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Abstract

In this paper, we present a novel method
for robustly performing collective classifica-
tion in the presence of a malicious adver-
sary that can modify up to a fixed number of
binary-valued attributes. Our method is for-
mulated as a convex quadratic program that
guarantees optimal weights against a worst-
case adversary in polynomial time. In ad-
dition to increased robustness against active
adversaries, this kind of adversarial regular-
ization can also lead to improved generaliza-
tion even when no adversary is present. In
experiments on real and simulated data, our
method consistently outperforms both non-
adversarial and non-relational baselines.

1. Introduction

In collective classification (Sen et al., 2008), we wish
to jointly label a set of interconnected objects using
both their attributes and their relationships. For ex-
ample, linked web pages are likely to have related
topics; friends in a social network are likely to have
similar demographics; and proteins that interact with
each other are likely to have similar locations and re-
lated functions. Probabilistic graphical models, such
as Markov networks, and their relational extensions,
such as Markov logic networks (Domingos & Lowd,
2009), can handle both uncertainty and complex re-
lationships in a single model, making them well-suited
to collective classification problems.

However, many collective classification models must
also cope with test data that is drawn from a dif-
ferent distribution than the training data. In some
cases, this is simply a matter of concept drift. For
example, when classifying blogs, tweets, or news ar-
ticles, the topics being discussed will vary over time.
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In other cases, the change in distribution can be at-
tributed to one or more adversaries actively modify-
ing their behavior in order to avoid detection. For
example, when search engines began using incoming
links to help rank web pages, spammers began post-
ing comments on unrelated blogs or message boards
with links back to their websites. Since incoming links
are used as an indication of quality, manufacturing in-
coming links makes a spammy web site appear more
legitimate. In addition to web spam (Abernethy et al.,
2010; Drost & Scheffer, 2005), other explicitly adver-
sarial domains include counter-terrorism, online auc-
tion fraud (Chau et al., 2006), and spam in online so-
cial networks.

Rather than simply reacting to an adversary’s actions,
recent work in adversarial machine learning takes the
proactive approach of modeling the learner and adver-
sary as players in a game. The learner selects a func-
tion that assigns labels to instances, and the adversary
selects a function that transforms malicious instances
in order to avoid detection. The strategies chosen de-
termine the outcome of the game, such as the success
rate of the adversary and the error rate of the chosen
classifier. By analyzing the dynamics of this game, we
can search for an effective classifier that will be robust
to adversarial manipulation. Even in non-adversarial
domains such as blog classification, selecting a clas-
sifier that is robust to a hypothetical adversary may
lead to better generalization in the presence of concept
drift or other noise.

Early work in adversarial machine learning in-
cluded methods for blocking the adversary by an-
ticipating their next move (Dalvi et al., 2004), re-
verse engineering classifiers (Lowd & Meek, 2005a;b)
(and later: (Nelson et al., 2010)), and building clas-
sifiers robust to feature deletion or other invari-
ants (Globerson & Roweis, 2006; Teo et al., 2008).
More recently, Brückner and Scheffer showed that, un-
der modest assumptions, Nash equilibria can be found
for domains such as spam (Brückner & Scheffer, 2009).
However, current adversarial methods assume that in-



Convex Adversarial Collective Classification

stances are independent, ignoring the relational nature
of many domains.

In this paper, we present Convex Adversarial Col-
lective Classification (CACC), which combines the
ideas of associative Markov networks (Taskar et al.,
2004a) (AMNs) and convex learning with invari-
ants (Teo et al., 2008). Unlike previous work in learn-
ing graphical models, CACC selects the most effec-
tive weights assuming a worst-case adversary who can
modify up to a fixed number of binary-valued at-
tributes. Unlike previous work in adversarial machine
learning, CACC allows for dependencies among the la-
bels of different objects, as long as these dependencies
are associative. Associativity means that related ob-
jects are more likely to have the same label, which is
a reasonable assumption for many collective classifica-
tion domains. Surprisingly, all of this can be done in
polynomial time using a convex quadratic program.

In experiments on real and synthetic data, CACC finds
much better strategies than both a näıve AMN that
ignores the adversary and a non-relational adversar-
ial baseline. In some cases, the adversarial regular-
ization employed by CACC helps it generalize better
than AMNs even when the test data is not modified
by any adversary.

The rest of our paper is organized as follows. In Sec-
tion 2, we present a brief overview of Markov networks
and associative Markov networks as applied to collec-
tive classification. In Section 3, we review previous
work on adversarial machine learning. We introduce
our formulation and algorithm in Section 4. Section 5
contains our experiments on real and synthetic data,
and we conclude in Section 6 with a discussion of on-
going and future work.

2. Max-Margin Relational Learning

We use uppercase bold letters (X) to represent sets of
random variables, lowercase bold letters (x) to repre-
sent their values, and subscripts and superscripts (xij ,
yki ) to indicate individual elements in those sets.

Markov networks (MNs) represent the joint distribu-
tion over a set of random variables X = {X1, . . . , XN}
as a normalized product of factors:

P (X) =
1

Z

∏

i

φi(Di)

where Z is a normalization constant so that the distri-
bution sums to one, φi is the ith factor, and Di ⊆ X

is the scope of the ith factor. Factors are sometimes
referred to as potential functions. For positive distri-
butions, a Markov network can also be represented as

a log-linear model:

P (X) =
1

Z
exp

(

∑

i

wifi(Di)

)

where wi is a real-valued weight and fi a real-valued
feature function. For the common case of indicator
features, each feature equals 1 when some logical ex-
pression over the variables is satisfied and 0 otherwise.

A factor or potential function is associative if its value
is at least as great when the variables in its scope
take on identical values as when they take on dif-
ferent values. For example, consider a factor φ pa-
rameterized by a set of non-negative weights {wk},
so that φ(yi, yj) = exp(wk) when yi = yj = k and
1 otherwise. φ is clearly associative, since its value
is higher when yi = yj . An associative Markov net-
work (AMN) (Taskar et al., 2004a) is an MN where
all factors are associative. Certain learning and in-
ference problems that are intractable in general MNs
have exact polynomial-time solutions in AMNs with
binary-valued variables, as will be discussed later.

An MN can also represent a conditional distribution,
P (Y|X), in which case the normalization constant be-
comes a function of the evidence, Z(X).

In this paper, we focus on collective classification, in
which each object in a set is assigned one of K labels
based on its attributes and the labels of related ob-
jects. We now give an example of a simple log-linear
model for collective classification, which we will con-
tinue to use for the remainder of the paper. Following
Taskar et al. (2004a), let yki = 1 if the ith object is
assigned the kth label, and 0 otherwise. We use xij

to represent the value of the jth attribute of the ith
object. The relationships among the objects are given
by E, a set of undirected edges of the form (i, j).

Our model includes features connecting each attribute
xij to each label yki , represented by the product xijy

k
i .

To add the prior distribution over the labels, we simply
define an additional feature xi,0 that is 1 for every
object, similar to a bias node in neural networks. For
each pair of related objects (i, j) ∈ E, we also include
a feature yki y

k
j which is 1 when both the ith and jth

object are assigned label k. This leads to the following
model:

P (y|x) =
1

Z(x)
exp





∑

ijk

w
k
j xijy

k
i +

∑

(i,j)∈E,k

w
k
ey

k
i y

k
j





(1)

Note that all objects share the same attribute weights,
wk

j , and all links share the same edge weights, wk
e , in

order to generalize to unseen objects and relationship
graphs. This model can also be easily expressed as
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a Markov logic network (MLN) (Domingos & Lowd,
2009) in which formulas relate class labels to other
attributes and the labels of linked objects.

A common inference task is to find the most probable
explanation (MPE), the most likely assignment of the
non-evidence variables y given the evidence. This can
be done by maximizing the unnormalized log proba-
bility, since log is a monotonic function and the nor-
malization factor Z is constant over y. For the simple
collective classification model, the MPE task is to find
the most likely labeling given the links and attributes:

argmax
y

∑

ijk

wk
j xijy

k
i +

∑

(i,j)∈E,k

wk
ey

k
i y

k
j

In general, inference in graphical models is compu-
tationally intractable. However, for the special case
of AMNs with binary-valued variables, MPE inference
can be done in polynomial time by formulating it as
a min-cut problem (Kolmogorov & Zabin, 2004). For
wk

e ≥ 0, our working example of a collective clas-
sification model is an AMN over the labels y given
the links E and attributes x. In general, associative
interactions are very common in collective classifica-
tion problems since related objects tend to have sim-
ilar properties, a phenomenon known as homophily.
Markov networks and MLNs are often learned by max-
imizing the (conditional) log-likelihood of the train-
ing data (e.g., (Lowd & Domingos, 2007)). An alter-
native is to maximize the margin between the cor-
rect labeling and all alternative labelings, as done by
max-margin Markov networks (M3Ns) (Taskar et al.,
2004b) and max-margin Markov logic networks
(M3LNs) (Huynh & Mooney, 2009). Both ap-
proaches are intractable in the general case. For the
special case of AMNs, however, max-margin weight
learning can be formulated as a quadratic program
which gives optimal weights in polynomial time as
long as the variables are binary-valued (Taskar et al.,
2004a). We now briefly describe the solution of Taskar
et al., which will later motivate our adversarial exten-
sion of AMNs. (We use slightly different notation from
the original presentation in order to make the struc-
ture of x and y clearer.)

The goal of the AMN optimization problem is to max-
imize the margin between the log probability of the
true labeling, h(w,x, ŷ), and any alternative label-
ing, h(w,x,y). For our problem, h follows from (Eq.
1): h(w,x,y) =

∑

i,j,k w
k
j xijy

k
i +

∑

(i,j)∈E,k w
k
ey

k
i y

k
j .

We can omit the logZ(x) term because it cancels in
the difference. Margin scaling is used to enforce a
wider margin from labelings that are more different.
We defined this difference as the Hamming distance:

∆(y, ŷ) = N −
∑

i,k y
k
i ŷ

k
i where N is the total number

of objects. We thus obtain the following minimization
problem with an exponential number of constraints
(one for each y):

min
w,ξ

1

2
‖w‖2 + Cξ (2)

s.t. h(w,x, ŷ)− h(w,x,y) ≥ ∆(y, ŷ)− ξ ∀y ∈ Y

Minimizing the norm of the weight vector is equivalent
to maximizing the margin. The slack variable ξ repre-
sents the magnitude of the margin violation, which is
scaled by C and used to penalize the objective func-
tion. To transform this into a tractable quadratic pro-
gram, Taskar et al. modify it in several ways. First,
they replace each product yki y

k
j with a new variable

ykij and add constraints ykij ≤ yki and ykij ≤ ykj . In

other words, ykij ≤ min(yki , y
k
j ), which is equivalent

to yki y
k
j for yki , y

k
j ∈ {0, 1}. Second, they replace the

exponential number of constraints with a continuum
of constraints over a relaxed set of y ∈ Y ′, where
Y ′ = {y : yki ≥ 0;

∑

k y
k
i = 1; ykij ≤ yki ; y

k
ij ≤ ykj }.

Since all constraints share the same slack variable, ξ,
we can take the maximum to summarize the entire set
by the most violated constraint. After applying these
modifications, substituting in h and ∆, and simplify-
ing, we obtain the following optimization problem for
our collective classification task:

min
w,ξ

1

2
‖w‖2 + Cξ

s.t. w ≥ 0;

ξ −N ≥ max
y∈Y′

∑

i,j,k

w
k
j xij(y

k
i − ŷ

k
i )

+
∑

(i,j)∈E,k

w
k
e (y

k
ij − ŷ

k
ij)−

∑

i,k

y
k
i · ŷk

i (3)

Finally, since the inner maximization is itself a lin-
ear program, we can replace it with the minimization
of its dual to obtain a single quadratic program (not
shown). For the two-class setting, Taskar et al. prove
that the inner program always has an integral solution,
which guarantees that the weights found by the outer
quadratic program are always optimal.

For simplicity and clarity of exposition, we have used a
very simple collective classification model as our work-
ing example of an AMN. This model can easily be
extended to allow multiple link types with different
weights, link weights that are a function of the ev-
idence, and higher-order links (hyper-edges), as de-
scribed by Taskar et al. (2004a). Our adversarial vari-
ant of AMNs, which will be described in Section 4,
supports most of these extensions as well.
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3. Adversarial Machine Learning

Most classic learning algorithms assume that train-
ing and test data are drawn from the same distribu-
tions. However, in many real world applications, an
adversary will actively change its behavior to avoid
detection, leading to significantly worse performance
in practice. For example, spammers add and remove
words from their email messages in order to bypass
spam filters, and web spammers try to deceive search
engines by creating “link farms” to make a web site
seem more important. In computer and network se-
curity, many bots are engineered to attack network
computers and change their behavior so that intrusion
detection systems fail to detect them.

Designing machine learning algorithms that are ro-
bust to malicious adversaries is an area of growing
interest (Laskov & Lippmann, 2010). One approach
is to formulate the problem as a game between the
learner and an adversary, each with its own set of
strategies and rewards. Dalvi et al. (2004) note
that finding a Nash equilibrium is often intractable
and propose a strategy to anticipate the adversary’s
next move instead. Brückner and Scheffer (2009)
present a method to find a Nash equilibrium for non-
zero sum games that satisfy certain convexity condi-
tions. In later work, they present results for finding
Stackelberg equilibria as well (Brückner & Scheffer,
2011). One special case of adversarial manipu-
lation is feature deletion, in which the adversary
chooses the features to remove that would most
harm the classifier’s performance. This results in
a zero-sum game between the learner and adversary
that can be solved using robust minimax methods
as in (Lanckriet et al., 2004; El Ghaoui et al., 2003;
Kim et al., 2006; Globerson & Roweis, 2006). Teo et
al. (2008) is more general, allowing any set of adversar-
ial actions that afford an efficient numerical solution
to be represented as an invariant while learning.

We take particular inspiration from Globerson and
Roweis (2006) and Teo et al. (2008), which take the
quadratic program of a max-margin learning problem
and substitute in the adversary’s worst-case modifica-
tion of the evidence. By formulating the adversary’s
modification as a linear program and taking the dual,
the learning problem remains convex.

However, none of these methods handles collective
classification, in which the label of each object depends
on the labels of its neighbors.

4. Convex Adversarial Collective

Classification

Collective classification problems are hard because the
number of joint label assignments is exponential in the
number of nodes. As discussed in Section 2, if neigh-
boring nodes are more likely to have the same label,
then the collective classification problem can be repre-
sented as an associative Markov network (AMN), in
which max-margin learning and MPE inference are
both efficient. To construct an adversarial collective
classifier, we start with the AMN formulation (Eq. 3)
and incorporate an adversarial invariant, similar to the
approach of Globerson and Roweis (2006). Specifi-
cally, we assume that the adversary may change up to
D binary-valued features xij , for some positive integer
D that we select in advance. We use x̂ to indicate the
true features and x to indicate the adversarially mod-
ified features. The number of changes can be written
as: ∆(x, x̂) =

∑

i,j xij + x̂ij − 2xij x̂ij

We define the set of valid x as X ′ = {x : 0 ≤ xij ≤
1;∆(x, x̂) ≤ D}. Note that X ′ is a relaxation that
allows fractional values, much like the set Y ′ defined
by Taskar et al. We will later show that there is always
an integral solution when both the features and labels
are binary-valued.

In our adversarial formulation, we want the true la-
beling ŷ to be separated from any alternate labeling
y ∈ Y ′ by a margin of ∆(y, ŷ) given any x ∈ X ′.
Rather than including an exponential number of con-
straints (one for each x and y), we use a maximization
over x and y to find the most violated constraint:

max
y∈Y′,x∈X ′

h(w,x,y)− h(w,x, ŷ) + ∆(y, ŷ)

= max
y∈Y′,x∈X ′

∑

i,j,k

wk
j xijy

k
i +

∑

(i,j)∈E,k

wk
ey

k
ij

−
∑

i,j,k

wk
j xij ŷ

k
i −

∑

(i,j)∈E,k

wk
e ŷ

k
ij

+N −
∑

i,k

yki · ŷki (4)

Next, we convert this to a linear program. Since xijy
k
i

is bilinear in x and y, we replace it with the auxiliary
variable zkij , satisfying the constraints: zkij ≥ 0; zkij ≤

xij ; and zkij ≤ yki . The removes the bilinearity and is

exactly equivalent as long as xij or yki is integral.

Putting it all together and removing terms that are
constant with respect to x, y, and z, we obtain the
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following linear program:

max
x,y,z

∑

i,j,k

w
k
j (z

k
ij − ŷ

k
i xij) +

∑

(i,j)∈E,k

w
k
ey

k
ij −

∑

i,k

y
k
i · ŷk

i

s.t. 0 ≤ xij ≤ 1;
∑

i,j

xij + x̂ij − 2xij x̂ij ≤ D

0 ≤ y
k
i ;

∑

k

y
k
i = 1; y

k
ij ≤ y

k
i ; y

k
ij ≤ y

k
j

z
k
ij ≤ xij ; z

k
ij ≤ y

k
i ∀i, j, k (5)

Given the model’s weights, this linear program al-
lows the adversary to change up to D binary features.
Recall that, in the AMN formulation, the exponen-
tial number of constraints separating the true labeling
from all alternate labelings are replaced with a single
non-linear constraint that separates the true labeling
from the best alternate labeling (Eqs. 2,3). This non-
linear constraint contains a nested maximization. We
have a similar scenario, but here the margin can also
be altered by changing the binary features, affecting
the probabilities of both the true and alternate label-
ings. By substituting this new MPE inference task
(Eq. 5) into the original AMN’s formulation, the re-
sulting program’s optimal solution will be robust to
the worst manipulation of the input feature vector:

min
w,ξ

1

2
‖w‖2 + Cξ s.t. w ≥ 0;

ξ −N ≥ max
x,y,z

∑

i,j,k

w
k
j (z

k
ij − ŷ

k
i xij) +

∑

(i,j)∈E,k

w
k
ey

k
ij

−
∑

i,k

y
k
i · ŷk

i s.t.

0 ≤ y
k
i ;

∑

k

y
k
i = 1; y

k
ij ≤ y

k
i ; y

k
ij ≤ y

k
j

0 ≤ xij ≤ 1;
∑

i,j

xij + x̂ij − 2xij x̂ij ≤ D

z
k
ij ≤ xij ; z

k
ij ≤ y

k
i (6)

The mathematical program in Eq. (6) is not convex be-
cause of the bilinear terms and the nested maximiza-
tion (similar to solving a bilevel Stackelberg game).
Fortunately, we can use the strong duality property
of linear programs to resolve both of these difficul-
ties. The dual of the maximization linear program is
a minimization linear program with the same optimal
value as the primal problem. Therefore, we can re-
place the inner maximization with its dual minimiza-
tion problem to obtain a single convex quadratic pro-
gram that minimizes over w, ξ, and the dual variables
(not shown). A similar approach is used by Globerson

and Roweis (2006). As long as this relaxed program
has an integral optimum, it is equivalent to maximizing
only over integral x and y. Thus, the overall program
will find optimal weights. Taskar et al. (2004a) prove
that the inner maximization in a 2-class AMN always
has an integral solution. We can prove a similar result
for the adversarial AMN:

Theorem 1. Eq. 5 has an integral optimum when w ≥
0 and the number of classes is 2.

Proof Sketch. The structure of our argument is to
show that an integral optimum exists by taking an ar-
bitrary adversarial AMN problem and constructing an
equivalent AMN problem that has an integral solution.
Since the two problems are equivalent, the original ad-
versarial AMN must also have an integral solution.
First, we use a Lagrange multiplier to incorporate the
constraint ∆(x, x̂) ≤ D directly into the maximiza-
tion. The extra term acts as a “per-change” penalty,
which remains linear in x. Minimizing over the La-
grange multiplier effectively adjusts this per-change
penalty until there are at most D changes between x

and x̂, but does not affect the integrality of the inner
maximization. Next, we replace all x variables with
equivalent variables v. Assume that either w1

j = 0 or

w2
j = 0, for all j. (If both are positive, then we can

subtract the smaller value from both to obtain a new
set of weights with the same optimum as before.) We
define v as follows:

v1ij =

{

xij if w1
j > 0,

1− xij if w1
j = 0.

v2ij = 1− v1ij

By construction:

∑

i,j,k

w
k
j xij(y

k
i − ŷ

k
i ) =

∑

i,j,k

w
k
j v

k
ij(y

k
i − ŷ

k
i )

Thus, we can replace the x variables with v. Since
the connections between the vkij and corresponding yki
variables are all associative, this defines an AMN over
variables {y,v}, which is guaranteed to have an inte-
gral solution when there are only two classes.

By translating v back into x, we obtain a solution that
is integral in both x and y.

Many extensions of our model are possible. One ex-
tension is to restrict the adversary to only changing
certain features of certain objects. For example, in
a web spam domain, we might assume that the ad-
versary will only modify spam pages. We could also
have different budgets for different types of changes,
such as a separate budget for each web page, or even
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separate budgets for changing the title of a web page
and changing its body. These are easily expressed by
changing the definition of X ′ and adding the appropri-
ate constraints to the quadratic program. Our model
can also support higher-order cliques, as described by
Taskar et al. (2004a), as long as they are associative.
For simplicity, our exposition and experiments focus
on the simpler case described above.

One important limitation of our model is that we do
not allow edges to be added or removed by the adver-
sary. While edges can be encoded as variables in the
model, they result in non-associative potentials, since
the presence of an edge is not associated with either
class label. Instead, the presence of an edge increases
the probability that the two linked nodes will have the
same label. Handling the adversarial addition and re-
moval of edges is an important area for future work,
but will almost certainly be a non-convex problem.

5. Experiments

In this section, we describe our experimental evalua-
tion of CACC. Since CACC is both adversarial and
relational, we compared it to four baselines: AMNs,
which are relational but not adversarial; SVMIn-
var (Teo et al., 2008), which is adversarial but not re-
lational; and SVMs with a linear kernel, which are
neither. AMNs, SVMInvar, and SVMs can be seen as
special cases of CACC: fixing the adversary’s budget
D to zero results in an AMN, fixing the edge weights
wk

e to zero results in SVMInvar, and doing both results
in an SVM.

5.1. Datasets

We evaluated our method on three collective classifi-
cation problems.

Synthetic. To evaluate the effectiveness of our
method in a controlled setting where the distribution
is known, we constructed a set of 10 random graphs,
each with 100 nodes and 30 Boolean features. Of the
100 nodes, half had a positive label (‘+’) and half had
a negative label (‘−’). Nodes of the same class were
more likely to be linked by an edge than nodes with dif-
ferent classes. The features were divided evenly into
three types: positive, negative, and neutral. Half of
the positive and negative nodes had different feature
distributions based on their class; that is, the positive
nodes had more positive attributes and the negative
nodes had more negative attributes, on average. In
such nodes, on average there are 6 words, one of which
is of the opposite class’s words, two words are consis-
tent with the class label and three words are neutral.

The other half of the nodes had an ambiguous distribu-
tion consisting mainly of the neutral words (on average
one word is consistent with class label, one word is not
consistent and 3 words are neutral). Therefore, an ef-
fective classifier for these graphs must rely on both the
attributes and relations. On average, each node had
8 neighbors, 7 of which had the same class and 1 of
which had a different class.

Political Blogs. Our second domain is based on
the Political blogs dataset collected by Adamic and
Glance (2005). The original dataset contains 1490
online blogs captured during the 2004 election cycle,
their political affiliation (liberal or conservative), and
their linking relationships to other blogs. We extended
this dataset with word information from four different
crawls at different dates in 2012: early February, late
February, early May and late May. We used mutual in-
formation to select the 100 words that best predict the
class label (Peng et al., 2005), only using blogs from
February and half of the blogs in early May, in order
to limit the influence of test labels on our training pro-
cedure. We found that some of the blogs in the original
dataset were no longer active, and had been replaced
by empty or spam web pages. We manually removed
these from consideration. Finally, we partitioned the
blogs into two disjoint subsets and removed all edges
between nodes in the different subsets.

Reuters. As our third dataset, we prepared a Reuters
dataset similar to the one used by Taskar et al.
(2004a). We took the ModApte split of the Reuters-
21578 corpus and selected articles from four classes:
crude, grain, trade, and money-fx. We used the 200
words with highest mutual information as features.
We linked each document to the two most similar doc-
uments based on TF-IDF weighted cosine distance.
We split the data into 7 sets based on time, and per-
formed the tuning and then the training phases based
on this temporal order (as explained in 5.2).

5.2. Methodology and Metrics

In order to evaluate the robustness of these methods
to malicious adversaries, we applied a simulated ad-
versary to both the tuning data and the test data. We
assumed the worst-case scenario, in which the adver-
sary has perfect knowledge of the model parameters
and only wants to maximize the error rate of the clas-
sifier. Since exactly maximizing the error rate is typi-
cally NP-hard, our intelligent adversary instead maxi-
mizes the margin loss by solving the linear program in
Eq. (5) for a fixed budget. Each model was attacked
separately. On the validation data, we used adversar-
ial budgets of 0% (no adversarial manipulation), 10%,
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(a) Synthetic dataset: 0%
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(b) Synthetic dataset: 10%
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(c) Synthetic dataset: 20%
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(d) Political blogs: 0%
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(e) Political blogs: 10%
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(f) Political blogs: 20%
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(g) Reuters: 0%
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(h) Reuters: 10%
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(i) Reuters: 20%

Figure 1. Accuracy of different classifiers in presence of worst-case adversary. The number following the dataset name
indicates the adversary’s strength at the time of parameter tuning. The x-axis indicates the adversary’s strength at test
time. Smaller is better.

and 20% of the total number of features present in the
data. This allowed us to tune our models to “expect”
adversaries of different strengths. Of course, we rarely
know the exact strength of the adversary in advance.
Thus, on the test data, we used budgets that ranged
from 0% to 25%, in order to see how well different
models did against adversaries that were weaker and
stronger than expected.

We used the fraction of misclassified nodes as our pri-
mary evaluation criterion. For all methods, we tuned
the regularization parameter C using held-out valida-
tion data. For the adversarial methods (CACC and
SVMInvar), we tuned the adversarial training budget
D as well. All parameters were selected to maximize

performance on the tuning set with the given level of
adversarial manipulation.

For political blogs, we tuned our parameters using
the words from the February crawls, and then learned
models on early May data and evaluated them on late
May data. In this way, our tuning procedure could
observe the concept drift within February and select
parameters that would handle the concept drift dur-
ing May well. For Synthetic data, we ran 10-fold cross
validation. For Reuters, we split the data into 7 sets
based on time. We tuned parameters using articles
from time t and t + 1 and then learned on articles at
time t+ 1 and evaluated on articles from time t+ 2.

We used CPLEX to solve all quadratic and linear pro-
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gramming problems. Most problems were solved in
less than 1 minute on a single core.

All of our code and datasets are available upon request.

5.3. Results and Discussion

Figure 1 shows the performance of all four methods
on test data manipulated by rational adversaries of
varying strength (0%-25%), after being tuned against
adversaries of different strengths (0%, 10%, and 20%).
Lower is better. On the far left of each graph is per-
formance without an adversary. To the right of each
graph, the strength of the adversary increases.

When a rational adversary is present, CACC clearly
and consistently outperforms all other methods. When
there is no adversary, its performance is similar to
a regular AMN. On political blogs, it appears to be
slightly better, which may be the result of the large
amount of concept drift in that dataset.

As expected, tuning against stronger adversaries (10%
and 20%) makes CACC more effective against stronger
adversaries at test time. Surprisingly, tuning against
a stronger adversary does not significantly reduce per-
formance against weaker adversaries: CACC remains
nearly as effective against no adversary when tuned
for a 20% adversary as when tuned for no adversary.
Specifically, when there is no adversary at test time,
the increase in error rate from training against a 20%
adversary is less than 1% on Synthetic and Reuters,
and on Political the error rate actually decreases
slightly. Thus, this additional robustness comes at a
very small cost.

In Figures 1(d), 1(e), and 1(f), the AMN classification
error jumps sharply as the adversary budget increases.
This is the point when enough nodes are mis-classified
that links are actively misleading in one or two of the
eight cross-validation folds, leading to worse perfor-
mance than the SVM for those folds. This demon-
strates that relational classifiers are potentially more
vulnerable to adversarial attacks than non-relational
classifiers. A smoother version of this effect can also
be observed on both the synthetic dataset and Reuters.

Another interesting result was that our solutions on
Reuters were always integral, even though the number
of classes is 4 and integrality is not guaranteed.

We also performed additional experiments against ir-
rational adversaries that modify attributes uniformly
at random. These random attacks had little effect
on the accuracy of any of the methods; all remained
nearly as effective as against no adversary.

6. Conclusion

In this paper, we provide a generalization of SVMIn-
var (Teo et al., 2008) and AMNs (Taskar et al., 2004a)
that combines the robustness of SVMInvar with the
ability to reason about interrelated objects. In ex-
periments on real and synthetic data, CACC finds con-
sistently effective and robust models, even when there
are more than two labels.

In future work, we intend to extend our methods
to learn adversarially regularized variants of non-
associative relational models, using approximate in-
ference and constraint generation methods as neces-
sary to cope with the intractability of inference. We
would also like to apply our methods to larger, more
realistic adversarial problems, such as web-spam. In
addition to larger size, many of these problems are
semi-supervised and include numeric attributes, which
would require some modifications to CACC.
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