∣∣∣ ≤
√

log(nk/δ)

2u

}
. (5)

Now, for any i and u, the (Y si )1≤s≤u are i.i.d. from
some distribution νHi,Ji . The node ◦[Hi, Ji] is ran-
dom and depends on the past samples (before time
τ1i ) but the (Y si )s are conditionally independent given
this node and consequently:

P

(∣∣∣∣ 1u
u∑
s=1

Y is

∣∣∣∣ ≤
√

log(nk/δ)

2u

)
=

= E◦[Hi,Ji] P
(∣∣∣∣ 1u

u∑
s=1

Y is

∣∣∣∣ ≤
√

log(nk/δ)

2u

∣∣∣∣∣ ◦ [Hi, Ji]

)
≥ 1− δ

nk
,

using Chernoff-Hoeffding’s inequality. We finish the
proof by taking a union bound over all values of 1 ≤
i ≤ n and 1 ≤ u ≤ k.

Lemma 1 shows that when the leaf is expanded then
with high probability the mean estimate µ̂h,j(t) is very
close to its true value. Specifically, when the node is
expanded then with probability 1− δ uniformly for all
h, j, and t, we have that:

|µ̂h,j(t)− f(xh,j)| ≤ ε, (6)
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where ε =
√

log(nk/δ)/2k. We use this lemma to
show that the expanded nodes are with high probabil-
ity close to optimal.

Definition 2. Let the expansion set at depth h be the
set of all nodes that could be potentially expanded be-
fore the optimal node at depth h is expanded:3

Iεh
def
= {nodes ◦[h, i] such that f(xh,i)+w(h)+2ε ≥ f∗}.

Recall that even though this definition uses w(h) that
depends on the unknown metric `, the StoSOO algo-
rithm does not need to know it. Now, let us denote h∗t
the deepest depth of the expanded node at time t, that
contains the optimum x∗. Notice that in general the
algorithm may have at time t also expanded some (sub-
optimal) nodes in the deeper depths. In the following,
we show that they are not too many of these. Specifi-
cally, for each depth h, we lower bound the number of
evaluations after which the h∗t needs to be at least h.

Lemma 2. Let depth h ∈ {0, hmax} be any depth and:

th
def
= (k + 1)hmax(|Iε0 |+ |Iε1 |+ · · ·+ |Iεh|).

After we evaluated at least t ≥ th nodes, then in the
event ξ, the depth h∗t of the deepest node in the optimal
branch is at least h, i.e., h∗t ≥ h.

Proof. By induction on h. For h = 0, the lemma holds
trivially since h∗t ≥ 0. For the induction step, let us
assume that the lemma holds for all h ∈ {0, . . . , h′},
where h′ < hmax and we are to show it holds for h′ +
1 as well. Assume we have already evaluated th′+1

nodes, i.e. that we are at time t ≥ th′+1. Since th is
increasing in h, we have also evaluated th′ nodes and
h∗t ≥ h′ from the induction step. That means that the
optimal branch is expanded at least up to the depth
h′. Now consider any node ◦[h′ + 1, i] at depth h′ +
1, that was expanded. If it was expanded before the
optimal node ◦[h′+1, i∗] at depth h′+1 was expanded,
then bh∗t+1,i(t) ≥ bh∗t+1,i∗(t). According to Lemma 1,
the average estimates µ̂h,j(t) are at most ε away from
their true values, with ε defined in (6). Therefore in
the event ξ, the true values of the expanded and the
optimal node are at most 2ε apart:

f(xh∗t+1,i) ≥ f(xh∗t+1,i∗)− 2ε. (7)

Since the node ◦[h∗t + 1, i∗] contains the optimum x∗,
then by Assumptions A1-2, we get:

f(xh∗t+1,i∗)+w(h+1)≥f(xh∗t+1,i∗)+`(xh∗t+1,i∗ , x
∗)≥f∗.

3The reason for such definition will become apparent in
the proof of Lemma 2.

Combining this with (7), we obtain that:

f(xh∗t+1,i) ≥ f(xh∗t+1,i∗)− 2ε ≥ f∗−
[
w(h∗t + 1) + 2ε

]
.

This means that all the nodes ◦[h′ + 1, i] expanded
before ◦[h′ + 1, i∗] are [w(h∗t + 1) + 2ε]-optimal. By
Definition 2, there are exactly |Iεh′+1| such nodes.
Each traversal of the tree in the StoSOO algorithm
selects one of these nodes for evaluation. Since k
evaluations are required before the expansion, after
(k + 1)|Iεh′+1| traversals, ◦[h′ + 1, i∗] must have been
expanded. To guarantee this many traversals, we need
(k+ 1)hmax|Iεh′+1| evaluations after t′h previous evalu-
ations. This is equal to th′+1 and thus h∗t ≥ h′+1.

Lemma 2 bounds the number of needed evaluations in
the terms of the expansion set sizes to assure that the
optimal node was expanded. Naturally, we would like
to know, how big these expansion sets can be. The
following lemma upper bounds the size of expansion
sets up to depth where w(h) is of the order of ε. For
this purpose, we define hε as:

hε = arg min{h ∈ N : w(h+ 1) < ε}. (8)

Lemma 3. Let d be a ν/3-near-optimality dimension
and C the related constant. Then for each h ≤ hε,
the cardinality of the expansion set at depth h is in the
event ξ bounded as:

|Iεh| ≤ C (w (h) + 2ε)
−d
.

Proof. By contradiction. Assume that for some h ≤
hε, |Iεh| > C (w (h) + 2ε)

−d
. By definition of |Iεh|,

each representative point xh,i of the node ◦[h, i] is
[w(h) + 2ε]-optimal. By Assumption A2, each cell as-
sociated with the node ◦[h, i] at depth h contains a
ball of radius νw(h) = ν

3 · 3w(h) ≥ ν
3 (w(h) + 2ε) with

the representative point xh,i, because for h ≤ hε, we
have that ε ≤ w(h) by (8). Since the cells are disjoint,
we have a contradiction with ν/3-near-optimality di-
mension being d.

We now link the depth of the tree after n iterations
with the loss as defined in (2).

Theorem 1. Assume that Assumptions A1-2 hold.
Let d be the ν/3-near-optimality dimension and C be
the corresponding constant. Then the loss of StoSOO

run with parameters k, hmax, and δ > 0, after n iter-
ations is bounded, with probability 1− δ, as:

Rn ≤ 2ε+ w (min (h(n)− 1, hε, hmax))

where ε =
√

log(nk/δ)/(2k) and h(n) is the smallest
h ∈ N, such that:

C(k + 1)hmax

h∑
l=0

(w (l) + 2ε)
−d ≥ n.
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Proof. Let us first consider the case when h(n)− 1 ≤
hε. Then we can use Lemma 3 to show that:

n > C(k + 1)hmax

h(n)−1∑
l=0

(w (l) + 2ε)
−d

≥ (k + 1)hmax

h(n)−1∑
l=0

|Iεl | = th(n)−1 (9)

If h(n) − 1 ≤ hmax then by Lemma 2, h∗n ≥ h(n) − 1.
If, however, h(n) − 1 > hmax, then by (9) the algo-
rithm has expanded all potentially optimal nodes on
the level hmax and therefore h∗n ≥ hmax. Nonetheless
the algorithm does not go beyond hmax, so necessarily
h∗n = hmax. Hence, in the case when h(n) − 1 ≤ hε,
h∗n ≥ min{h(n) − 1, hmax}. Now consider the op-
posite case, i.e., when h(n) − 1 ≥ hε + 1. We can
now use Lemma 3, but only up to depth hε, to get
that n > thε

. Similarly to the previous case, we de-
duce that h∗n ≥ min{hε, hmax}. Altogether, h∗n ≥
min{h(n)−1, hε, hmax}. Let ◦[h, j] be the deepest node
that has been expanded after n evaluations. We know
that h ≥ h∗n. Let also ◦[h∗n, i∗] be the optimal node
at the depth h∗n. As ◦[h, j] was expanded, the true
value of its representative point and the representa-
tive point of ◦[h∗n, i∗] is in the event ξ at most 2ε away
and therefore we conclude that:

f(xh,j) ≥ f(xh∗n,i∗)− 2ε ≥ f∗ − [w(h∗n) + 2ε]

≥ f∗ − [w(min{h(n)− 1, hε, hmax}) + 2ε].

5. The important case d = 0

We now deduce the following corollaries for the case
when the near-optimality dimension d = 0 and the di-
ameters w(h) are exponentially decreasing. We post-
pone the discussion about this important case d = 0
to Section 5.1.

Corollary 1. Assume that the diameters of the cells
decrease exponentially fast, i.e., w(h) = cγh for some
c > 0 and γ < 1. Assume that the ν/3-near-optimality
dimension is d = 0 and let C be the corresponding
constant. Then the expected loss of StoSOO run with
parameters k, hmax =

√
n/k, and δ > 0, is bounded

as:

E[Rn] ≤ (2+1/γ)ε+ cγ
√
n/kmin{0.5/C,1}−2 +2δ. (10)

Proof. When d = 0, then
[
w(l) + 2ε

]−d
= 1 and

by definition of h(n), we have that n ≤ C(k +

1)hmax

∑h(n)
l=0

[
w(l) + 2ε

]−d
= C(k+ 1)hmax(h(n) + 1),

which implies h(n) ≥ n/(C(k+1)hmax)−1. Intuitively,

the deeper is the node we return, the lower regret we
can incur. This suggests the choice of hmax =

√
n/k,

in which case we get h(n) ≥ √n/(2C
√
k) − 1, since

k ≥ 1. Moreover, since w(h) = cγh, then by definition
of hε we have that:

w(hε) = cγhε+1/γ = w(hε + 1)/γ < ε/γ.

By Theorem 1, we have that in the event ξ, the regret
of StoSOO is at most:

Rn ≤ 2ε+ w(min{h(n)− 1, hε, hmax})
≤ 2ε+ w(hε) + w(min{h(n)− 1, hmax})
≤ (2 + 1/γ)ε+ cγ

√
n/kmin{0.5/C,1}−2

We obtain the upper bound on the expected loss (10),
by considering that by Lemma 1, ξ holds with proba-
bility 1− δ and |rt| ≤ 1.

Corollary 2. For the choice k = n/ log3(n) and δ =
1/
√
n, we have:

E[Rn] = O
( log2(n)√

n

)
.

This result shows that, surprisingly, StoSOO achieves
the same rate Õ(n−1/2), up to a logarithmic factor, as
the HOO algorithm run with the best possible metric,
although StoSOO does not requires the knowledge of it.

Proof. Setting k = n/ log3(n) and δ = 1/
√
n we can

upper bound ε in (10) which was defined in (6) as:

ε=

√
log(nk/δ)

2k
=

√
log(nk

√
n) log3(n)

2n
≤
√

5

4

log2(n)√
n

.

Now for n bigger than a quantity exponential in
C/ log(1/γ), the second term in (10) becomes negli-
gible and the upper bound for this choice follows.

5.1. Some intuition about the case d = 0

We have seen that the near-optimality dimension d is
a property of both the function and the semi-metric
`. Since StoSOO does not require the knowledge of
the semi-metric ` (it is only used in the analysis), one
can choose the best possible semi-metric `, possibly
according to the function f itself, in order to have
the lowest possible value of d. The case d = 0 thus
corresponds to the following assumption on f : there
exists a semi-metric ` such that: 1) f is locally smooth
w.r.t. ` around a global optimum x∗ (i.e. such that (3)
holds) 2) the diameters of the cells (measured with `)
decrease exponentially fast, and 3) there exists C >
0 such that for any ε > 0, the maximal number of
disjoint `-balls of radius νε/3 centered in Xε is less
than C (i.e. the near-optimality dimension d is 0).
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Figure 1. Functions with d = 0. Left: Two-sine product
function f1(x) = 1

2
(sin(13x) · sin(27x)) + 0.5. Right: Gar-

land function: f2(x) = 4x(1−x) ·( 3
4

+ 1
4
(1−

√
| sin(60x)|)).

5.2. Examples

Let us consider the case of functions f defined on
[0, 1]D that are locally equivalent to a polynomial of
degree α around their maximum, i.e., f(x)− f(x∗) =
Θ(‖x− x∗‖α) for some α > 0, where ‖ · ‖ is any norm.
The choice of semi-metric `(x, y) = ‖x − y‖α implies
that the near-optimality dimension d = 0. This covers
already a large class of functions (such as the functions
plotted in Figure 1: the two-sine product function for
which α = 2 and the non-Lipschitz garland function
for which α = 1/2).

More generally, we consider a finite dimensional and
bounded space, i.e., such that X can be packed by
CX ε

−D `-balls with radius ε (e.g., Euclidean space
[0, 1]D) and such that X has a finite doubling constant
(defined as minimum value q such that every ball in
X can be packed by at most q balls in X of half the
radius). Let a function in such space have upper- and
lower envelope around x∗ of the same order (Figure 2),
i.e., there exists constants c ∈ (0, 1), and η > 0, such
that for all x ∈ X :

min(η, c`(x, x∗)) ≤ f(x∗)− f(x) ≤ `(x, x∗). (11)

We show that all such functions have a near-optimality
dimension d = 0 according to Definition 1, (where ν =
1 for simplicity), which means that for all ε > 0, the
packing number of Xε is upper-bounded by a constant.

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η

x∗

Figure 2. Any function satisfying (11) lies in the gray area
and possesses a lower- and upper-envelopes that are of
same order around x∗.

In the case when ε < η, due the upper envelope we

have that: Xε ⊂ {x : c`(x, x∗) ≤ ε}, which corre-
sponds to an `-ball centered in x∗ with radius ε/c.
This ball can be packed by no more than a constant
number of C ′ `-balls of radius ε. C ′ is necessarily finite
because the doubling constant q is finite. For example
in [0, 1]D, if `(x, y) = ‖x− y‖∞ then C ′ = (1/c)D.

In the opposite case when ε ≥ η, the radius of dis-
joint `-balls that could possibly pack Xε is at least
η. Noting that Xε ⊂ X , we can upper bound the
packing number of the whole space X , by a constant
CX (η)−D that is independent of ε. Finally, defining
C = max{C ′, CX (η)−D} we have that for all ε, the
maximum number of disjoint `-balls of radius ε and
center in Xε is less than a C and therefore d = 0.

Even more generally, one can even define the semi-
metric ` according to the behavior of f around x∗ in
order that (3) holds. For example if the space X is
a normed space (with norm ‖ · ‖), one can define the

metric `(x, y)
def
= ˜̀(‖x− y‖) for any r ≥ 0 as:

˜̀(r) = sup
x;‖x∗−x‖≤r

[f(x∗)− f(x)] .

Thus f(x∗)−`(x, x∗) naturally forms a lower-envelope
of f . Thus assuming that the first inequality of (11)
(upper-envelope) holds, then d = 0 again.

However, although the case d = 0 is quite general, it
does not hold in situations where there is a discrepancy
between the upper- and lower-envelopes (Figure 3).

Figure 3. We illustrate the case of a function with different
order in the upper and lower envelopes, when `(x, y) =
|x−y|α. Here f(x) = 1−

√
x+(−x2+

√
x)·(sin(1/x2)+1)/2.

The lower-envelope behaves like a square root whereas the
upper one is quadratic. The maximum number of `-balls
with radius ε that can pack Xε (i.e., Euclidean balls with
radius ε1/α) is at most of order ε1/2/ε1/α ≤ ε−3/2, since
α ≤ 1/2 in order to satisfy (3). We deduce that there is no
semi-metric of the form |x− y|α for which d < 3/2.

6. Experiments

In this section we numerically evaluate the perfor-
mance of StoSOO4. In all experiments with set the pa-
rameters k, δ, and hmax to the values from Corollary 2.

4
code available at https://sequel.lille.inria.fr/Software/StoSOO

https://sequel.lille.inria.fr/Software/StoSOO
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Moreover, we set the branching factor to K = 3.
Note that when the branching factor is an odd num-
ber (K ≥ 3), we can reuse the evaluations (samples)
from the parent node. Indeed, if K is odd, the repre-
sentative point of the parent node ◦[h, i] will have the
same value as the middle child ◦[h+1, (K+1)/2], i.e.,
xh,i = xh+1,i(K+1)/2

. In the case when the domain of f
is multi-dimensional, we only need to split along one
dimension at the time, when expanding the node. In
order to preserve bounded diameters assumption, we
can split each time along the dimension in which the
cell is the largest.

For the evaluation we added a truncated (so that re-
wards are bounded) zero mean Gaussian noise NT ,
sample of which is shown in Figure 4. In all the ex-
periments we performed 10 trials and the error bars in
the figures correspond to standard deviations.
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Figure 4. Functions from Figure 1 noised with NT (0, 0.1).

Two-sine product: In the first set of experiments
we consider a two-sine product function displayed in
Figure 1 (left) maximized for f(0.867526) ≈ 0.975599.
Figure 5 displays the performance of StoSOO for differ-
ent levels of noise. We observe that as we increase the
number of evaluations, the regret of StoSOO decreases.
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Figure 5. StoSOO’s performance for function f1. Left:
Noised with NT (0, 0.01). Middle: Noised with NT (0, 0.1).
Right: Noised with NT (0, 1).
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Figure 6. StoSOO (dia-
monds) vs. Stochastic
DOO with `1 (circles)
and `2 (squares) on f1.

In Figure 6, we compare
StoSOO to the straightfor-
ward stochastic version of
DOO (Munos, 2011), where
we expand each node after
log(n2/δ)/(2w(h)2) evalua-
tions (i.e. when the size of
the confidence interval be-
comes smaller than the di-
ameter w(h) of the cell).

However, (stochastic) DOO needs to know the semi-
metric ` in order to define w(h). We evaluate the
performance of this stochastic DOO using two semi-
metrics that satisfy Assumption A1: `1(x, y) = 12|x−
y| (for which d = 1/2) and `2(x, y) = 144|x − y|2 (for
which d = 0). We observe that StoSOO performs as
well as stochastic DOO for the better metric without
the knowledge of it.

Garland function: Next, we consider a garland func-
tion displayed in Figure 1 (right). The optimization of
this function is challenging because f2 is not Lipschitz
for any L. However its near-optimality dimension is
still d = 0 (Section 5.2). Figure 7 shows the perfor-
mance of StoSOO as we vary the number of the eval-
uations. Notice a higher variance at iteration 200 in
the left plot; this is because for that many iterations,
StoSOO was able to reach the depth h = 6 but only for
a few nodes (while only h = 5 for less iterations) with
small number of d200/(log3(200))e = 2 evaluations.

 100  200  300  400  500  600  700  800  900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

re
gr

et
 (

lo
ss

)

number of function evaluations
 100  200  300  400  500  600  700  800  900 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

re
gr

et
 (

lo
ss

)

number of function evaluations

Figure 7. StoSOO’s performance for the garland function.
Left noised with NT (0, 0.01). Right: Noised with
NT (0, 0.1).

7. Conclusion

We presented the StoSOO algorithm that is able to
optimize black-box stochastic functions, without the
knowledge of their smoothness. We derived a finite-
time performance bound on the expected loss for the
important case when there exists a semi-metric such
that the near-optimality dimension d = 0. We showed
that this case corresponds to a large class of functions.
In such cases, the performance is almost as good as
with an algorithm that would know the best valid semi-
metric. In the future we plan to derive finite-time per-
formance for the case d > 0.
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Finite-time Analysis of the Multiarmed Bandit
Problem. Machine Learning, 47(2-3):235–256, 2002.
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bag, Michèle, Silver, David, Szepesvári, Csaba, and
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