
Generic Exploration and K-armed Voting Bandits
(extended version)

Tanguy Urvoy tanguy.urvoy@orange.com
Fabrice Clerot fabrice.clerot@orange.com
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Abstract

We study a stochastic online learning scheme
with partial feedback where the utility of de-
cisions is only observable through an estima-
tion of the environment parameters. We pro-
pose a generic pure-exploration algorithm,
able to cope with various utility functions
from multi-armed bandits settings to duel-
ing bandits. The primary application of this
setting is to offer a natural generalization of
dueling bandits for situations where the envi-
ronment parameters reflect the idiosyncratic
preferences of a mixed crowd.

1. Introduction

The stochastic multi-armed bandits became popular
as a stripped-down model of exploration versus ex-
ploitation balance in sequential decision problems. In
its simplest formulation, we are facing a slot machine
with several arms. The rewards of these arms are mod-
eled by unknown but bounded and independent ran-
dom variables. To maximize our long term reward,
we would like to play an arm with maximal expected
value but we need to explore efficiently all the arms in
order to find it.

The cost of ignorance is traditionally expressed in
term of expected regret : the expected difference of re-
ward between a playing policy established with perfect
knowledge of the environment parameters and a given
”unaware” policy. Following Lai & Robbins (1985),
several regret analysis have been proposed (see for in-
stance Auer et al., 2002; Audibert et al., 2008; Auer &
Ortner, 2011).
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Another way to evaluate bandit algorithms is to con-
sider pure-exploration or PAC sample complexity : how
to find a nearly-optimal arm with high confidence in a
minimum of trials? For multi-armed bandits, several
algorithms where already proposed and studied from
this perspective in (Even-Dar et al., 2002; 2006).We
can also reverse the PAC question to control the pre-
diction accuracy after a fixed number of samples as in
(Audibert et al., 2010; Bubeck et al., 2011).

When the number of trials is bounded by a known
horizon, we can adopt an explore then exploit strategy
to control the final regret with an efficient exploration
algorithm (Yue et al., 2012). This is the perspective
we adopt here.

1.1. Rigged bandits

As an introduction to our generic exploration setting
we consider the rigged bandits problem which is a sim-
plified model for click-fraud in online advertising.

In this variant of multi-armed bandits we know from
a reliable source (the barmaid of the casino) that the
m best arms of the slot machine have been rigged and
only deliver counterfeit money. To maximize our gain,
we want to design a sequence of experiments in order
to determine and play the pm` 1qth best arm as early
as possible while avoiding the rigged arms.

The main characteristic of this problem lies in the ab-
sence of a direct utility feedback: to estimate our real
income we need to know with enough confidence which
arms were rigged. This problem also requires what
we call a generic exploration policy: we do not want
to design a new exploration algorithm for each pos-
sible fraud-detection criterion we have at hand (see
section 5.1 for a formalized example).
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1.2. Dueling bandits

The dueling bandit problem, introduced by Yue &
Joachims (2009) to formalize online learning from pref-
erence feedback, shares the indirect or parametric feed-
back property with rigged bandits. The initial motiva-
tion to depart from the absolute-reward model came
from information retrieval evaluation where the im-
plicit feedback by means of click logs is strongly bi-
ased by the ranking itself. A solution was proposed
by Joachims (2003) to circumvent this problem: by
interleaving two ranking models, and checking where
the user clicked, one obtains an unbiased – but pair-
wise – preference feedback. Further experiments were
performed in (Chapelle et al., 2012).

The original definition of the dueling bandits problem
(Yue et al., 2012; Yue & Joachims, 2011) was built
upon strong assumptions about the preference matrix:
existence of a strict linear ordering, stochastic tran-
sitivity and stochastic triangular inequality (see Yue
& Joachims, 2011). An extension of this setting with
restricted pairing was proposed by Di Castro et al.
(2011), but this extension also assumes the preference
matrix to be the byproduct of an inherent value for
each arm.

In a situation where the preferences reflects the ex-
pression of a mixed crowd, there can be several incon-
sistencies or voting paradoxes which contradict these
assumptions. The definition we propose here is more
relaxed: we do not assume the existence of a perfect
linear order, neither do we assume the existence of
an inherent value of arms. We simply try to sample
efficiently the preference matrix in order to propose
a ”best element” similar to the one we would choose
with perfect knowledge of the crowd preferences.

Electing a ”best element” or a ”best linear ordering”
from such a preference matrix is a tough but old and
well-studied problem (see Charon & Hudry, 2010, for a
survey), but the works about online and noisy declina-
tions of this problem are scarce (see however Raviku-
mar et al., 1987; Feige et al., 1994, for related prob-
lems). If we change the election criterion according
to the vast social choice theory (see Chevaleyre et al.,
2007, for a survey),we can decline the dueling ban-
dits in several unexplored flavors: for instance Borda
bandits, Copeland bandits, Slater bandits, or Kemeny
bandits.

1.3. Toward generic exploration algorithms

The traditional approach to deal with exotic sequential
decision problems is to design tailor-made algorithms
which handle simultaneously the exploration of the en-

vironment and the exploitation of its knowledge. One
purpose of this article is to explore the possibility of
a generic algorithm which automatically generates an
efficient exploration policy for any given decision crite-
rion. We propose a generic algorithm with theoretical
guarantees for the case of parametric decision problems
and we evaluate its performances on relatively simple
declinations of rigged and dueling bandits.

2. Main Problem Statement

Consider a stationary environment modeled by a vec-
tor of N unknown parameters µ “ pµ1, . . . , µN q P
r0, 1sN (By convention, we write the vectors with
bold faces). We have a noisy perception of µ mod-
eled by a vector X of N independent random vari-
ables Xi P r0, 1s verifying ErXis “ µi for each index
i “ 1, . . . , N . The only hint we may have about µ is a
set of feasible environment configurations F Ď r0, 1sN .

Let D be a set of decisions and U : D ˆ F Ñ R`

be a given utility function. From this utility function
we can derive a decision function f : F Ñ D which
computes an optimal option fpxq P arg maxd Upd,xq
for each feasible realization x of the random vector X.

The parametric decision problem consists in finding
the best decision d˚ :“ fpµq with a high probability
after a minimum amount of samples of the environ-
ment parameters.

If we have a metric L : D ˆ D Ñ R` to compare
decisions, we can also search an ε-approximation of d˚

(i.e. a decision d P D such that Lpd˚, dq ď ε).

We use a ”budgeted” version of PAC learning:

Definition 1. An algorithm is an pε, δq-PAC algo-
rithm with horizon T for the parametric decision prob-
lem if it outputs an ε-approximation of d˚ with proba-
bility at least 1´δ when it terminates with strictly less
than T samples. We call exploration time the number
of parameter samples required for termination.

This definition extends PAC learning to finite horizons:
to avoid confusion we use the term exploration time
instead of sample complexity when T is finite. The
exploration time at horizon T with δ “ 1{T provides
an upper bound for the expected cumulative regret
(see Appendix B.1 for further details).

The decision function may be the result of quite a com-
plex algorithm, but in the problems we consider here
(K-dueling bandits for instance), D is finite and the
decision function is partitioning the input space into
single-decision areas. For these problems we will as-
sume that the environment state µ falls outside of the
decision frontiers. In other words, we will assume that
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Figure 1. A simple example of binary decision function de-
fined by fpx1, x2q “ rx1 ą 1{8 ^ px1 ă 1{2 _ x2 ą x1qs
(We use the square brackets r¨s to denote the characteris-
tic function of a predicate). How accurately do we need to
estimate µ in order to take the good decision? The envi-
ronment state µ is at distance ∆1 from the nearest decision
frontier but we can stop exploring x2 as soon as we know
that x1 ă 1{2.

there exists a neighborhood of µ where f is constant.
In order to analyze the performance of our algorithm
in the next section, we will need a finer description of
this neighborhood. For instance, the binary decision
function defined in Figure 1 is constant on the neigh-
borhood of µ but it is also independent of x2 for any
configuration where x1 ă 1{2.

Let us introduce some more notations: hereafter
}x}8 :“ maxi |xi| will denote the l8 norm, Bpµ, rq :“
tx | }x´µ}8 ă ru will denote the l8 ball (or box)
of radius r around µ, and ei will denote the standard
basis vector with a 1 in the ith coordinate and 0’s else-
where.

Definition 2. Let H be a subset of F . The decision
function f is independent of its parameter i on H if
for any α P r´1,`1s we have:

x,x` αei P Hñ fpxq “ fpx` αeiq

For instance on Figure 1 the decision is independent
of x2 on the set Bpµ,∆2q. This local independence,
parametrized by the ∆i radii, captures the sensitiv-
ity of the decision to its input parameters around the
environment state µ.

3. The SAVAGE Algorithm

We propose a generic zooming algorithm to solve the
N dimensional parametric decision problem with high

Algorithm 1 SAVAGE algorithm

1: Input: X “ pX1, . . . , XN q, f , F , T , δ
2: Initialization:
3: W :“ t1, . . . , Nu, H :“ F , s :“ 1
4: @i PW : µ̂i :“ 1{2, and ti :“ 0
5: while  Acceptpf,H,Wq ^ s ď T do
6: Pick a variable index i P arg minW tt1, . . . , tNu
7: ti :“ ti ` 1
8: Sample the ith distribution xi Ð Xi

9: µ̂i :“ p1´ 1
ti
qµ̂i `

1
ti
xi

10: H :“ HX tx | |xi ´ µ̂i| ă cptiqu
11: W :“Wztj } IndepTestpf,H, jqu
12: s :“ s` 1
13: end while
14: return d̂ P fpHq

confidence. This algorithm, called SAVAGE (Sensi-
tivity Analysis of VAriables for Generic Exploration)
is described in Algorithm 1. It works by reducing pro-
gressively a box-shaped confidence set H until a sin-
gle decision remains in fpHq. The algorithm stops
exploring a parameter when it knows from a sensitiv-
ity analysis subroutine IndepTestpf,H, iq that, given
our knowledge of the environment, the final decision
will not change according to this parameter; in other
words when f is independent of i on H as formalized
in Definition 2.

The boundaries of H are defined by the confidence
radius:

cptq “

c

1

2t
logp

ηptq

δ
q , (1)

where the η function is set to 2NT , when the horizon

T is finite, and π2Nt2

3 when it is infinite (PAC setting).

Termination is controlled by the predicate:

Acceptpf,H,Wq :“ ”W “ H” (2)

which implies |fpHq| “ 1 (3)

Theorem 1. If f is independent of each parameter
i on F X Bpµ,∆iq, with ∆i ą 0, then SAVAGE is a
p0, δq-PAC algorithm with horizon T for the parametric
decision problem. When T “ 8, its sample complexity
is bounded by:

N
ÿ

i“1

O

˜

logp Nδ∆i
q

∆2
i

¸

.

When T ă 8, its exploration time is bounded by:

N
ÿ

i“1

O

˜

logpNTδ q

∆2
i

¸

.
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The proof is given in Appendix A.1.

By definition, if f is independent of each parameter i
on Bpµ,∆iq, then f is constant on the minimal box
Bpµ,Λq, where Λ “ mini ∆i. An exploration policy
without elimination would reach this neighborhood af-

ter O
´

N logpNTδ q

Λ2

¯

samples.

This means that SAVAGE will outperform a uni-
form exploration policy as soon as the ∆i are not
equal. It is also worth noting for practical purpose,
that this improvement will hold even if we replace
IndepTestpf,H, iq with a sufficient condition of in-
dependence. Such a relaxation requires however to
replace (2) by (3) to ensure termination.

3.1. Independence predicates

The independence predicate IndepTestpf,H, iq is a
property of the decision function and its feasible set. It
can thus be specialized via symbolic calculus or hand-
crafted for specific problems where the properties of f
and F are well known.

For example in traditional multi-armed bandits set-
tings, when fpx1, . . . , xN q P arg max tx1, . . . , xNu and
Hptq is encoded by a product of confidence intervals
rai, bis, we can use the SAVAGE algorithm with the
following specialized predicate IndepTestf pHptq, iq:

pDj, bi ď ajq _ p@k ‰ i, bk ď aiq . (4)

With this predicate, we fall-back almost to the ”arm
elimination” of (Even-Dar et al., 2002). We how-
ever slightly depart from this algorithm by forcing in-
clusion of the successive confidence sets: rai, bis :“
rmaxtai, µ̂i ´ cptiqu,mintbi, µ̂i ` cptiqus.

If we rather want to retrieve the pm ` 1qth best arm
like in rigged bandits, the independence predicate be-
comes:

_
pDA, |A| “ m` 1, @j P A, bi ď ajq
pDB, |B| “ N ´m, @k P B, bk ď aiq .

(5)

A simple formalization of the independence allows us
to apply SAVAGE and Theorem 1 to several other vari-
ants of multi-armed bandits.

When the knowledge about f or F is scarce, and the
dimension of the problem is not too high, another
solution that we only explored empirically is to es-
timate the independence predicate by ”introspective”
simulations. We used the multi-start random-walk ap-
proximation detailed in Algorithm 2. It provides an
”almost-everywhere statement” of the property with
an asymmetric risk of failure which can be made ar-
bitrary low by increasing the number of samples (pa-
rameters m and M). This kind of method is widely

Algorithm 2 Parameters Elimination by Sampling

1: Input: f ,H,W,m,M
2: Initialization:
3: S ÐH

4: for l “ 1, . . . ,m do
5: Sample x uniformly from H
6: x1 Ð x
7: for s “ 1, . . . ,M do
8: Pick a random parameter i PWzS
9: Re-sample xi until x P H

10: if fpxq ‰ fpx1q then
11: S :“ S Y tiu
12: end if
13: x1i Ð xi
14: end for
15: end for
16: W :“W X S

used in sensitivity analysis (see Saltelli et al., 2000, for
a survey).

3.2. Approximate decision

If the decision function f is λ-Lipschitz for the decision
comparison metric L and the l8 norm with a known
Lipschitz constant, we are able to relax the problem
by searching only an ε-approximation of the best deci-
sion. In order to do so we replace the Acceptpf,H,Wq
condition by:

@x,x1 P H, }x´ x1}8 ď
ε

λ
(6)

which implies @d, d1 P fpHq, L
`

d, d1
˘

ď ε

For example in multi-armed bandits problem, the de-
cision function is 2-Lipschitz for the utility metric
Lpd, d1q “ |Upd,µq ´ Upd1,µq|. Indeed, the utility of
an arm is its mean reward: Upi,µq “ µi, hence if d˚

is the best arm and i “ fpxq P arg maxj xj , then:

L pd˚, fpxqq “ |µd˚ ´ µi| “ µd˚ ´ µi

ď µd˚ ´ µi ` xi ´ xd˚

ď 2 ¨ }µ´ x}8 .

Theorem 2. If f is λ-Lipschitz around the environ-
ment state µ, and if f is independent of each param-
eter i on F X Bpµ,∆iq with radius ∆i ą 0, then
SAVAGE with (6) as acceptance condition is an pε, δq-
PAC algorithm with horizon T for the parametric de-
cision problem. When T “ 8, its sample complexity
is bounded by:

ÿ

i:∆iěε{λ

O

˜

logp Nδ∆i
q

∆2
i

¸

`O
ˆ

λ2Nε,λ
ε2

logp
λN

δε
q

˙

;
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where Nε,λ “ |ti | ∆i ă ε{λu|.
When T ă 8, its exploration time is bounded by:

ÿ

i:∆iąε{λ

O

˜

logpNTδ q

∆2
i

¸

`O
ˆ

λ2Nε,λ
ε2

logp
NT

δ
q

˙

.

See Appendix A.2 for the proof. The access to the
decision metric L may also be explicit in which case
we can use directly @d, d1 P fpHq, L pd, d1q ď ε, in
place for (6) but it is difficult to dispense with the
Lipschitz hypothesis to obtain a generic bound.

4. Application to K-armed Dueling
Bandits

From now on, we call KˆK preference matrix a KˆK
matrix pxi,jq such that xi,j ` xj,i “ 1 for each i, j P
t1, . . . ,Ku (we use lower-case letters to match the no-
tations of Section 2).

The K-dueling problem, as presented in (Yue et al.,
2012; Yue & Joachims, 2011), assumes the existence
of an environment preference matrix µ from which we
only have a noisy perception modeled, as in (Feige
et al., 1994), by a KˆK-matrix of random variables
Xi,j P r0, 1s verifying ErXi,js “ µi,j . Our aim is to de-
sign a sequence of pairwise experiments pit, jtq called
duels for t “ 1, . . . , T in order to find the best arm.
They also assume the following properties for the pref-
erence matrix(WLOG for a proper indexation of the
matrix):

strict linear order: if i ă j then µi,j ą
1
2 ;

γ-relaxed stochastic transitivity: if 1 ă j ă k
then γ ¨ µ1,k ě maxtµ1,j , µj,ku;

stochastic triangular inequality: if 1 ă j ă k
then µ1,k ď µ1,j ` µj,k ´

1
2 .

These last three assumptions are realistic when the
preference matrix is the result of a perturbed linear or-
der. This is indeed the case for some generative models
where the number of parameters of the environment is
assumed to be K: the inherent values of arms. In a
situation where the preferences may contain cycles (or
voting paradoxes) there is no clear notion of what the
best arm is, and the notion of regret is unclear.

To avoid these problems, we propose to consider a
”voting” variant of K-dueling bandits where a pair-
wise election criterion is used to determine the best
candidate from the preference matrix. Several election
systems can be used, but we will focus here on a sim-
ple and well-established one: the Copeland pairwise
aggregation method (see Charon & Hudry, 2010).

4.1. Copeland bandits

If x is a KˆK preference matrix, we define the
Copeland score of an arm i by its number of one-to-one
majority victories:

UCoppi,xq “
ÿ

j

rxi,j ą
1

2
s . (7)

Any element of arg maxi UCoppi,xq is called a Copeland
winner of the matrix.

4.1.1. General Copeland bandits

With a preference matrix of size K we have N “

KpK ´ 1q{2 free parameters to estimate: we can en-
code H as a product of intervals rai,j , bi,js and apply
the SAVAGE algorithm with IndepTestf pH, pi, jqq “

pai,j ą
1
2 _ bi,j ă

1
2 q _Cop pH, pi, jqq ,

where Cop pH, pi, jqq :“ Di` s. t.,

^
pminUcoppi

`,Hq ą maxUcoppi,Hqq
pminUcoppi

`,Hq ą maxUcoppj,Hqq .

(8)

By applying Theorem 1, we obtain an exploration time
bound of order:

ÿ

iăj

O

˜

logpKT {δq

∆2
i,j

¸

ď O
ˆ

K2 logpKT {δq

Λ2

˙

, (9)

where ∆i,j “ |µi,j ´
1
2 | for any i ă j, and Λ “

miniăj ∆i,j . This bound requires weak assumptions
about the preference matrix µ but its strong depen-
dence on the ”hard” parameters (when µi,j is close to
1
2 ) makes it quite conservative. The behavior of the
algorithm is more efficient in practice.

4.1.2. Condorcet assumption

If there exists an arm fpxq preferred to all the others,
it is unique and verifies UCoppfpxq,xq “ K ´ 1. The
existence of this arm, called Condorcet winner of the
matrix, allows us to tighten the exploration bound.

Property 1. If the environment state µ admits arm
i˚ as a Condorcet winner with ∆ “ minj‰i˚ µi˚,j ´

1
2

and ∆i,j “ maxt∆, |µi,j ´
1
2 |u then f is independent

of xi,j on Bpµ,∆i,jq for any i ă j.

See Appendix A.3 for the proof.

By applying Theorem 1 when Property 1 holds, we
obtain a bound which is less sensitive to the presence
of tight duels than (9) without changing the algorithm.

If we know the existence of a Condorcet winner, we
can also tame the SAVAGE algorithm by restricting
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the feasible set F to the KˆK-preferences matrices
admitting a Condorcet winner:

FCond :“ tx | Di˚, UCoppi
˚,xq “ K ´ 1u . (10)

We can obtain a formal independence test in Fcond by
replacing (8) with:

_
pmaxxPH UCoppi,xq ă K ´ 1q
pmaxxPH UCoppj,xq ă K ´ 1q

(11)

To stop exploration with an ε-approximation1 of the
winner, we replace Acceptpf,H,Wq by:

@x P H, K´1´ UCoppfpxq,xq ď ε . (12)

Theorem 3. If the environment state µ is known to
admit a Condorcet winner i˚ “ fpµq then SAVAGE
with FCond as feasible set and (12) as acceptance con-
dition is an pε, δq-PAC algorithm with horizon T for
the Copeland bandits problem. When T “ 8, its sam-
ples complexity is bounded by:

K´1
ÿ

j“ε`1

O

˜

j ¨ log p K
δ∆j
q

∆2
j

¸

.

Where for each j ‰ i˚ we have ∆j “ µi˚,j´
1
2 (indexed

WLOG by increasing values of ∆j).
When T ă 8 its exploration time is bounded by:

K´1
ÿ

j“ε`1

O

˜

j ¨ logpKTδ q

∆2
j

¸

.

A proof is given in Appendix A.4 This is a signif-
icant improvement from (9) but it does not remove
the quadratic term K2. This leading K2 factor is the
price we pay for accepting less constrained preference
matrices.

4.2. Borda bandits

Another simple way to elect the winner of the matrix
is to use Borda count. Each competitor is ranked ac-
cording to its mean performance against others:

UBorpi,xq “ xi,¨ “
ÿ

j

xi,j . (13)

The main advantage of this criterion is that it both of-
fers stability (the utility is linear) and clearly reduces
the dimension of the problem to only K parameters:
xi,¨ for i “ 1, . . . ,K. This means that we can sim-
ply wrap a classical bandit algorithm to search for the
Borda winner of the matrix. It is quite easy however to

1ε is the number of tolerated defeats.
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Figure 2. A 100-armed rigged bandit designed in order to
game simple exploration algorithms : the four apparently
best arms only deliver counterfeit money. The algorithm
must sample intensively the arms 5 to 10 in order to guess
that 5 is the best.

design a Condorcet preference matrix where the Borda
winner is not the Condorcet winner2.

The decision criterion underlying the Beat the Mean
Bandit algorithm proposed by (Yue & Joachims, 2011)
is different: the matrix rows are explored to find Borda
loosers which are progressively eliminated from the
matrix until only one arm remains. This election pro-
cedure called Bottom-up Borda elimination returns the
Condorcet winner if there exists one. SAVAGE being
a generic algorithm, it can be applied directly to these
two voting criteria.

5. Simulations

Algorithm 3 Online sampling evaluation process

for t “ 1, . . . , T do
Choose a parameter i and explore Xi outcome
Choose decision d̂t accordingly
Get unknown reward Upd̂t,µq

end for

In order to compare algorithms of different natures,
we used the pure-exploration online setting described
in Algorithm 3. We considered both the best-decision
rate and the regret U pd˚,µq ´ Upd̂t,µq. For all algo-
rithms except Interleave Filtering and Beat the Mean,
we took d̂t :“ fpµ̂ptqq. For PAC algorithms, we took
ε “ 0 and δ “ 1{T (explore-then-exploit setting). The
sample time where the best-decision rate reaches 1´ δ
gives an empirical estimation of the PAC exploration
time. To avoid nasty side-effects, we shuffled the ma-
trices/parameters at each run.

2There exist also K-armed stochastic bandit settings
which are non transitive (Gardner, 1970).
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Figure 3. Behavior of the different algorithms for 1000 sim-
ulations with Figure 2 distribution. The top figure depicts
the best-arm rate, the middle figure show the cumulative
regret and the bottom one tracks the number of active arms
for elimination algorithms. Time scale is logarithmic.

5.1. Bandits simulations

For bandits problems the decision space and the explo-
ration space coincide, but we are here in a pure explo-
ration setting where the arm we predict to be the best
is not necessary the one we explore. We considered
the following algorithms for our bandits simulations:

Uniform: baseline uniform exploration policy (each
arm is explored once in a round-robin manner);

Naive UCB: UCB1 (as in Auer et al., 2002);

Naive Elimination: applies Action elimination al-
gorithm (as described in Even-Dar et al., 2002);

Wrapped UCB: applies UCB1 to the wrapped re-
ward random variable Ûi “ Upi, µ̂q used as a
proxy for Upi,µq;

Wrapped Elimination: applies Action elimination
with the above ”wrapped reward”;

SAVAGE: applies Algorithm 1 with ηptq :“ 2NT
and predicate (5) with m “ 4;

SAVAGE Sampling: Algorithm 1 with a sampled
independence predicate and 1000 simulations by
arm (see Algorithm 2).

We compared these algorithms on several Bernoulli re-
ward distributions. We give here the simulation re-
sult for a rigged bandits problem specially designed
in order to illustrate the different exploration behav-
iors of the algorithms. In this setting, the utility of
arm i (indexed WLOG by decreasing µi) is defined by
Upi,µq “ 0 if i ă 5 and Upi,µq “ µi otherwise (see
Figure 2 for the reward distribution, and Figure 3 for
the simulations results). As expected, the maximizing
policies like UCB explore aggressively the head of the
distribution but after around 103 samples fall into the
rigged arms and neglect the second part of the distri-
bution head. The wrapped versions are less sensitive
to this trap, but the non-linearity of the utility and the
violation of independence it induces both cripple their
regret performances in the beginning of the runs. As
expected, the SAVAGE versions perform well, more
surprising is the side-effect of sampling which makes
the algorithm more aggressive against weak arms.

5.2. Dueling bandits simulations

For the dueling bandits simulations, we considered
Uniform, SAVAGE, and SAVAGE Sampling poli-
cies plus the following ones:

SAVAGE/Condorcet: Algorithm 1 with (11) for
the independence test;

SAVAGE Sampling/Borda: Algorithm 1 with
sampled oracle and a Borda relaxation of the
Condorcet feasible set, i.e. Di,

ř

j xi,j ą K{2;

Interleave Filtering: as in (Yue et al., 2012, Alg. 2)

with b̂ for d̂t;

Beat the Mean: as in (Yue & Joachims, 2011) with

arg maxtP̂b | b PWlu for d̂t.

5.2.1. Condorcet simulations

We first used ”hard” KˆK Condorcet preference ma-
trices µ defined by µi,j “

1
2 ` j{p2Kq for each i ă j.

The matrices of this family verify all the assumptions
defined in Section 4 but they also offer some difficult
duels involving the Condorcet winner (for instance if
K “ 100 we have µ1,2 “ 0.51 hence ∆ “ 0.01).

The results of these experiments appear in Figure 4
and Figure 5. The SAVAGE Sampling policy slightly
improves from the formal version but its heavy in-
trospection cost makes it difficult to deploy on high-
dimension problems. Low-dimension instance of Fig-
ure 4 is not favorable for Interleave Filtering and Beat
the Mean which were designed to drop the OpK2q term
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Figure 4. Average good prediction rate and regret for 500
simulations of a 30-armed Condorcet bandit instance. We
used the Copeland index (7) to compute the regret.
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Figure 5. Same setting as in Figure 4 with K “ 400 and
the horizon set to 108. When we increase K the problem
becomes difficult.
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Figure 6. Result of 500 simulations with 30̂ 30 randomized
preference matrices.

of the bound with partial – hence risky – exploration
strategies (see Yue & Joachims, 2011).

5.2.2. General case simulations

In order to study the behavior of the algorithms
with more realistic – non-Condorcet – preferences,
we generated uniformly random preference matrices
and performed the same experiments. As expected,
when the Condorcet hypothesis is violated the perfor-
mances of specialized algorithms (including SAVAGE/
Condorcet) collapse well behind the baseline uniform
exploration policy (see Figure 6).

6. Conclusion

We proposed SAVAGE, a flexible and generic algo-
rithm based on sensitivity analysis of parameters for
online learning with indirect feedback. We provided
PAC theoretical guarantees for this algorithm when
used with proper independence predicates. We also
proposed a generic ”introspective sampling” method
to approximate theses predicates.

Our simulations confirmed and reinforced the theoret-
ical results on various parametric decision problems
from classical bandits to K-armed dueling bandits.

The ”voting bandits” framework we proposed natu-
rally extends dueling bandits for realistic situations
where the preferences reflects mixed and inconsis-
tent opinions. The SAVAGE algorithm is robust and
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clearly outperforms state-of-the art algorithms in such
situations.

The construction of a generic exploration algorithm
reaching optimality for any provided decision function
remains as a challenging open problem.

Acknowledgments

We would like to thank the reviewers for their careful
reading and helpful comments.

References

Audibert, J.Y., Munos, R., and Szepesvári, Cs.
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A. Proofs

A.1. Proof of Theorem 1

Theorem 1.
1 - Correctness
We first establish that the unknown parameter value µ will stay inside the confidence set during all the compu-
tation with a probability of at least 1 ´ δ. Let t “ pt1, . . . , tN q be a configuration of the algorithm. We denote
by Hptq its corresponding hypothesis set:

Hptq “ F X
ą

i

č

năti

tx | |xi ´ µ̂ipnq| ă cptiqu (14)

where the µ̂ipnq is used to denote the ML estimate of µi after n samples. We can bound the probability of failure:

PrDt, µ R Hptqs ď P rDi, Dt ă T s.t. |µi ´ µ̂iptq| ą cptqs ,

and by the union bound:

PrDt, µ R Hptqs ď
N
ÿ

i“1

ÿ

1ďtďT

Pr|µi ´ µ̂iptq| ą cptqs . (15)

By applying Höeffding Lemma (Hoeffding, 1963) and equation (1), we obtain:

Pr|µi ´ µ̂iptq| ą cptqs ď 2e´2tc2ptq ď
2δ

ηptq
.

Therefore, ηptq being properly chosen according to (1), we have:

PrDt, µ R Hptqs ď
N
ÿ

i“1

ÿ

1ďtďT

2δ

ηptq
“ δ .

In particular, when T “ 8, we have
ř

tě1
1
t2 “

π2

6 .

From now on we will assume that µ P H at any step of the algorithm.

2 - Sample complexity / exploration time
We are left to compute the sample complexity. We first treat the finite horizon case where ηptq “ 2NT . Let us
assume that parameter i was not eliminated after 2

∆2
i

log
`

2NT
δ

˘

sampling rounds, then:

ti ą
2

∆2
i

log

ˆ

2NT

δ

˙

ô
1

2ti
log

ˆ

2NT

δ

˙

ă
∆2
i

4

ñ cptiq ă
∆i

2
.

Let x be a point in H, and let α be a real such that x`αei P H. The point x can be projected into a new point:

x1 :“ x`
ÿ

jRW
pµj ´ xjqej (16)

Because H is the intersection of all the previous hypothesis sets, f is independent of any parameters j R W on
H, hence fpx1q “ fpxq.

By construction of the algorithm (a round-robin allocation), when the oracle is called, for all j P W we have
ti ď tj . The function cptq being strictly decreasing, we also have:

rµ̂jptjq ´ cptjq, µ̂jptjq ` cptjqs Ď rµj ´∆i, µj `∆is (17)
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Figure 7. The SAVAGE algorithm stops exploring a parameter j at configuration time t, when the decision function is
independent of xj in the confidence set Hptq. The point estimate µ̂ptq is in the middle of Hptq. The independence
property is illustrated by the bold frontier which crosses vertically Hptq on the left of the figure. Later, at configuration
time t1, when 2cpt1iq ă ∆i, the jth coordinate of the new estimation point µ̂pt1

q is unchanged. This estimation point may
be outside of the previous confidence set Hptq and violate the independence w.r.t. j, but any point in the intersection set
Hpt1

q Ď Hptq obtains the same decision as its projection to the affine hyperplane perpendicular to ej which contains µ.

and therefore x1 P Bpµ,∆iq. By hypothesis fpx1q “ fpx1 ` αeiq, hence fpx` αeiq “ fpxq: f is independent of i
on H and will be eliminated at this round. This argument is illustrated by Figure 7.

In the worst case, all parameter will be eliminated after at most
řN
i“1

2
∆2
i

log
`

2NT
δ

˘

samples.

When T is infinite, we assume that parameter i was not eliminated after 16
∆2
i

log
´

π2N
3δ∆i

¯

sampling steps which

ensures that cptiq ă ∆i{2.

Indeed, starting from:

ti ě
16

∆2
i

log

ˆ

π2N

3δ∆i

˙

, (18)

If we apply the decreasing function

c2ptq “
1

2t
log

ˆ

π2Nt2

3δ

˙

to both sides of (18) inequality, we obtain:

c2ptiq ď
∆2
i

32 log
´

π2N
3δ∆i

¯ ¨A

where:

A “ log

ˆ

π2N

3δ

˙

` 2 log

ˆ

16

∆2
i

logp
π2N

3δ∆i
q

˙

A “ log

ˆ

π2N

3δ

˙

` 4 log

ˆ

4

∆i

˙

` 2 log log

ˆ

π2N

3δ∆i

˙

A ď 4 log

ˆ

π2N

3δ∆i

˙

` 8 log p2q ` 2 log log

ˆ

π2N

3δ∆i

˙
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For any x ě 6 we have
8 log p2q ` 2 log log pxq ă 4 log pxq ,

hence for any N ě 2, 0 ď δ ď 1, and 0 ď ∆i ď 1:

8 log p2q ` 2 log log

ˆ

π2N

3δ∆i

˙

ď 4 log

ˆ

π2N

3δ∆i

˙

and finally

c2ptiq ď
∆2
i

32 log
´

π2N
3δ∆i

¯

„

8 log

ˆ

π2N

3δ∆i

˙

c2ptiq ď
∆2
i

4

In a worst-case scenario, all parameters will be eliminated after at most
řN
i“1

16
∆2
i

log
´

π2N
3δ∆i

¯

samples.

A.2. Proof for Theorem 2

Theorem 2. This proof is very similar to the one of Theorem 1. For the correctness we use exactly the same
arguments as in Appendix A.1.

For the exploration time we must consider two cases: either ∆i ě ε{λ or ∆i ă ε{λ. The former case is similar
to Theorem 1.

In the latter case, we replace ∆i by ε{λ to obtain the individual parameters sampling bounds. Indeed, when T
is finite we need at least ti ě

2λ
ε2 log

`

2NT
δ

˘

samples of parameter i to guarantee cptiq ă
ε

2λ .

When T “ 8, we obtain the same result after

ti ě
16λ2

ε2
i

log

ˆ

π2Nλ

3δε

˙

samples of parameter i.

We then use the same argument as in (16) to project the problem into a box-shaped neighborhood Bpµ̂, ε2λ q Ď
Bpµ, ελ q where

L
`

fpxq, fpx1q
˘

ď λ ¨ }x´ x1}8 ď ε .

As a result, the approximate termination condition H Ď Bpµ, ελ q is guaranteed after at most

ÿ

i:∆iěε{λ

2

∆2
i

log

ˆ

2NT

δ

˙

`
ÿ

i:∆iăε{λ

2λ2

ε2
log

ˆ

2NT

δ

˙

“

ÿ

i:∆iěε{λ

2

∆2
i

log

ˆ

2NT

δ

˙

`
2λ2Nε,λ
ε2

log

ˆ

2NT

δ

˙

samples when T is finite.

And after

ÿ

i:∆iěε{λ

16

∆2
i

log

ˆ

π2N

3δ∆i

˙

`
ÿ

i:∆iăε{λ

16λ2

ε2
i

log

ˆ

π2Nλ

3δε

˙

“

ÿ

i:∆iěε{λ

16

∆2
i

log

ˆ

π2N

3δ∆i

˙

`
16λ2Nε,λ

ε2
log

ˆ

π2Nλ

3δε

˙

samples when T “ 8.
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A.3. Proof of Property 1

Property 1. Two possibilities:

(a) ∆i,j “ |µi,j ´
1
2 |, or

(b) ∆i,j “ ∆ “ minj‰i˚ µi˚,j ´
1
2 .

In the former case for any xi,j P rµi,j´∆i,j , µi,j`∆i,js, we have
“

xi,j ą
1
2

‰

“
“

µi,j ą
1
2

‰

hence the independence
w.r.t. xi,j on Bpµ,∆i,jq.

In the latter case, for any j ‰ i˚, we have Bpµ,∆i,jq Ď Bpµ, µi˚,j ´
1
2 q hence f pBpµ,∆qq “ ti˚u: we have the

independence w.r.t. any parameter on Bpµ,∆q.

A.4. Proof of Theorem 3

Theorem 3. 1 - Domino arms elimination
Suppose WLOG that i˚ “ fpµq “ 1. We will show that if the parameter x1,l is eliminated then all parameters
of the form xi,l or xl,j will be automatically eliminated at the same round.

Let sl be the number of samples required to obtain cpslq ď ∆l{2, hence

rµ̂1,l ´ cpslq, µ̂1,l ` cpslqs Ď rµ1,l ´∆l, µ1,l `∆ls

and therefore ensure with high confidence that l is a loosing arm. In other words if t1,l ą sl then @x P Hptq we
have: x1,l ą

1
2 . Consider the following two facts:

fact 1: @x P Hptq, fpxq ‰ l (because xl,1 ď
1
2 );

fact 2: @x P Hptq,@j ‰ fpxq: xfpxq,j ą
1
2 (by def. of FCond and f).

Let x P Hptq and x1 P Hptq a ”perturbation” of x along the x¨,l and xl,¨ parameters:

@i, j i ‰ l ^ j ‰ lñ x1i,j “ xi,j . (19)

Suppose that fpxq ‰ fpx1q. From Fact 1 we have both fpxq ‰ l and fpx1q ‰ l hence by applying (19) and the
”symmetry” of preference matrices, we have:

x1fpx1q,fpxq “ 1´ xfpxq,fpx1q (20)

According to Fact 2, we have both x1fpx1q,fpxq ą
1
2 and xfpxq,fpx1q ą

1
2 which contradicts (20). As a consequence,

the IndepTest predicate will be true for all parameters involving the lth arm.

2 - Summation
Let sj be such that t ě sj ñ cptq ď ∆j{2. For instance if T is finite we take sj :“ 2

∆j
log

`

2NT
δ

˘

(see

Appendix A.1).

If the ∆j radii are indexed by increasing values, the first column elimination will append at least after sK´1 “
2

∆j
log

`

2NT
δ

˘

full-matrix sampling rounds. This will cost a total of KpK´1q
2 sK´1 samples. In a worst case, the

second elimination will cost pK´1qpK´2q
2 psK´2 ´ sK´1q samples, and so on with a cost of order jpj`1q

2 psj ´ sj`1q

at each elimination step. Any permutation of this decreasing ∆j elimination order will reduce the exploration
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time. The worst-case total cost is hence upper-bounded by:

KpK ´ 1q

2
¨ sK´1 `

pK ´ 1qpK ´ 2q

2
¨ psK´2 ´ sK´1q `

. . .

pj ` 1qj

2
¨ psj ´ sj`1q `

. . .

pε` 1q ¨ sε`1

If we reorder the sum we have:
ˆ

KpK ´ 1q

2
´
pK ´ 1qpK ´ 2q

2

˙

¨ sK´1 `

ˆ

pK ´ 1qpK ´ 2q

2
´
pK ´ 2qpK ´ 3q

2

˙

¨ sK´2 `

. . .
ˆ

pj ` 1qj

2
´
jpj ´ 1q

2

˙

¨ sj `

. . .

pε` 1q ¨ sε`1

“

K´1
ÿ

j“ε`1

j ¨ sj

hence the result.
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B. Additional content

B.1. A note about Explore then Exploit

The ”budgeted” extension of PAC learning we introduced in Definition 1 was motivated by the explore-then-
exploit strategy proposed in (Yue et al., 2012, section 4). When the horizon is known in advance, this strategy
allows us to reduce any good exploration algorithm mechanically into a good regret minimization algorithm.

Let T be a given time horizon, a ”budgeted PAC” exploration algorithm EXPLOREpq is used to guess the best
decision with precision ε :“ 0 and confidence δ :“ 1{T in less than T samples steps. Let t̂ be the effective
termination time of this algorithm (t̂ is a random variable), let T̂ pε, δ,N, T q ď T be an upper bound for t̂ (this

one is not a random variable), and let d̂s be the decision chosen after s sampling steps. If t̂ ă T , we enter an

exploit phase by repeatedly choosing the decision d̂t̂. The main process terminates after T sampling rounds:

Algorithm 4 Explore then exploit

d̂t̂ :“ EXPLOREpε “ 0, δ “ 1{T, T q
for s :“ pt̂` 1q to T do

Play d̂t̂
end for

The regret or opportunity loss is the difference of utility between the best strategy and a given strategy:

rs “ Upd˚,µq ´ Upd̂s,µq . (21)

This value is a random variable and the expected cumulative regret at horizon T is defined by:

ErRT s “ E

«

T
ÿ

s“1

rs

ff

.

We split this sum into exploration and exploitation phases:

ErRT s “ E

»

–

t̂
ÿ

s“1

rs `
T
ÿ

s“t̂`1

rs

fi

fl .

If the utility is upper-bounded by 1, we can upper-bound the exploration regret by T̂ ` 1:

ErRT s ď T̂ ` pT ´ T̂ q ¨ Errss

ď T̂ ` pT ´ T̂ q ¨ Prd̂ ‰ d˚s

ď T̂ `
T ´ T̂

T

ď T̂ ` 1

B.2. A few implementation details

In order to obtain generic code, we made a heavy use of C++ templates combined with the Boost libraries uBLAS
and Random.

For our experiments, we encoded the confidence set H as a product of confidence intervals:

H “ F X
ą

i

rai, bis .

With this encoding, the intersection step 10 of Algorithm 1 is performed by updating ai and bi:

rai, bis :“ rmaxtai, µ̂i ´ cptiqu,mintbi, µ̂i ` cptiqus



Generic Exploration and K-armed Voting Bandits

Our implementation of Algorithm 2 uses a crude rejection sampling in order to sample from feasible set F on steps
5 and 9. Most examples we considered in our simulations use simple feasible sets, but in order to avoid infinite
loops we added a security guard: if no instance is found after more than M trials, the features in consideration
are added directly to S. A side-effect of this security guard is to fall back to round-robin sampling when the
proposed set F is empty or too flat.

B.3. An example to illustrate the formal Copeland independence predicate

In (8), the residual predicate Cop pH, pi, jqq is used to test independence for parameters like x3,4 in the following
undetermined preference matrix:

1 1 1 1 0 UCopp1,xq “ 3
2 0 1 1 0 UCopp2,xq “ 2
3 0 0 ? ? UCopp3,xq P r0, 2s
4 0 0 ? 1 UCopp4,xq P r1, 2s
5 1 1 ? 0 UCopp5,xq P r2, 3s

(22)

This matrix is defined from H “
Ś

iăjrai,j , bi,js by:

mi,j “

$

&

%

1 when ai,j ą 1{2
0 when bi,j ă 1{2
? when 1

2 P rai,j , bi,js
(23)

The Copeland winner decision is independent of x3,4 because both UCopp3,xq and UCopp4,xq are dominated by
UCopp1,xq. On the other hand, the decision is not independent of x3,5 because UCopp5,xq is not dominated. If
we use (8) without Cop pH, pi, jqq term, we only have a sufficient condition of independence.

B.4. An example to illustrate the formal Condorcet independence predicate

If the barmaid of the casino has been kind enough to tell us that our preference matrix admits a Condorcet winner,
the feasible set will become the one of (10). For instance if we have the following undetermined preference matrix:

1 ? ? ? 1 UCopp1,xq P r1, 4s
2 ? 0 ? ? UCopp2,xq P r0, 3s
3 ? 1 0 ? UCopp3,xq P r1, 3s
4 ? ? 1 0 UCopp4,xq P r1, 3s
5 0 ? ? 1 UCopp5,xq P r1, 3s

(24)

By definition of a Condorcet winner, his Copeland index is UCoppi
˚,xq “ K ´ 1 “ 4: only row 1 can satisfy

this condition. Sampling will reject non-Condorcet matrices automatically but the formal independence test (8)
has to be replaced by (11) in order to give a necessary condition of independence.

Predicate (11) is encoded by:

_

`

Dk ą i, bi,k ă
1
2 _Dl ă i, al,i ą

1
2

˘

`

Dk ą j, bj,k ă
1
2 _Dl ă j, al,j ą

1
2

˘

.

B.5. Other parametric decision problems

As mentioned in the conclusion, the SAVAGE algorithm allows us to deal with several variants of bandits
problems as soon as we have formalized their decision functions and independence predicates. We give here the
experiment we performed with two additional examples of bandits problems:

B.5.1. Argmax bandits

As mentioned in section 3.1, with the arg max decision function, the formal independence predicate is (4). With
the same distribution as in Figure 2 – but without rigged arms – we obtain the performance curves of Figure 8.
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Figure 8. Behavior of the different algorithms for 1000 simulations with Figure 2 distribution and the usual arg max
decision function. As expected, UCB takes the lead while the uniform policy explores too much the tail of the distribution.

It is worth noting that SAVAGE and (Even-Dar et al., 2002) action elimination behave differently even on this
classical bandit setting.

B.5.2. Counting bandits

There is no need for the decision space to be the parameter space, the decision function does not even require
to be defined as a utility maximization. For instance the parametric decision may be the number of parameters
satisfying a given predicate in which case D “ t0, . . . , Nu. This is what we call counting bandits. On Figure 9
we give an experiment we made with fpxq :“ |ti | xi P p0.4, 0.6qu|.

The real count is d˚ “ fpµq, and for the regret we used the error |d˚ ´ fpµ̂q|. The independence predicate is:

IndepTestf pHptq, iq “ pbi ă 0.4_ 0.6 ă aiq _ p0.4 ă ai ^ bi ă 0.6q . (25)

B.6. Additional dueling bandits experiments

The simulation of Figure 10 is the same as the one of Figure 6 but with K “ 50. Figure 11 is a simulation we
made with the same preference matrix as in (Yue & Joachims, 2011). For the regret, we used an utility defined
by 1 ´ µi˚,i. A main difference with (Yue & Joachims, 2011) remains: we do not assume here the decision to
be the explored arm. As explained at the end of Section 3, it is difficult to outperform a uniform exploration
strategy on the long run with these kind of ”flat” preference matrices.

B.7. Decision functions visualization attempt

We give here the results of some side-experiments we performed in order to map decision functions. These
visualizations are of course extremely distorted but they allows us illustrate the principle of generic exploration:
we navigate in fog, but we have the map.
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Figure 9. The distribution of Figure 2 with a counting decision function.
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Figure 10. Same random setting as in Figure 6 with K “ 50 instead of 30.
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Figure 11. An experiment with K “ 100 and a flat Condorcet preference matrix (µi,j “ 0.6 for all i ă j).
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Figure 12. A 2D slice of the 3-dueling bandits decision space with resp. Borda and Copeland winning conditions. The
3ˆ3-preference matrix is entirely defined by 3 parameters p1,2 “ µ1, p1,3 “ µ2, and p2,3 “ µ3 (see Section 4). The Borda
winner is the row i which maximizes the sum

ř

j pi,j while the Copeland winner is the one which maximizes the number
of one-to-one ”victories”

ř

jrpi,j ą 0.5s. In case of tie, the lowest index is chosen.
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5th best 28-rigged bandit Borda 8-dueling bandit

Copeland 8-dueling Bottom-up Elimination 8-dueling

Figure 13. Four examples of decision boundaries plotted on the same surface embedded into a decision space of dimension
28: each time we cross a bold line, the ”best arm” decision changes. The top left figure show a rigged bandits with 28
arms. The three other examples shape the decision boundaries obtained with different election criteria (with a preference
matrix of size 8 we have 28 free parameters).


