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1 Proofs of Theorems

Lemma 1. For K=2, any fixed j and 0 < x;;,y¥ < 1, g% € {0,1}, lfAjC = Ziil min(z;;, y¥) —
xijgf: then Zi'{:l AJI( > 0.

Proof. A} + A2 = 30,1, min(xy, y}) — 2459 + min(ay,y7) — 24597 Since y} +y? = 1
and §} + 92 = 1, we can rewrite it as Yo, min(z;, y!) — i, (51 + 92) + min(z,;, 1 — y}) =
Zi]\il min(z;;,y}) + min(x;;, 1 — y}) — ;5. Now three cases can happen:

(@) Ifz;; > max(y},1—y}), then min(z,;, y}) +min(z;;,1— y) — Tij = yl+1—yl — Zij
=1- Tij Z 0.

(b) If min(y},1 — y}) < z;; < max(y},1 — y}), then min(z;;, min(y},1 — y})) +
min(x;;, max(yil, 1—yi1))—xij = min(z,;, min(yil, 1—yi1))—|—xij—:rij = min(x;;, yil, 1—
1
y;) > 0.

(C) If xz’j S min(yl-l, 1-— yll), then min(xij, yll) —+ min(x,;j, 1-— yll) — xij = l’,‘,j + $1'j — xij

Therefore min(z;;, y;) + min(x;;,y;) — xi; is always nonnegative and consequently A} + A3 =

N : 1 ~1 : 2 S :
Yooy min(@i;, y ) — x5y +min(x;;, y;) — 4595 is always nonnegative. O

Lemma 2. For K = 2, in the optimal solution of the final quadratic program , W* satisfies the
following property: min(w]l7 wJQ) =0VYj=1...m.

Proof. Let 6; = min(wj,w?), we define u = wj — 6; and u} = w7 — 6;, by substitution the

objective of the constraint’s linear program will be:
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According to Lemma 1, Zi(z x” yl + z” — x4;9; ) > 0, therefore the coefficient of each §; is
non-negative. Since §; = min(wj , Wj 1 >0, thus:
i. If optimization algorithm chooses smaller value for 0, the relaxed inequality constraint
will not be violated, and also smaller 6; will not imply larger &.

ii. Smaller ¢; will directly reduce the objective value.

Therefore, the optimization algorithm chooses the smallest possible 6;, which is §; = 0 Vj. So

min(wj, w?) = 0 or equivalently wjw? = 0Vj = 1. O

Theorem 1. Adversary’s problem in Eq. (3), has integral solution for both X and Y .

Proof. According to Lemma 2, we know that min(w1 w3 ) = 0 for all 5. So we can rewrite Eq. (3)
as:

k k
yE)fI’n(gié(x<1ZD” + Z w yij - ;yi + Zéz] 2.’EU Tij @))
2,
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Where Dij = wjz}; — wjxi;ji + w327, — wix;;j;. Here we assume that one the w} or w is not

371 3% J
zero because this the interesting case otherwise the proof is trivial, therefore since either w or w
is zero, we have:

[

D;; = le min(x;;, yi) — wlmijz)il + wJ2 min(x;;, y?) — wf-mijg)?
= I(wj =0) [wj min(1 — 245, y; ) — wj(l — 245)f; +w; min(wi;,y7) — wiz,;g;] +
I(w? = 0) [wj min(zj,y}) — wjz;g; +wfmin(l — z;,y7) — wi (1 — 245)97]

Let vfj = zijl(wf >0) + (1 — xiy) I (wh

7 = 0), where I(.) is the indicator function, then:

Dij = I(wjl = 0) [ jlmln( z]vyz) ]1 'Lljyz + w]2 min(vzgﬁyi) - wzvijf} +
I(w? = 0) [w] mm( yi) — wijvsd +w? min(vy,y7) — wivg;g; |
J J ij> Ji W;Vi;Yi J ij> Ji ijJi
= I(w} =0)+ I( j = 0)) [w min(v ijayi) - 1‘ 11]1711 + wj min(v ijvyiz) - w?”?ﬂ?zz]
= w]l min(viljayzl) w Uz]yz + UJ HllIl( z]ayz) 2 z2]y12 (2)



1 2 _ .
Clearly, we Ui 1, because:

v 4o = Jcijl(wjl» >0)+(1- xij)l(wjl» =0)+ xijl(wf >0)+(1- JEU)I(u)J2 =0)

= zy [I(w] > 0) + I(w] > 0)] +(1 — z5) [I(w]

=1 =1
= xij—l—l—xij:l.

Obviously, as a result we will have zf]

crease the objective, so the solver program will choose the maximum possible value for zfj By
lemma 3, and reformulation of suggested D;; in Eq. (2), we conclude that Eq. (1) has integral solu-
tion for y; and vf; for all i, j and k = 1, 2. Since inetgrality of v; implies integrality of x;;, proof
is complete. O

= min(vf;, y}), because otherwise increasing zJ; can in-

Lemma 3. IfK=2, forany W = [W W?2|, Wk = [wF, ..., wF T, linear program in Eq. (1), has
an integral solution.

Proof. Here, our argument is similar to the proof of the theorem 3.1 of [1]. We show that for any
fractional solution X (and respectively V) and Y of Eq. (1), we can construct a new feasible integral
assignment X’ and Y, that increases the objective or does not change it.

Since all w*’s and wf’s are positive, therefore, yfj = min(yf,yf) and zfj = min(y¥, z;;); this
means that the slack variables corresponding to zf} < yf zfj < z;; and yfj < yf yfj < y;-“ are zero,
because otherwise by increasing yfj or zfj, the objective could be increased.

Let A" = min(min; .50y}, ming; - vf;) and X = Al or A = —\%. We propose a new con-
struction of solution, that either increases the objective or does not change it, and at the same time
reduces the number of fractional values in the solution.

v;]l = v — M0 <uvj; <1), U;JQ = v} + M(0 < v} <1)
Zh o= 2L - A(0< 2l <), 22 =23 M(0< 2E < 1)
il o= gl =M<yl <), yP=y2+A0<yi<1)

vig = Yy — MO <y <), yij =yl + AM(< 0y <1)

It is obvious that by this update, at least two of the fractional values become integral. First, we
show that in this new construction, values remain feasible. So we need to show that vijl- + vi? =
1,y;1 + y;z =1, v;’-“ >0, y;k 2 0, y;f = min(y;k,yf) and z;;“ = min(v;;“, y;k) In the following
we show that all of the feasibility requirements are satisfied.

v;}—i—v;? = vilj—/\l(0<vi1j<1)+vi2j+)\l(0<vi2j<1:v}j+vfj:1.
ylty? = oyl MO<yl <D+ +MO0<yi <) =yl +yP=1

Above we used the fact that if v; is fractional then v7; will also be fractional, and similarly if y; is
fractional then y? will also be fractional, since v}; +v% = 1 and y} +y? = 1. To show v;¥ > 0 and
y;® > 0, we prove that min;; vif > 0 and min; y,* > 0.
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The last step in showing that the proposed construction is feasible is showing that y;f
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min(y;*, y*) and z;¥ = min(v;}, y;*).
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yh — M0 <yl <1)

min(y;, y;) — AI(0 < min(yz-l, y}) <1)
min(y; — M0 <y <1),y} — A0 < y] < 1))
min(yi ,yjl).

yh M0 < yf < 1)
min(yiz,y?) + AM(0 < min(y2, yjz) <1
min(y; + M (0 <y} <1),y7 + A0 <y} < 1))

min(y,”, y;°)

i — )\I(O <z <1)
mm( —A(0< v P < 1) M0 <y <1))

min(vij , yi )

zfj + (0 < ZEJ <1
min(v;, y7) + (0 < min(vf;, y7) < 1)
min(vy; + A(0 < v}; < 1),57 + M (0 <y} <1))

. ’ ’
mln(vi?‘v yi*)-

)

min | min Ui, min v — (min( min yr, min v i)
9 Y k>0 i, U >0

— (min( min y¥, min v ))I(O <yk <))

)



So far we have shown that the new variable construction is feasible, and it remains to show that
we can increase the objective. We substitute the newly constructed feasible values in Eq. (1) and
subtract the objective with unchanged values from it. Then we show that with proper choice of
A = Al orof A = —\2, we can improve the objective.

Voia = ZDZ]+ Z wyfjfzyf +251] — 2845) i
ik

(i,J)EEk

— 2,2 ~2
= E wz —wv]yz—i—wz — W;V;5Y;

Y wl =Dy +Z5u — 245)s;
(1,J)EEk ik

— 2 ~2
- E :w] ”—wval—&—wz _wvz]yz

Y whylh =Yy
ik

(i,.J)EE,k

+Z§U — 2d4;) [(I(w} > 0) — I(w} = 0)) v}, + I(w} = 0)]
= Zw Z; L —w! U”yZ + wj z2 —w; vuyz2

+ wyfj—Zyﬁﬂf

(i,5)EE,k
T Z (1= 22) (J(w} >0) = I(w] =0))]v}; + C.

Above we have used the fact that z;; = I(w} > 0)vk + I(w} = 0)(1 — vk) = I(w}! >
0)v;} + I(w! = 0)(1 —v;}) = (I(w; >0) — I(w}! = 0)) vl + I( wt =0).



_ 2.2 2,202
View = E wzw wval—kw Z5 — Wiv;5Y;

—|—Zwy Zy

(i,4)EEk
+Z (1= 2345) (I(w}>0)—l(w}=0>)]v;}+0

= Z[wl(zll—/\l(0<zi1j<l)) wyl(Z —)\I(O<v <1))

J T

,J
+ w2~(z»2A + A0 < 22. <1)) - wzgf(vfj + A0 < U?j < 1))

+ ) [wiyl — M0 <yl < 1) +wi(yd + M0 <y < 1))]
(i,J)EE

—Z — M0 <y <1)+3; - (¥ + M0 <y} < 1))

+ Z (1= 2255) (I(w} > 0) — I(w} = 0))] (v, = X0 < v <1)+C
Vod + Z M0 < 2 < 1)) —wigh(=M(0 < v} < 1))

()\I(O<z <1)) - wyl()\l(0<v <1))]

+ Z A0 <yl < 1)) +w2(M(0 < yi; <1))]
(i,J)EE
—Z (=M(0 <y} <1)+§7- (+M(0<y? < 1))

+ Z (1= 225;) (I(w} > 0) — I(w} = 0))] (=A[(0 < v); < 1)).

Therefore, we can write V,,c, — Vioiq as:

Vnew - Vold = )‘[Z[_wjll(o < Zilj < 1) + wjlgll‘[(o < Uilj < 1)
i,
+w2-I(O < 2-2- <1)-— w2- G2I(0 < U-Q- < 1)]
+ ) [FwlI0 <yl < 1)+ wlI(0 <y} <1)]
(i.j)EE
—Zyz —10 <y < 1) +37 - (+1(0 <yf < 1))

+Z —055(1 = 2&45) (I (wJ1 >O)—I(wJ1»:0)) I(O<vilj < 1)

= )\D.

The change in objective is AD, and since D is constant with respect to \, by choosing A = —\? for
negative D, or A\ = \! for positive D, we can always have positive or zero AD.It means that the in-
tegral solution will increase the objective or will not change it, while leaving fewer fractional values.

O

2 Random attack results

This section contains the results of the experiments where instead of a worst-case adversary, some
naive adversary has randomly changed the features. All other settings are as in the paper.
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