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Abstract

In this paper we extend temporal difference
policy evaluation algorithms to performance
criteria that include the variance of the cu-
mulative reward. Such criteria are useful
for risk management, and are important in
domains such as finance and process con-
trol. We propose variants of both TD(0)
and LSTD(λ) with linear function approxi-
mation, prove their convergence, and demon-
strate their utility in a 4-dimensional contin-
uous state space problem.

1. Introduction

In sequential decision making within the Markov De-
cision Process (MDP) framework, policy evaluation
refers to the process of mapping each state of the sys-
tem to some statistical property of its long-term out-
come, most commonly its expected reward to go. In
the fields of Reinforcement Learning (RL; Bertsekas
& Tsitsiklis, 1996; Sutton & Barto, 1998) and plan-
ning in MDPs (Puterman, 1994), policy evaluation is
a fundamental step in many policy improvement algo-
rithms. Yet in domains where policies are mostly hand
designed, for example in clinical decision making, pol-
icy evaluation is also important, for a prudent choice
of strategy must depend on it (Shortreed et al., 2011).

A principal challenge in policy evaluation arises when
the state space is large, or continuous, necessitating
some means of approximation for the process to be
tractable. This difficulty is even more pronounced
when a model of the process is not available, and the
evaluation has to be estimated from a limited amount
of samples. Fortunately, for the case of the expected
reward to go, also known as the value function and de-
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noted by J , the sequential nature of the problem may
be exploited to overcome these difficulties. Temporal
Difference methods (TD; Sutton, 1988) employ func-
tion approximation to represent J in a lower dimen-
sional subspace, and tune the approximation param-
eters efficiently from data. Enjoying both theoretical
guarantees (Bertsekas, 2012; Lazaric et al., 2010) and
empirical success (Tesauro, 1995), these methods are
considered the state of the art in policy evaluation.

However, when it comes to evaluating additional
statistics of the reward to go, such as its variance, little
is known. This is due to the fact that the expectation
plays a key role in the Bellman equation, which drives
TD algorithms.

Yet, the incentives to evaluate such statistics are ex-
tensive. In the context of RL and planning, incor-
porating such statistics into the performance evalu-
ation criteria leads to risk sensitive optimization, a
topic that has gained significant interest recently (Fi-
lar et al., 1995; Mihatsch & Neuneier, 2002; Geibel
& Wysotzki, 2005; Mannor & Tsitsiklis, 2011). In a
more general context, uncertainty in a policy’s long-
term outcome is critical for decision making in many
areas, such as financial, process control, and clinical
domains. In these domains, considering the variance of
the total reward is particularly important, as it is both
common-practice and intuitive to understand (Sharpe,
1966; Shortreed et al., 2011).

In this paper we present a TD framework for estimat-
ing the variance of the reward to go, denoted by V ,
using function approximation, in problems where a
model is not available. To our knowledge, this is the
first work that addresses the challenge of large state
spaces, by considering an approximation scheme for
V . Our approach is based on the following observa-
tion: the second moment of the reward to go, denoted
by M , together with the value function J , obey a lin-
ear ‘Bellman-like’ equation. By extending TD meth-
ods to jointly estimate J and M with linear function
approximation, we obtain a solution for estimating the
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variance, using the relation V = M − J2.

We propose both a variant of Least Squares Temporal
Difference (LSTD) (Boyan, 2002) and of TD(0) (Sut-
ton & Barto, 1998) for jointly estimating J andM with
a linear function approximation. For these algorithms,
we provide convergence guarantees and error bounds.
In addition, we introduce a novel method for enforc-
ing the approximate variance to be positive, through a
constrained TD equation. An empirical evaluation on
a challenging continuous maze problem demonstrates
the applicability of our approach to large domains, and
highlights the importance of the variance function in
understanding the risk of a policy.

A previous study by Sato et al. (2001) suggested TD
equations for J and V , without function approxima-
tion. Their approach relied on a non-linear equation
for V , and it is not clear how it may be extended to
handle large state spaces. More recently, Morimura
et al. (2012) proposed TD learning rules for a paramet-
ric distribution of the return, albeit without function
approximation nor formal guarantees. In the Bayesian
GPTD framework of Engel et al. (2005), the reward-
to-go is assumed to have a Gaussian posterior dis-
tribution, and its mean and variance are estimated.
However, the resulting variance is a product of both
stochastic transitions and model uncertainty, and is
thus different than the variance considered here.

2. Framework and Background

We consider a Stochastic Shortest Path (SSP) prob-
lem1,2 (Bertsekas, 2012), where the environment is
modeled by an MDP in discrete time with a finite
state space X , {1, . . . , n} and a terminal state x∗. A
fixed policy π determines, for each x ∈ X, a stochastic
transition to a subsequent state x′ ∈ {X ∪ x∗} with
probability P (x′|x). We consider a deterministic and
bounded reward function r : X → R, and assume zero
reward at the terminal state. We denote by xk the
state at time k, where k = 0, 1, 2, . . ..

A policy is said to be proper (Bertsekas, 2012) if there
is a positive probability that the terminal state x∗ will
be reached after at most n transitions, from any initial
state. In this paper we make the following assumption

Assumption 1. The policy π is proper.

1This is also known as an episodic setting.
2The popular infinite horizon discounted setting is actu-

ally simpler than the SSP considered here, as the discount
factor simplifies the verification of the contraction proper-
ties presented in the sequel. Therefore, all of our results
may easily be extended to that setting as well, with even
simpler proofs.

Let τ , min{k > 0|xk = x∗} denote the first visit time
to the terminal state, and let the random variable B
denote the accumulated reward along the trajectory
until that time

B ,
τ−1∑
k=0

r(xk).

In this work, we are interested in the mean-variance
tradeoff in B, represented by the value function

J(x) , E [B|x0 = x] , x ∈ X,

and the variance of the reward to go

V (x) , Var [B|x0 = x] , x ∈ X.

We will find it convenient to define also the second
moment of the reward to go

M(x) , E
[
B2|x0 = x

]
, x ∈ X.

Our goal is to estimate J(x) and V (x) from trajectories
obtained by simulating the MDP with policy π.

3. Approximation of the Variance of
the Reward To Go

In this section we derive a projected equation method
for approximating J(x) and M(x) using linear func-
tion approximation. The estimation of V (x) will then
follow from the relation V (x) = M(x)− J(x)2.

Our starting point is a system of equations for J(x)
and M(x), first derived by Sobel (1982) for a dis-
counted infinite horizon case, and extended here to
the SSP case. The equation for J is the well known
Bellman equation for a fixed policy, and independent
of the equation for M .

Proposition 2. The following equations hold for x ∈
X

J(x) = r(x) +
∑
x′∈X

P (x′|x)J(x′),

M(x) = r(x)2 + 2r(x)
∑
x′∈X

P (x′|x)J(x′) +
∑
x′∈X

P (x′|x)M(x′).

(1)

Furthermore, under Assumption 1 a unique solution
to (1) exists.

A straightforward proof is given in Appendix A.

At this point the reader may wonder why an equation
for V is not presented. While such an equation may
be derived, as was done by Tamar et al. (2012), it is
not linear. The linearity of (1) in J and M is the key
to our approach. As we show in the next subsection,
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the solution to (1) may be expressed as the fixed point
of a linear mapping in the joint space of J and M . We
will then show that a projection of this mapping onto a
linear feature space is contracting, thus allowing us to
use existing TD theory to derive estimation algorithms
for J and M .

3.1. A Projected Fixed Point Equation in the
Joint Space of J and M

For the sequel, we introduce the following vector no-
tations. We denote by P ∈ Rn×n and r ∈ Rn the
SSP transition matrix and reward vector, i.e., Px,x′ =
P (x′|x) and rx = r(x), where x, x′ ∈ X. Also, we
define the diagonal matrix R , diag(r).

For a vector z ∈ R2n we let zJ ∈ Rn and zM ∈ Rn
denote its leading and ending n components, respec-
tively. Thus, such a vector belongs to the joint space
of J and M .

We define the mapping T : R2n → R2n by

[Tz]J = r + PzJ ,

[Tz]M = Rr + 2RPzJ + PzM .
(2)

It may easily be verified that a fixed point of T is a
solution to (1), and by Proposition 2 such a fixed point
exists and is unique.

When the state spaceX is large, a direct solution of (1)
is not feasible, even if P may be accurately obtained.
A popular approach in this case is to approximate J(x)
by restricting it to a lower dimensional subspace, and
use simulation based TD algorithms to adjust the ap-
proximation parameters (Bertsekas, 2012). In this pa-
per we extend this approach to the approximation of
M(x) as well.

We consider a linear approximation architecture of the
form

J̃(x) = φJ(x)>wJ , M̃(x) = φM (x)>wM ,

where wJ ∈ Rl and wM ∈ Rm are the approximation
parameter vectors, φJ(x) ∈ Rl and φM (x) ∈ Rm are
state dependent features, and (·)> denotes the trans-
pose of a vector. The low dimensional subspaces are
therefore

SJ = {ΦJw|w ∈ Rl}, SM = {ΦMw|w ∈ Rm},

where ΦJ and ΦM are matrices whose rows are φJ(x)>

and φM (x)>, respectively. We make the following
standard independence assumption on the features

Assumption 3. The matrix ΦJ has rank l and the
matrix ΦM has rank m.

As outlined earlier, our goal is to estimate wJ and wM
from simulated trajectories of the MDP. Thus, it is
constructive to consider projections onto SJ and SM
with respect to a norm that is weighted according to
the state occupancy in these trajectories.

For a trajectory x0, . . . , xτ−1, where x0 is drawn from
a fixed distribution ζ0(x), and the states evolve ac-
cording to the MDP with policy π, define the state
occupancy probabilities

qt(x) = P (xt = x), x ∈ X, t = 0, 1, . . .

and let

q(x) =

∞∑
t=0

qt(x), x ∈ X

Q,diag(q).

We make the following assumption on the policy π and
initial distribution ζ0

Assumption 4. Each state has a positive probability
of being visited, namely, q(x) > 0 for all x ∈ X.

For vectors in Rn, we introduce the weighted Euclidean
norm

‖y‖q =

√√√√ n∑
i=1

q(i) (y(i))
2
, y ∈ Rn,

and we denote by ΠJ and ΠM the projections from
Rn onto the subspaces SJ and SM , respectively, with
respect to this norm. For z ∈ R2n we denote by Π the
projection of zJ onto SJ and zM onto SM , namely 3

Π =

(
ΠJ 0
0 ΠM

)
. (3)

We are now ready to fully describe our approximation
scheme. We consider the projected fixed point equation

z = ΠTz, (4)

and, letting z∗ denote its solution, propose the approx-
imate value function J̃ = z∗J ∈ SJ and second moment
function M̃ = z∗M ∈ SM .

We proceed to derive some properties of the projected
fixed point equation (4). We begin by stating a well
known result regarding the contraction properties of
the projected Bellman operator ΠJTJ , where TJy =
r + Py. A proof can be found at (Bertsekas, 2012),
proposition 7.1.1.

3The projection operators ΠJ and ΠM are linear, and
may be written explicitly as ΠJ = ΦJ(Φ>J QΦJ)−1Φ>J Q,
and similarly for ΠM .
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Lemma 5. Let Assumptions 1, 3, and 4 hold. Then,
there exists some norm ‖ · ‖J and some βJ < 1 such
that

‖ΠJPy‖J ≤ βJ‖y‖J , ∀y ∈ Rn.

Similarly, there exists some norm ‖ · ‖M and some
βM < 1 such that

‖ΠMPy‖M ≤ βM‖y‖M , ∀y ∈ Rn.

Next, we define a weighted norm on R2n

Definition 6. For a vector z ∈ R2n and a scalar 0 <
α < 1, the α-weighted norm is

‖z‖α = α‖zJ‖J + (1− α)‖zM‖M , (5)

where ‖ · ‖J and ‖ · ‖M are defined in Lemma 5.

Our main result of this section is given in the following
proposition, where we show that the projected opera-
tor ΠT is a contraction with respect to the α-weighted
norm.

Proposition 7. Let Assumptions 1, 3, and 4 hold.
Then, there exists some 0 < α < 1 and some β < 1
such that ΠT is a β-contraction with respect to the
α-weighted norm, i.e.,

‖ΠTz1 −ΠTz2‖α ≤ β‖z1 − z2‖α, ∀z1, z2 ∈ R2n.

Proof. First, using (2) and (3) we have that ‖ΠTz1 −
ΠTz2‖α = ‖ΠP(z1 − z2)‖α, where

ΠP =

(
ΠJP 0

2ΠMRP ΠMP

)
.

Thus, it suffices to show that for all z ∈ R2n

‖ΠPz‖α ≤ β‖z‖α.

We will now show that ‖ΠPz‖α may be separated into
two terms which may be bounded by Lemma 5, and an
additional cross term. By balancing α and β, this term
may be contained to yield the required contraction.

We have

‖ΠPz‖α =α‖ΠJPzJ‖J
+ (1− α)‖2ΠMRPzJ + ΠMPzM‖M
≤α‖ΠJPzJ‖J + (1− α)‖ΠMPzM‖M

+ (1− α)‖2ΠMRPzJ‖M
≤αβJ‖zJ‖J + (1− α)βM‖zM‖M

+ (1− α)‖2ΠMRPzJ‖M ,

(6)

where the equality is by definition of the α weighted
norm (5), the first inequality is from the triangle in-
equality, and the second inequality is by Lemma 5.

Now, we claim that there exists some finite C such
that

‖2ΠMRPy‖M ≤ C‖y‖J , ∀y ∈ Rn. (7)

To see this, note that since Rn is a finite dimensional
real vector space, all vector norms are equivalent (Horn
& Johnson, 1985) therefore there exist finite C1 and C2

such that for all y ∈ Rn

C1‖2ΠMRPy‖2 ≤ ‖2ΠMRPy‖M ≤ C2‖2ΠMRPy‖2,

where ‖ · ‖2 denotes the Euclidean norm. Let λ denote
the spectral norm of the matrix 2ΠMRP , which is fi-
nite since all the matrix elements are finite. We have
that

‖2ΠMRPy‖2 ≤ λ‖y‖2, ∀y ∈ Rn.

Using again the fact that all vector norms are equiva-
lent, there exists a finite C3 such that

‖y‖2 ≤ C3‖y‖J , ∀y ∈ Rn.

Setting C = C2λC3 we get the desired bound. Let
β̃ = max{βJ , βM} < 1, and choose ε > 0 such that

β̃ + ε < 1.

Now, choose α such that α = C
ε+C . We have that

(1− α)C = αε,

and plugging this into (7) yields

(1− α)‖2ΠMRPy‖M ≤ αε‖y‖J . (8)

We now return to (6), where we have

αβJ‖zJ‖J + (1− α)βM‖zM‖M + (1− α)‖2ΠMRPzJ‖M
≤αβJ‖zJ‖J + (1− α)βM‖zM‖M + αε‖zJ‖J
≤(β̃ + ε) (α‖zJ‖J + (1− α)‖zM‖M ) ,

where the first inequality is by (8), and the second is
by the definition of β̃. We have thus shown that

‖ΠPz‖α ≤ (β̃ + ε)‖z‖α.

Finally, choose β = β̃ + ε.

Proposition 7 guarantees that the projected operator
ΠT has a unique fixed point. Let us denote this fixed
point by z∗, and let w∗J , w

∗
M denote the corresponding

weights, which are unique due to Assumption 3

ΠTz∗ = z∗,

z∗J = ΦJw
∗
J ,

z∗M = ΦMw
∗
M .

(9)

In the next proposition we provide a bound on the
approximation error. The proof is in Appendix B.
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Proposition 8. Let Assumptions 1, 3, and 4 hold.
Denote by ztrue ∈ R2n the true value and second mo-
ment functions, i.e., [ztrue]J = J, and [ztrue]M = M .
Then,

‖ztrue − z∗‖α ≤
1

1− β
‖ztrue −Πztrue‖α,

with α and β defined in Proposition 7.

4. Simulation Based Estimation
Algorithms

In this section we propose algorithms that estimate J̃
and M̃ from sampled trajectories of the MDP, based on
the approximation architecture of the previous section.

We begin by writing the projected equation (9) in ma-
trix form. First, let us write the equation explicitly
as

ΠJ (r + PΦJw
∗
J) = ΦJw

∗
J ,

ΠM (Rr + 2RPΦJw
∗
J + PΦMw

∗
M ) = ΦMw

∗
M .

(10)

Projecting a vector y onto Φw satisfies the following
orthogonality condition

Φ>Q(y − Φw) = 0,

we therefore have

Φ>JQ (ΦJw
∗
J − (r + PΦJw

∗
J)) = 0,

Φ>MQ (ΦMw
∗
M − (Rr + 2RPΦJw

∗
J + PΦMw

∗
M )) = 0,

which can be written as

Aw∗J = b, Cw∗M = d, (11)

with

A = Φ>JQ (I − P ) ΦJ , b = Φ>JQr,

C = Φ>MQ (I − P ) ΦM , d = Φ>MQR
(
r + 2PΦJA

−1b
)
,

(12)

and the matrices A and C are invertible since Proposi-
tion 7 guarantees a unique solution to (9) and Assump-
tion 3 guarantees the unique weights of its projection.

4.1. A Least Squares TD Algorithm

Our first simulation-based algorithm is an extension
of the Least Squares Temporal Difference (LSTD) al-
gorithm (Boyan, 2002). We simulate N trajectories
of the MDP with the policy π and initial state dis-
tribution ζ0. Let xk0 , x

k
1 , . . . , x

k
τk−1 and τk, where

k = 0, 1, . . . , N , denote the state sequence and visit
times to the terminal state within these trajectories,

respectively. We now use these trajectories to form the
following estimates of the terms in (12)

AN = EN

[
τ−1∑
t=0

φJ(xt)(φJ(xt)− φJ(xt+1))>

]
,

bN = EN

[
τ−1∑
t=0

φJ(xt)r(xt)

]
,

CN = EN

[
τ−1∑
t=0

φM (xt)(φM (xt)− φM (xt+1))>

]
,

dN=EN

[
τ−1∑
t=0

φM (xt)r(xt)
(
r(xt)+2φJ(xt+1)>A−1

N bN
)]
,

(13)

where EN denotes an empirical average over trajecto-
ries, i.e., EN [f(x, τ)] = 1

N

∑N
k=1 f(xk, τk). The LSTD

approximation is given by

ŵ∗J = A−1
N bN , ŵ∗M = C−1

N dN .

The next theorem shows that LSTD converges.

Theorem 9. Let Assumptions 1, 3, and 4 hold. Then
ŵ∗J→w∗J and ŵ∗M→w∗M as N→∞ with probability 1.

The proof involves a straightforward application of the
law of large numbers and is described in Appendix C.
Convergence rates for regular LSTD were derived by
Konda (2002) and Lazaric et al. (2010), and may be
extended to the algorithm presented here. This issue
is deferred to the full version of this paper.

4.2. An Online TD(0) Algorithm

Our second estimation algorithm is an extension of
the well known TD(0) algorithm (Sutton & Barto,
1998). Again, we simulate trajectories of the MDP
corresponding to the policy π and initial state distri-
bution ζ0, and we iteratively update our estimates at
every visit to the terminal state4. For some 0 ≤ t < τk

and weights wJ , wM , we introduce the TD terms

δkJ(t, wJ , wM ) =r(xkt ) +
(
φJ(xkt+1)> − φJ(xkt )>

)
wJ ,

δkM (t, wJ , wM ) =r2(xkt ) + 2r(xkt )φJ(xkt+1)>wJ

+
(
φM (xkt+1)> − φM (xkt )>

)
wM .

Note that δkJ is the standard TD error (Sutton &
Barto, 1998). For the intuition behind δkM , observe
that M in (1) is equivalent to the value function of an
MDP with stochastic reward r(x)2+2r(x)J(x′), where
x′ ∼ P (x′|x). δkM is then the equivalent TD error, with
φJ(x′)>wJ substituting J(x′). The TD(0) algorithm

4An extension to an algorithm that updates at every
state transition is possible, but we do not pursue such here.
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is given by

ŵJ;k+1 = ŵJ;k + ξk

τk−1∑
t=0

φJ(xt)δ
k
J(t, ŵJ;k, ŵM ;k),

ŵM ;k+1 = ŵM ;k + ξk

τk−1∑
t=0

φM (xt)δ
k
M (t, ŵJ;k, ŵM ;k),

where {ξk} are positive step sizes.

The next theorem shows that TD(0) converges.

Theorem 10. Let Assumptions 1, 3, and 4 hold, and
let the step sizes satisfy

∞∑
k=0

ξk =∞,
∞∑
k=0

ξ2
k <∞.

Then ŵJ;k → w∗J and ŵM ;k → w∗M as k → ∞ with
probability 1.

The proof, provided in Appendix D, is based on rep-
resenting the algorithm as a stochastic approximation,
and using a result of Borkar (2008) to show that the
iterates asymptotically track a certain ordinary differ-
ential equation (ODE). This ODE is then shown to
have a unique asymptotically stable equilibrium ex-
actly at w∗J , w

∗
M . Convergence rates for TD(0) may

be derived along the lines of Konda (2002), with the
details deferred to the full version of this paper.

4.3. Multistep LSTD(λ) Algorithms

A common method in value function approximation is
to replace the single step mapping TJ with a multistep
version of the form

T
(λ)
J = (1− λ)

∞∑
l=0

λlT l+1
J

with 0 < λ < 1. The projected equation (10) then

becomes ΠJT
(λ)
J

(
ΦJw

∗(λ)
J

)
= ΦJw

∗(λ)
J . Similarly, we

may write a multistep equation for M

ΠMT
(λ)
M

(
ΦMw

∗(λ)
M

)
= ΦMw

∗(λ)
M , (14)

where

T
(λ)
M = (1− λ)

∞∑
l=0

λlT l+1
M∗ ,

and
TM∗ (y) = Rr + 2RPΦJw

∗(λ)
J + Py.

Note the difference between TM∗ and [T ]M defined ear-
lier; We are no longer working on the joint space of J
and M but instead we have an independent equation

for approximating J , and its solution w
∗(λ)
J is part of

Equation (14) for approximating M . By Proposition

7.1.1 of Bertsekas (2012) both ΠJT
(λ)
J and ΠMT

(λ)
M are

contractions with respect to the weighted norm ‖ · ‖q,
therefore both multistep projected equations admit a
unique solution. In a similar manner to the single step
version, the projected equations may be written in ma-
trix form

A(λ)w
∗(λ)
J = b(λ), C(λ)w

∗(λ)
M = d(λ), (15)

where

A(λ) = Φ>JQ
(
I − P (λ)

)
ΦJ , b(λ) = Φ>JQ(I − λP )−1r,

C(λ) = Φ>MQ
(
I − P (λ)

)
ΦM ,

d(λ) = Φ>MQ(I − λP )−1R
(
r + 2PΦJw

∗(λ)
J

)
,

and P (λ) = (1− λ)
∑∞
l=0 λ

lP l+1.

Simulation based estimates A
(λ)
N and b

(λ)
N of the expres-

sions above may be obtained by using eligibility traces,
as described by Bertsekas (2012), and the LSTD(λ)

approximation is then given by ŵ
∗(λ)
J = (A

(λ)
N )−1b

(λ)
N .

By substituting w
∗(λ)
J with ŵ

∗(λ)
J in the expression for

d(λ), a similar procedure may be used to derive esti-

mates C
(λ)
N and d

(λ)
N , and to obtain the LSTD(λ) ap-

proximation ŵ
∗(λ)
M = (C

(λ)
N )−1d

(λ)
N . A convergence re-

sult similar to Theorem 9 may also be obtained. Due
to the similarity to the LSTD procedure in (13), the
exact details are omitted.

5. Non Negative Approximate Variance
by Constrained Projection

The TD algorithms of the preceding section approx-
imated J and M by the solution to the fixed point
equation (9). While Proposition 8 shows that the ap-
proximation errors of J̃ and M̃ are bounded, it does
not guarantee that the approximated variance Ṽ , given
by M̃−J̃2, is non-negative for all states. A trivial rem-
edy is to set all negative values of Ṽ to zero; however,
by such we lose all information in these states. In
this section we propose an alternative method, based
on modifying the fixed point equation (9) to include
constraints for variance non-negativeness. We thus ob-
tain a different approximation architecture, in which
a non-negative variance is inherent. We now present
the constrained equation and discuss how its solution
may be computed.

First, let us write the multistep equation for the second
moment weights (14) with the projection operator as
an explicit minimization

w
∗(λ)
M = arg min

w
‖ΦMw −

(
r̃ + Φ̃w

∗(λ)
M

)
‖q,
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with

Φ̃ = P (λ)ΦM , r̃ = (I−λP )−1
(
Rr + 2RPΦJw

∗(λ)
J

)
.

Observe that a non-negative variance in some state x

may be written as a linear inequality in w
∗(λ)
M

φM (x)>w
∗(λ)
M − (φJ(x)>w

∗(λ)
J )2 ≥ 0.

We now propose to add such inequality constraints
to the projection operator. Let {x1, . . . , xs} denote a
set of states in which we demand that the variance be
non-negative. Let H ∈ Rs×m denote a matrix with the
features −φ>M (xi) as its rows, and let g ∈ Rs denote

a vector with elements −(φJ(xi)
>w
∗(λ)
J )2. We write

the non-negative-variance projected equation for the
second moment as

w+
M =

{
arg minw ‖ΦMw −

(
r̃ + Φ̃w+

M

)
‖q

s.t. Hw ≤ g
(16)

Here, w+
M denotes the weights of M̃ in the modified

approximation architecture. We now discuss whether
a solution to (16) exists, and how it may be obtained.

Let us assume that the constraints in (16) admit a
feasible solution:

Assumption 11. There exists w such that Hw < g.

Note that a trivial way to satisfy Assumption 11 is to
have some feature vector that is positive for all states.

Equation (16) is a form of projected equation studied
by Bertsekas (2011), the solution of which exists, and
may be obtained by the following iterative procedure

wk+1 = ΠΞ,ŴM
[wk − γΞ−1(C(λ)wk − d(λ))], (17)

where Ξ is an arbitrary positive definite matrix, and
ΠΞ,ŴM

denotes a projection onto the convex set ŴM =

{w|Hw ≤ g} with respect to the Ξ weighted Euclidean
norm. The following lemma, which is based on a con-
vergence result of Bertsekas (2011), guarantees that
algorithm (17) converges.

Lemma 12. Assume λ > 0, and let Assumption 11
hold. Then (16) admits a unique solution w+

M , and
there exists γ̄ > 0 such that ∀γ ∈ (0, γ̄) and ∀w0 ∈ Rm
the algorithm (17) converges at a linear rate to w+

M .

Proof. This is a direct application of the convergence
result of Bertsekas (2011). The only nontrivial as-

sumption that needs to be verified is that T
(λ)
M is a

contraction in the ‖ · ‖q norm (Proposition 1 in Bert-
sekas, 2011). For λ > 0 Proposition 7.1.1. of Bertsekas

(2012) guarantees that T
(λ)
M is indeed contracting in

the ‖ · ‖q norm.

Generally, C(λ), d(λ), and w
∗(λ)
J are not known in ad-

vance, and should be replaced in (17) with their simu-

lation based estimates, C
(λ)
N , d

(λ)
N , and ŵ

∗(λ)
J , proposed

in the previous section. The convergence of these esti-
mates, together with the result of Lemma 12, lead to
the following convergence result, which is given with-
out proof.

Theorem 13. Consider the algorithm in (17) with

C(λ), d(λ), and w
∗(λ)
J replaced by C

(λ)
N , d

(λ)
N , and ŵ

∗(λ)
J ,

respectively, and with k(N) replacing k for a specific
N . Also, let the assumptions in Lemma 12 hold, and
let γ ∈ (0, γ̄), with γ̄ defined in Lemma 12. Then
wk(N) → w+

M as N →∞ and k →∞ almost surely.

An in-depth study of the approximation architecture
(16) is deferred to the full version of this paper. How-
ever, an illustration on a toy problem is provided in
Appendix E.

6. Experiments

In this section we present numerical simulations of pol-
icy evaluation on a challenging continuous maze do-
main. The goal of this presentation is threefold; first,
we show that the variance of the reward-to-go may
be estimated successfully on a large state space. Sec-
ond, the intuitive maze domain highlights the insight
that may be gleaned from this variance, and third, we
show that in terms of sample efficiency, our LSTD(λ)
algorithm significantly outperforms the current state-
of-the-art. We begin by describing the domain and
then present our policy evaluation results.

The Pinball Domain (Konidaris & Barto, 2009) is
a continuous 2-dimensional maze where a small ball
needs to be maneuvered between obstacles to reach
some target area, as depicted in Figure 1A. The ball
is controlled by applying a constant force in one of the
4 directions at each time step, which causes accelera-
tion in the respective direction. In addition, the ball’s
velocity is susceptible to additive Gaussian noise (zero
mean, standard deviation 0.03) and friction (drag co-
efficient 0.995). The obstacles are sharply shaped, and
collisions are fully elastic. The state of the ball is thus
4-dimensional (x, y, ẋ, ẏ), and the action set is discrete,
with 4 available controls. The reward is -1 for all states
until reaching the target. A Java implementation of
the pinball domain used by Konidaris & Barto (2009)
is available on-line5 and was used for our simulations
as well, with the addition of noise to the velocity.

A near-optimal policy π was obtained using SARSA
(Sutton & Barto, 1998) with radial basis function fea-

5http://people.csail.mit.edu/gdk/software.html
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Figure 1. Experimental evaluation. A: The pinball domain. B,C: The ’true’ value function J (left color bar) and standard

deviation of the reward to go
√
V (right color bar), estimated by monte carlo. D: Approximate standard deviation

√
Ṽ ,

using LSTD(0.9); same color bar as in (C). E: RMS error of
√

Ṽ vs. number of trajectories N . Standard deviation
error-bars from 10 runs are shown.

tures. The value J and standard deviation of the
reward-to-go

√
V for this policy are plotted in Figure

1(B;C), for 1816 equally spaced states between the ob-
stacles with zero velocity. These plots were obtained
by Monte Carlo (MC) estimation of the mean and vari-
ance, using over 2 million trajectories starting from
these states. To our knowledge, MC is the current
state-of-the-art technique for obtaining such variance
estimates. As should be expected, the value is ap-
proximately a linear function of the distance to the
target. In contrast, the standard deviation is clearly
not linear in the distance, and in some places not even
monotone. Furthermore, we see that an area in the
top part of the maze before the first turn is very risky,
even more than the farthest point from the target. We
stress that this information cannot be gleaned from in-
specting the value function alone.

Figure 1D shows the approximate standard deviation√
Ṽ obtained by the LSTD(λ) algorithm of Section

4.3. We used uniform tile features for J̃ and M̃ (50×50
non-overlapping tiles in x and y without dependence
on velocity, for the same resolution as the MC esti-
mate), and set λ = 0.9. To emphasize the efficiency of
our method, we used only one sample trajectory per
each state in the MC evaluation – a total of N = 1816
trajectories, with uniformly distributed initial states.
Clearly, a single sample for each evaluation point is
insufficient for a meaningful MC variance estimate.
However, by exploiting relations between states (1),
LSTD provides a reasonable approximation.

We further explore LSTD(λ) in Figure 1E, where we

show the RMS error of
√
Ṽ (compared to the MC

estimate) for different values of λ and N . As in regular
LSTD, λ trades off estimation bias and variance.

7. Conclusion

This work presented a novel framework for policy eval-
uation in RL with respect to the variance of the reward

to go. We presented both formal guarantees and em-
pirical evidence that this approach is useful in prob-
lems with a large state space. To the best of our knowl-
edge, such problems are beyond the capabilities of pre-
vious approaches.

A requirement of variance evaluation is that it be non-
negative. We approached this issue by adding con-
straints to the second moment approximation. An
alternative is through the choice of features. Inter-
estingly, in our experiments we found that using non-
overlapping tile features produces a non-negative ap-
proximate variance. For this choice of features (identi-
cal for J and M), we can show that the direct approx-
imation is always non-negative, i.e., ΠM − (ΠJ)2 ≥ 0,
where the square is element-wise. Whether this holds
also for the fixed-point approximation, and if there are
other features with this property, is an open question.

We conclude with a discussion on policy optimiza-
tion with respect to a mean-variance tradeoff. While
a naive variance-penalized policy iteration algorithm
may be easily conceived, its usefulness should be ques-
tioned, as it was shown to be problematic for the
standard deviation adjusted reward (Sobel, 1982) and
the variance constrained reward (Mannor & Tsitsiklis,
2011). Perhaps a wiser approach would be to consider
gradient based updates. Tamar et al. (2012) proposed
policy gradient algorithms for a class of variance re-
lated criteria, and showed their convergence to local
optima. These algorithms may be extended to use the
variance function in an actor-critic type scheme. Such
a study is left for future research.
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