
Dual Averaging and Proximal Gradient Descent
for Online Alternating Direction Multiplier Method

Taiji Suzuki s-taiji@stat.t.u-tokyo.ac.jp

Department of Mathematical Informatics, The University of Tokyo, Tokyo 113-8656, Japan

Abstract

We develop new stochastic optimization
methods that are applicable to a wide range
of structured regularizations. Basically our
methods are combinations of basic stochastic
optimization techniques and Alternating Di-
rection Multiplier Method (ADMM). ADMM
is a general framework for optimizing a com-
posite function, and has a wide range of ap-
plications. We propose two types of online
variants of ADMM, which correspond to on-
line proximal gradient descent and regular-
ized dual averaging respectively. The pro-
posed algorithms are computationally effi-
cient and easy to implement. Our methods
yield O(1/

√
T) convergence of the expected

risk. Moreover, the online proximal gradi-
ent descent type method yields O(log(T)/T)
convergence for a strongly convex loss. Nu-
merical experiments show effectiveness of our
methods in learning tasks with structured
sparsity such as overlapped group lasso.

1. Introduction

Stochastic and online optimization approach is one of
the most promising approaches to efficiently process
learning tasks on big data. These days, the size of
data is rapidly increasing in various domains such as
natural language processing, image recognition, signal
processing, and bio-informatics. We often encounter
such huge data that can not fit in memory. In that sit-
uation, sequential learning procedures such as stochas-
tic and online optimizations are quite powerful tools.
Moreover high dimensionality is also a common fea-
ture of recent data. To cope with high dimensionality,
recent developments of online learning algorithms have

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

successfully involved sparse regularizations into on-
line methods, e.g., Forward-Backward-Splitting (FO-
BOS) and Regularized Dual Averaging method (RDA)
(Duchi and Singer, 2009; Xiao, 2009).

The efficiency of online algorithms with sparse reg-
ularizations relies on the efficiency of computing
the proximal operation: minx{‖x − q‖2/2 + ψ(x)}
where ψ is a regularization function. However, for
structured sparsity regularizations, it is often diffi-
cult to compute the proximal operation. Structured
sparsity is an important notion to capture complex
structures of data. Examples of that include over-
lapped group lasso, low rank tensor estimation, and
graph lasso (Jacob et al., 2009; Signoretto et al., 2010;
Tomioka et al., 2011). Alternating Direction Multi-
plier Method (ADMM) is a promising optimization
method to deal with these kinds of structured regular-
izations (Gabay and Mercier, 1976; Boyd et al., 2010;
Qin and Goldfarb, 2012). The most favorable prop-
erty of ADMM is its generality. These days, ADMM
has been gathering much attentions because it has a
broad class of applications in machine learning, image
processing, and statistics (see the survey of Boyd et al.
(2010)). However, ADMM is basically a batch method
which needs to store the whole data in memory. To re-
solve this issue, Wang and Banerjee (2012) proposed a
new method that combines the two notions; stochastic
optimization and ADMM. Theoretically, the method
posses a favorable convergence property. However, the
method needs to solve an exact non-linear optimiza-
tion in each iteration.

In this paper, we propose a couple of new online
variants of ADMM: Online Proximal Gradient de-
scent type method (OPG-ADMM) and Regularized
Dual Averaging type method (RDA-ADMM). The
core of our proposal is linearization of the loss func-
tion. In the existing analysis of online ADMM
(Wang and Banerjee, 2012), the optimization of the
loss function is assumed to be easily carried out or is
given as oracle. However, in practice, that is not nec-
essarily easy and should be carefully addressed. Our

Dual Averaging and Proximal Gradient Descent for Online ADMM

proposal gives a solution to this issue by utilizing lin-
earization of the loss function. The main features of
our algorithms are as follows:

• (Efficiency) The computations for every update
step are efficiently carried out.

• (Generality) They are applicable to a wide class
of structured regularizations.

• (Easiness of implement) The algorithms are quite
simple and easy to implement.

Moreover we show that the convergence rates of both
algorithms achieve O(1/

√
T) which is minimax op-

timal (Nemirovskii and Yudin, 1983). We also show
that OPG-ADMM achieves O(log(T)/T) convergence
for a strongly convex loss. Finally, we present numer-
ical experiments to show the effectiveness of the pro-
posed methods.

Independently of our study, Ouyang et al. (2013) de-
veloped the same algorithm as our OPG-ADMM. They
gave the convergence rate of the expected risk as in our
study. Moreover their analysis includes the tail proba-
bility of the risk which is not addressed in this paper.

2. Stochastic Optimization for
Regularized Risk Minimization

In machine learning, we often encounter the following
stochastic regularized risk minimization problem:

min
x∈X

Ew[f(x,w)] + ψ̃(x),

where x is the optimization variable (usually called
weight vector) contained in a closed convex set X ⊂
R
m, w is a sample generated from an (unknown)

underlying distribution (for example, w is an input-
output pair in supervised learning settings), f(x,w) is
a loss function that measures error of x for a sample w,
and ψ̃(x) is a regularization function that is a penalty
on complexity of x. We assume both f(·, w) and ψ̃(·)
are convex. In typical machine learning settings, we
have only finite number of samples, and consider an
empirical approximation of the expected risk:

min
x∈X

1

T

T
∑

t=1

f(x,wt) + ψ̃(x), (1)

where {wt}Tt=1 are i.i.d. samples drawn from the (un-
known) distribution. This formulation includes several
machine learning tasks such as SVM, logistic regres-
sion, ridge regression and Lasso.

To solve such a regularized risk minimization problem,
a lot of “batch” type algorithms have been proposed
(Beck and Teboulle, 2009; Figueiredo and Nowak,
2003; Combettes and Wajs, 2005; Tomioka et al.,
2012). Since batch type methods maintain all ob-
served samples during the optimization, such methods
do not work when data are so large that they cannot
fit in memory. Therefore we need an alternative
approach to tackle large size problems.

Stochastic optimization is a promising approach to
deal with such large scale data. This approach se-
quentially draws samples, one at a time, and ade-
quately update the weight vector based on the sin-
gle sample observed at the latest iteration. Here we
introduce two representative stochastic optimization
methods on the basis of which we develop new meth-
ods. The first method has several different names
including online proximal gradient descent, forward-
backward splitting (FOBOS) and online mirror de-
scent (Duchi and Singer, 2009; Duchi et al., 2010).
Here we utilize the terminology online proximal gradi-
ent descent (OPG). Let xt be the weight vector at the
t-th step, and gt be a member of the sub-gradient of
f(·, wt) evaluated at xt: gt ∈ ∇xf(x,wt)|x=xt

. Then
the update rule of OPG at the t-th step is as follows:

(OPG) xt+1=argmin
x∈X

{

g⊤t x+ ψ̃(x) +
1

2ηt
‖x− xt‖2

}

,

where ηt is a step size parameter. OPG achieves the
minimax optimal regret bound. Typically ηt is set to
be decreasing, thus the step size shrinks as the itera-
tion proceeds. The second method, Regularized Dual
Averaging (RDA), is developed on an opposite spirit.
Let ḡt :=

1
t

∑t

τ=1 gτ . Then the update rule of RDA at
the t-th step is as follows:

(RDA) xt+1 = argmin
x∈X

{

ḡ⊤t x+ ψ̃(x) +
1

2ηt
‖x‖2

}

.

In this approach ηt is typically increasing, and the reg-
ularization for the new step is vanishing. Thus RDA
does not down-grade the importance of newly observed
samples. RDA also achieves the minimax optimal re-
gret, and it is reported that RDA well captures the
regularization effect, that is, for sparse learning, RDA
usually produces a sparser solution than OPG (Xiao,
2009).

The efficiency of these algorithms heavily relies on the
fact that the proximal operation corresponding to the
regularization function ψ̃ can be efficiently computed.
Here the proximal operation corresponding to a func-
tion ψ̃ is the map defined by the following display
(Rockafellar, 1970):

q 7→ argmin
x

{‖x− q‖2/2 + ψ̃(x)} =: prox(q|ψ̃).

Dual Averaging and Proximal Gradient Descent for Online ADMM

For example, if the regularization function is L1-
norm ψ̃(x) = C

∑m

j=1 |xj |, then the corresponding
proximal operation is the well-known soft-thresholding
operation: x̂ = prox(q|ψ̃) is given as x̂j =
sign(qj)max(|qj | − C, 0).

However, the proximal operation can not be efficiently
computed for structured regularizations as presented
in Section 5 unless we develop a specifically tailored
optimization method for each regularization function.
In this article, we overcome this problem utilizing
the idea of Alternating Direction Multiplier Method
(ADMM).

3. Alternating Direction Multiplier
Method (ADMM)

Here we describe the concept of ADMM. We once turn
back to the batch situation. Instead of considering the
naive optimization problem Eq. (1), we transform the
problem into the following linear constraint optimiza-
tion problem∗:

min
x∈X ,y∈Y

1

T

T
∑

t=1

f(x,wt) + ψ(y), s.t. Ax = y, (2)

where ψ̃(x) = ψ(Ax) with a matrix A ∈ R
l×m and

Y ⊂ R
l is a convex set such that Ax ∈ Y for all x ∈ X .

Here we assume it is easy to compute the proximal
operation corresponding to ψ. ADMM splits the op-
timizations with respect to x and y utilizing the aug-

mented Lagrangian technique. The iterative scheme of
ADMM for the problem (2) is as follows:

xt+1= argmin
x∈X

{

1

T

T
∑

τ=1

f(x,wτ)− λ⊤t (Ax− yt)

+
ρ

2
‖Ax− yt‖2

}

, (3a)

yt+1= argmin
y∈Y

{

ψ(y)−λ⊤t (Axt+1−y)+
ρ

2
‖Axt+1−y‖2

}

,

(3b)

λt+1= λt − ρ(Axt+1 − yt+1), (3c)

where λt is the dual variable and ρ is a given param-
eter. One can see that in ADMM the optimizations
with respect to x and y are separated into (3a) and
(3b). ADMM can be seen as an approximated ver-
sion of the method of multiplier that minimizes the
augmented Lagrangian instead of executing (3a),(3b)

∗The linear constraint Ax = y can be generalized to
Ax + By = b. We can show similar convergence rates
under this generalization. See the supplementary material
for the general results.

(Hestenes, 1969; Powell, 1969; Rockafellar, 1976):

min
x,y

1

T

T
∑

τ=1

f(x,wτ)+ψ(y)−λ⊤t (Ax−y)+
ρ

2
‖Ax−y‖2,

where the optimizations for x and y are not split,
but are jointly optimized. On the other hand, in
ADMM, thanks to the splitting technique, the update
is easily carried out. As for the convergence prop-
erties of ADMM, O(1/n) convergence was proven by
He and Yuan (2012) and the linear convergence for
strongly convex functions was shown by Deng and Yin
(2012).

These days, ADMM has been gathering much atten-
tions because it has a broad class of applications in
machine learning, image processing, and statistics (see
the survey of Boyd et al. (2010)). However, ADMM is
basically a batch algorithm. In the next section, we
develop two online versions of ADMM.

4. Our Proposal: RDA-ADMM and
OPG-ADMM

In this section, we propose two algorithms, RDA-
ADMM and OPG-ADMM, as online versions of
ADMM. We give the convergence rates of these meth-
ods. For a positive definite matrix Q, let ‖x‖Q be
√

x⊤Qx.

4.1. RDA-ADMM

We first introduce Regularized Dual Averaging
ADMM (RDA-ADMM) which is a combination of on-
line RDA and ADMM. Here we denote by Gt an
arbitrary matrix that is used in the t-th update in
RDA-ADMM. Gt can depend on any information ob-
served until t-th step. We define x̄t, ȳt and λ̄t as
x̄t =

1
t

∑t

τ=1 xτ , ȳt =
1
t

∑t

τ=1 yτ and λ̄t =
1
t

∑t

τ=1 λτ .
Then the procedure of RDA-ADMM is summarized in
Algorithm 1.

The only difference from the batch-version ADMM
is the update rule of xt (Eq. (4)). The loss func-

tion 1
T

∑T

τ=1 f(x,wτ) is replaced with a linear function
ḡ⊤t x. This can be seen as a linear approximation of the
loss function, which makes the computation of the up-
date much easier. yt and λt are replaced with their
averaged versions ȳt and λ̄t. The averaging technique
producing ḡt, ȳt, λ̄t works like smoothing and allows us
to access the past information at the current update.
There is a regularization term 1

2ηt
‖x‖2Gt

that controls

the step size. The term ρ
2t‖Ax‖2 is a bit tricky. Un-

like the original ADMM, there is 1/t factor in front of
‖Ax‖2. This is needed for a technical reason to show

Dual Averaging and Proximal Gradient Descent for Online ADMM

Algorithm 1 RDA-ADMM

Input: ρ > 0, {ηt}T−1
t=1

Initialize x1 = 0, y1 = 0, λ1 = 0.
for t = 1 to T − 1 do
Observe wt, and Compute sub-gradient gt ∈
∇xf(x,wt)|x=xt

.

xt+1 =argmin
x∈X

{

ḡ⊤t x− λ̄⊤t Ax+
ρ

2t
‖Ax‖2

+ ρ(Ax̄t − ȳt)
⊤Ax+

1

2ηt
‖x‖2Gt

}

(4)

Update yt+1 and λt+1 using the rule (3b) and (3c)
respectively.

end for
return x̄T := 1

T

∑T
t=1 xt and ȳT := 1

T

∑T
t=1 yt

O(1/
√
T) convergence. The update rules of yt and λt

are same as the original ADMM.

At the first glance, it seems that we need to solve a
linear equation to obtain xt+1. However, by setting
Gt = γI − ρηt

t
A⊤A with a sufficiently large γ such

that Gt is positive definite, the update rule becomes
drastically simple:

xt+1 = ΠX

[

−ηt
γ
{ḡt −A⊤(λ̄t − ρAx̄t + ρȳt)}

]

,

where ΠX (x) is a projection of x onto the con-
vex set X . The technique to employ a special Gt
to cancel the term ‖Ax‖2 is called linearization of
ADMM and has been used also for the batch-type
ADMM (Zhang et al., 2011). This is a quite advanta-
geous point compared with the existing online ADMM
method (Wang and Banerjee, 2012).

The update rule of yt is just a proximal operation cor-
responding to ψ. Indeed that can be rewritten as

yt+1 = argmin
y∈Y

{

ψ(y) +
ρ

2
‖y −Axt+1 + λt/ρ‖2

}

= prox
(

Axt+1 − λt/ρ|ψ/ρ
)

.

Therefore, under our assumption that the proximal op-
eration corresponding to ψ is easily computed, the up-
date of yt is also efficiently carried out.

Convergence Analysis Here, we give convergence
analysis of of RDA-ADMM. To derive convergence
rates, we assume the following conditions.

Assumption 1.

(A1) X and Y are compact convex sets with radius R,
i.e., ∀x, x′ ∈ X , ‖x − x′‖ ≤ R and ∀y, y′ ∈ Y,

‖y − y′‖ ≤ R. Moreover we assume that Ax ∈ Y
for all x ∈ X .

(A2) The sub-gradients of f(·, w) is bounded by G, i.e.,
∀a ∈ ∇xf(x,w), ‖a‖ ≤ G for all x,w.

(A3) The sub-gradients of ψ is bounded by Lψ, i.e.,

∀a ∈ ∇ψ(y), ‖a‖ ≤ Lψ at any point y ∈ Y.

In this section, we suppose that Gt = γI − ρηtA
⊤A/t,

and γ, ρ, ηt are chosen so that Gt � I for simplicity.
The particular choice of Gt is not essential, but just
for simplicity. For general Gt, we also obtain a similar
bound with slight changes of expressions.

Moreover we suppose that ηt/t is non-increasing.
Then, we have the following regret bound.

Theorem 1. Let λ∗ ∈ R
l be arbitrary. Then there

exists a constant K depending on R,G,Lψ, ρ, A, η1, λ
∗

such that, for all x∗ ∈ X , y∗ ∈ Y satisfying Ax∗ = y∗,

1

T

T
∑

t=1

(f(xt, wt) + ψ(yt))−
1

T

T
∑

t=1

(f(x∗, wt) + ψ(y∗))

− 〈λ∗, Ax̄T − ȳT 〉+
ρ

2T

T
∑

t=1

‖Axt+1 − yt+1‖2

≤ 1

T

T
∑

t=2

ηt−1

2(t− 1)
G2 +

γ

ηT
R2 +

K

T
.

The proof can be found in the supplementary material.
Basically the proof is a combination of those of the
original RDA (Xiao, 2009) and ADMM (He and Yuan,
2012).

Here, we should notice the fact that (xt, yt) produced
by RDA-ADMM does not necessarily satisfies the lin-
ear constraint Axt = yt (see Eq. (2)). Therefore we
need to modify xt or yt so that the constraint holds.
A naive approach is to use y′t := Axt instead of yt.
On the other hand, if A is invertible, it is also a natu-
ral strategy to use x′t := A−1yt instead of xt. We can
show that both strategies achieve the minimax optimal
rate for the expected risk. For notational simplicity,
we define

F (x, y) := Ew[f(x,w)] + ψ(y).

(i) Convergence analysis for the pair (xt, y
′
t). The

pair (xt, y
′
t) achieves the following convergence rate of

the expected risk. Now let ȳ′t :=
1
t

∑t

τ=1 y
′
τ and w1:t

be the concatenation (w1, . . . , wt).

Theorem 2 (Convergence rate of RDA-ADMM).
There exists a constant K depending on R,Lψ, ρ, η1, A

Dual Averaging and Proximal Gradient Descent for Online ADMM

such that, for all x∗ ∈ X , y∗ ∈ Y such that Ax∗ = y∗,
the expected risk of RDA-ADMM is bounded as

Ew1:T−1
[F (x̄T , ȳ

′
T)− F (x∗, y∗)]

+ ρ
2Ew1:T

[‖Ax̄T+1 − ȳT+1‖2]

≤ 1

T

T
∑

t=2

ηt−1

2(t− 1)
G2 +

γ

ηT
R2 +

K

T
.

The proof can be found in the supplementary material.
It is shown by using Theorem 1 with a specifically
chosen λ∗ and Jensen’s inequality. We again would like
to remark that x̄T and ȳ′T always satisfies the linear
constraint Ax̄T = ȳ′T .

The convergence rate is basically same as that of the
standard RDA. The first term in the upper bound ex-
presses how aggressively the estimator adapt to the
newly observed data, and, on the other hand, the
second term expresses a regularization on the esti-
mator’s fluctuation. Roughly speaking, these two
terms express explore and exploit trade-off. The third
term is O(1/T) and is asymptotically negligible. Here
ηt = η0

√
t balances the first and the second term. Un-

der this setting, one can show that RDA-ADMM yields
O(1/

√
T) convergence: there exists a constant C1 such

that

Ew1:T−1
[F (x̄T , ȳ

′
T)− F (x∗, y∗)] ≤ C1√

T
.

The convergence rate O(1/
√
T) is known as the

minimax optimal rate (Nemirovskii and Yudin, 1983).
Therefore our proposed algorithm achieves the opti-
mal rate. Moreover, we observe that (x̄t, ȳt) approx-
imately satisfies the constraint Ax̄t = ȳt for large t.
Indeed, Theorem 2 gives ‖Ax̄T − ȳT ‖2 = Op(1/

√
T)

for ηt = η0
√
t.

(ii) Convergence analysis for the pair (x′t, yt). In
the same way as the convergence analysis for the pair
(xt, y

′
t), we also obtain the convergence rate for the

pair (x′t, yt). Obviously the pair (x′t, yt) satisfies the
linear constraint Ax′t = yt. Letting x̄′t :=

1
t

∑t

τ=1 x
′
τ ,

we have the following convergence bound (the proof
can be found in the supplementary material).

Theorem 3. Suppose that A is invertible. For all

x∗ ∈ X , y∗ ∈ Y such that Ax∗ = y∗, there exists a

constant K ′ depending on R,G,A, ρ, η1 such that

Ew1:T−1
[F (x̄′T , ȳT)− F (x∗, y∗)]

≤ 1

T

T
∑

t=2

ηt−1

2(t− 1)
G2 +

γ

ηT
R2 +

K ′

T
.

In particular, for ηt = η0
√
t, the RHS is further

bounded by C2/
√
T where C2 is a constant depending

on R,G,A,B,Lψ, ρ, η0, γ.

Comparing Theorems 2 and 3, the difference of the up-
per bounds is only the O(1/T) term, which is negligi-
ble. Therefore, we have the (almost) same convergence
rate for both strategies, (x̄t, ȳ

′
t) and (x̄′t, ȳt).

4.2. OPG-ADMM

Here we describe our second proposal, OPG-ADMM,
that is a combination of OPG and ADMM. The pro-
cedure is summarized in Algorithm 2.

Algorithm 2 OPG-ADMM

Input: ρ > 0, {ηt}T−1
t=1

Initialize x1 = 0, y1 = 0, λ1 = 0.
for t = 1 to T − 1 do
Observe wt, compute sub-gradient gt ∈
∇xf(x,wt)|x=xt

and calculate Gt.

xt+1 =argmin
x∈X

{

g⊤t x− λ⊤t (Ax− yt)

+
ρ

2
‖Ax− yt‖2 +

1

2ηt
‖x− xt‖2Gt

}

(5)

Update yt+1 and λt+1 using the rule (3b) and (3c)
respectively.

end for
return x̄T := 1

T

∑T

t=1 xt and ȳT := 1
T

∑T

t=1 yt

The only difference from RDA-ADMM is the update
rule of xt (Eq. (5)). Instead of utilizing the averaged
gradient ḡ⊤t x, the gradient at the current state g⊤t x
is used for the linearized loss function, and there is a
proximal term 1

2ηt
‖x−xt‖2Gt

that works as smoothing
penalty to let xt+1 close to the previous state xt. The
update rule of OPG-ADMM is more similar to the
original batch ADMM than that of RDA-ADMM.

Here again, we can avoid solving linear equation in the
update of xt by choosing Gt appropriately. If we set
Gt = γI − ρηtA

⊤A with a sufficiently large γ such
that Gt is positive definite, the update rule becomes
as follows:

xt+1 = ΠX

[

−ηt
γ
{gt −A⊤(λt − ρAxt + ρyt)}+ xt

]

.

As in the case of RDA-ADMM, we have a similar con-
vergence rate also for OPG-ADMM. Moreover, if we
assume strong convexity on the loss function, we can
show a tighter bound for OPG-ADMM. To incorporate
strong convexity, we introduce a modulus of strong
convexity, σ, that is a non-negative real such that

f(x′, w) ≥ f(x,w)+(x′−x)⊤∇xf(x,w)+
σ

2
‖x−x′‖2,

Dual Averaging and Proximal Gradient Descent for Online ADMM

for all w and x, x′ ∈ X .

Theorem 4 (Convergence rate of OPG-ADMM).
Suppose Gt = γI − ρηtA

⊤A, and γ, ρ, ηt are chosen

so that Gt � I. Under Assumption 1, there exists a

constant K depending on R,G,Lψ, ρ, η1, A such that,

for all x∗ ∈ X , y∗ ∈ Y such that Ax∗ = y∗, the ex-

pected risk of OPG-ADMM is bounded as

Ew1:T−1
[F (x̄T , ȳ

′
T)− F (x∗, y∗)]

≤ 1

2T

T
∑

t=2

max

{

γ

ηt
− γ

ηt−1
−σ, 0

}

R2+
1

T

T
∑

t=1

ηt
2
G2+

K

T
.

The proof can be found in the supplementary mate-
rial. Now if we set ηt = η0/

√
t, then we also observe

that OPG-ADMM shows O(1/
√
T) convergence: there

exists a constant C ′
1 such that

Ew1:T
[f(x̄T , wT)+ψ(ȳ

′
T)− (f(x∗, wT)+ψ(y

∗))]≤ C ′
1√
T
.

Moreover, if σ > 0, by letting ηt =
γ
σt
, we have that

there exists a constant C ′′
1 such that

Ew1:T
[F (x̄T , ȳ

′
T)− F (x∗, y∗)] ≤ C ′′

1

log(T)

T
.

As for the pair (x̄′T , ȳT), we also have analogous con-
vergence results as in the case of RDA-ADMM. See
the supplementary material for the detailed proofs.

4.3. Related Work

Recently, Wang and Banerjee (2012) proposed a simi-
lar algorithm that is also an online version of ADMM.
The different point from our algorithm is that, in the
update of x, they don’t utilize the linear approxima-
tion of loss function, but minimizes the loss function
directly as follows:

xt+1 =argmin
x∈X

{

f(x,wt)− λ⊤t (Ax− yt)

+
ρ

2
‖Ax− yt‖2 +

1

2ηt
‖x− xt‖2Gt

}

. (6)

This update also achieves O(1/
√
T) convergence for

a general loss and O(log(T)/T) for a strongly con-
vex loss. However we need to go through an ex-
act non-linear optimization. This sometimes requires
much additional computational cost. In particular,
the optimization is not efficient when each draw is
sub-batch, i.e., wt at each iteration is a bunch of sub-
samples wt = {zt,1, . . . , zt,M} and the loss function
is a concatenation of the loss for each sub-sample,
f(x,wt) = 1

M

∑M

i=1 ℓ(x, zt,i), where ℓ(·, ·) is a a loss
function for sub-samples. The sub-batch technique

is often used to stabilize the solution. In this situ-
ation, the optimization requires more computational
cost than one sample optimization. On the other hand,
our method is hardly affected by the increasing size of
sub-batch.

Independently of our study, Ouyang et al. (2013) de-
veloped the same algorithm as our OPG-ADMM.
They also gave the convergence rate of the expected
risk such as O(1/

√
T) for a general loss function

and O(log(T)/T) for a strongly convex loss function.
Moreover their analysis includes the tail probability of
the risk which is not addressed in this paper.

5. Examples of Structured
Regularizations

There are several applications of ADMM. In this sec-
tion, we present some examples of structured sparse
regularizations for which our online type ADMM
method is effective.

Overlapped group lasso The group lasso imposes
a group sparsity as

ψ̃(x) = C
∑

g∈G ‖xg‖ =: C‖x‖G,
where G is a set of subsets (groups) of indexes, and xg
is a restriction of x onto the index set g (xg = (xi)i∈g).
If groups {g}g∈G have no overlap, then the proxi-
mal operation corresponding to the group lasso reg-
ularization is analogous to the soft-thresholding op-
eration. However, if there are overlaps, the proxi-
mal operation can not be straightforwardly computed
(Jacob et al., 2009; Yuan et al., 2011). This difficulty
can be simply avoided by setting A and ψ as follows.
Divide G into sets G1, . . . ,Gm each of which consists
of non-overlapped groups, let Ax be concatenation of
m-repetitions of x, that is, Ax = [x; . . . ;x], and let
ψ([x1; . . . ;xm]) = C

∑m

i=1 ‖xi‖Gi
. Then one can check

that ψ(Ax) = C
∑m

i=1 ‖x‖Gi
= C‖x‖G = ψ̃(x). Here

the proximal operation corresponding to ψ can be ef-
ficiently computed because, for q = [x1; . . . ;xm],

argmin
y

{‖y − q‖2
2

+ ψ(y)
}

= argmin
y=[y1;...;ym]

{

m
∑

i=1

(‖yi − qi‖2
2

+ C‖yi‖Gi

)

}

=







prox(q1|C‖ · ‖G1
)

...
prox(qm|C‖ · ‖Gm

)






.

Thus we can apply the ADMM scheme. See
Qin and Goldfarb (2012) for applications of the batch
ADMM to the overlapped group lasso.

Dual Averaging and Proximal Gradient Descent for Online ADMM

Graph regularization Assume that we are given a
graph G. We put each coordinate of the weight vec-
tor x on each vertex of G. In graph regularization, we
impose variables on adjacent vertexes are similar. To
do so, we consider the following type of regularization:
ψ̃(x) =

∑

(i,j)∈E h(xi−xj), where E is the set of edges
in the graph G and h is a penalty function on the
discrepancy between adjacent variables. Fused lasso
(Tibshirani et al., 2005) and Graph lasso (Jacob et al.,
2009) are special cases of this formulation. Here we set
A as the adjacent matrix which is a |E|×dim(x) matrix
where each row of A corresponds to an edge (i, j) ∈ E
and has 1 at the i-th component, −1 at the j-th com-
ponent and 0 otherwise, i.e., Ax = (xi − xj)(i,j)∈E .

Then, for ψ(y) =
∑

e∈E h(ye) (y ∈ R
|E|), we have

ψ̃(x) =
∑

(i,j)∈E h(xi − xj) = ψ(Ax). One can also
observe that the proximal operation corresponding to
ψ can be carried out by a concatenation of proximal
operation for h on each edge e ∈ E as in the previous
examples.

6. Numerical Experiments

In this section, we demonstrate the performance of
the proposed methods through synthetic data and real
data. We compare our stochastic ADMMs (RDA-
ADMM and OPG-ADMM) with the conventional
stochastic optimization methods such as OPG, RDA
and the Non-Linearized online ADMM (NL-ADMM)
given by Eq. (6)†. Through this section, we fix η0 =
0.01, γ = 1 and ρ = 1. All problems are classification
problems, and we employed logistic loss.

In the experiments, we utilize overlapped group reg-
ularizations. To run OPG and RDA, we need to di-
rectly compute the proximal operation for the over-
lapped group lasso penalty. To compute that, we em-
ployed the-state-of-the-art dual formulation proposed
by Yuan et al. (2011). As for stochastic ADMMs, we
used the decomposition technique explained in Section
5, and the pair (x̄t, ȳ

′
t) = (x̄t, Ax̄t) is employed for the

t-th step estimator.

6.1. Simulated Sparse Classification Tasks

Here we compare the performances in synthetic data
where an overlapped group lasso regularization is im-
posed. We generated N = 512 input feature vectors
{an}Nn=1 with dimension d = 32 × 32 = 1024 (each
an is of 1024 dimension). Each feature is generated
from an i.i.d. standard normal. The training output
is generated as cn = sign(a⊤n x

∗+ǫn) where ǫn is a nor-

† To optimize (6), we applied the Newton method on
its dual.

10

1

10

2

10

3

10

-2

10

-1

10

0

CPU time (s)

E
xp

ec
te

d
R

is
k

OPG−ADMM
RDA−ADMM
NL−ADMM
RDA
OPG

Figure 1. Expected risk averaged over 10 independent rep-
etitions as a function of CPU time (s) on synthetic data.
The figure is depicted in log-log scale. The error bars de-
pict one standard deviation of the measurements.

mal distribution with the standard deviation 3.Here
the true weight vector x∗ is constructed as follows: we
generated a 32 × 32 sparse matrix such that only the
first column is non-zero (generated from i.i.d. stan-
dard normal) and other columns are zero, and set x∗

as the vectorization of that matrix.

As the sample draw wt in the t-th step, we drew sub-
batch of size 10, that is, we randomly picked up 10
samples {(ant,j

, cnt,j
)}10j=1 = wt and set f(x,wt) =

1
10

∑10
j=1 ℓ(cnt,j

, a⊤nt,j
x) where ℓ is the logistic loss.

Then we imposed an overlapped group lasso regular-
ization defined as follows. We converted a weight vec-
tor x ∈ R

1024 into a 32 × 32 matrix, denoted by X,
and imposed column-wise and row-wise group regu-
larizations: ψ̃(x) = C(

∑32
i=1 ‖Xi,·‖ +

∑32
j=1 ‖X·,j‖) =:

C‖x‖block where C = 0.025. This is an overlapped
group lasso regularization. Here the expected risk of a
weight vector x is θ(x) := 1

N

∑N

n=1 ℓ(cn, a
⊤
n x) + ψ̃(x).

We independently repeated the experiments 10 times
and averaged the excess expected risk: θ(x̂) −
minx θ(x). In Figure 1, the excess expected risk is
depicted against the CPU time. In this dataset, OPG-
ADMM and RDA-ADMM show almost the same per-
formances while NL-ADMM, RDA and OPG show
slower convergence. The main reason for the slow con-
vergence of NL-ADMM is because the nonlinear op-
timization required in each iteration (6) takes much
longer time than the iteration of our methods. We
observe that RDA and OPG take even longer time
to achieve a certain precision. This is because the
proximal operation solved by the dual formulation
(Yuan et al., 2011) consumes much time since it re-
quires executing a constrained optimization.

Dual Averaging and Proximal Gradient Descent for Online ADMM

6.2. Real Data Set

Finally, we show the experimental results on a real
dataset, ‘Adult’‡. Adult dataset consists of N =
32, 561 training samples and 16, 281 test samples with
d = 123 dimensional feature vector with 0/1 values.
In addition to the original 123 features, we took prod-
ucts of features to give additional 15, 129 (= 1232) fea-
tures. Then we concatenated the original features and
the newly produced features to obtain total 15, 252
features. The weight vector x is also 15, 252 dimen-
sional and we divided the weight vector into two parts
x = [x(1);x(2)] corresponding to the original features
and the product features respectively (x(1) is 123 di-
mensional and x(2) is 15, 129 dimensional). We im-
posed L1-regularization on x(1) and the block wise
overlapped regularization introduced in the synthetic
data on x(2): ψ̃(x) = C(‖x(1)‖1 + ‖x(2)‖block/

√
123)

with C = 0.01.

We again drew sub-batch of size 10 for each step t.
We repeated the experiments 10 times and averaged
the classification error on the test set. Figure 2 shows
the averaged classification error as a function of CPU
time. Here, OPG was excluded from the figure be-
cause OPG showed much worse performance than the
listed methods. We can see that RDA-ADMM shows
the best performance followed by NL-ADMM, OPG-
ADMM and RDA. Here again we observe that a heav-
ier computation of each iteration of NL-ADMM causes
a slower convergence than RDA-ADMM. On the other
hand, RDA-ADMM requires a quite light computa-
tion for each iteration that leads to a fast convergence.
RDA-ADMM also outperforms OPG-ADMM. This is
because RDA-ADMM induces a sparser solution that
leads to a better generalization error. RDA showed
quite slow convergence since the proximal operation
required heavy computation because of the high di-
mensionality. It did not go through sufficient number
of iterations in 103 seconds, and as a result, did not
reach a stable convergence phase.

7. Conclusion

In this paper, we proposed two online variants of
ADMM: OPG-ADMM and RDA-ADMM. The pro-
posed methods are applicable to a wide range of struc-
tured regularizations, efficiently computed and easy
to implement. We have shown that both methods
achieve O(1/

√
T) convergence rate for a general loss

function, and OPG-ADMM achieves O(log(T)/T) for
a strongly convex loss. In numerical experiments, our

‡We used the preprocessed ‘Adult’ (a9a) dataset avail-
able at ‘LIBSVM data sets’.

10

0

10

1

10

2

10

3

10

-0.8

10

-0.7

10

-0.6

CPU time (s)

C
la

ss
ifi

ca
tio

n
E

rr
or

OPG−ADMM
RDA−ADMM
NL−ADMM
RDA

Figure 2. Test classification error averaged over 10 inde-
pendent repetitions as a function of CPU time (s) on
‘Adult’ dataset (log-log scale). The error bars depict one
standard deviation of the measurements.

methods showed nice convergence behaviors. Over-
all RDA-ADMM showed favorable performances com-
pared with OPG-ADMM.

An interesting future work is to justify whether RDA-
ADMM can also achieve O(log(T)/T) convergence
rate for a strongly convex loss or regularization func-
tion.

Acknowledgement

We would like to thank Hua Ouyang, Niao He, Long Q.
Tran, and Alexander Gray for the communication. TS
was partially supported by MEXT Kakenhi 22700289,
Global COE Program “The Research and Training
Center for New Development in Mathematics,” and
the Aihara Project, the FIRST program from JSPS,
initiated by CSTP.

References

A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sciences, 2(1):183–202, 2009.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers. Foundations and Trends in Machine Learning,
3:1–122, 2010.

P. L. Combettes and V. R. Wajs. Signal recovery
by proximal forward-backward splitting. Multiscale

Modeling and Simulation, 4(4):1168–1200, 2005.

W. Deng and W. Yin. On the global and linear
convergence of the generalized alternating direction

Dual Averaging and Proximal Gradient Descent for Online ADMM

method of multipliers. Technical report, Rice Uni-
versity CAAM TR12-14, 2012.

J. Duchi and Y. Singer. Efficient online and batch
learning using forward backward splitting. Journal

of Machine Learning Research, 10:2873–2908, 2009.

J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and
A. Tewari. Composite objective mirror descent. In
Proceedings of the Annual Conference on Computa-

tional Learning Theory, 2010.

M. A. T. Figueiredo and R. Nowak. An em algorithm
for wavelet-based image restoration. IEEE Trans.

Image Process, 12:906–916, 2003.

D. Gabay and B. Mercier. A dual algorithm for the
solution of nonlinear variational problems via finite-
element approximations. Computers & Mathematics

with Applications, 2:17–40, 1976.

B. He and X. Yuan. On the O(1/n) convergence rate of
the Douglas-Rachford alternating direction method.
SIAM J. Numerical Analisis, 50(2):700–709, 2012.

M. Hestenes. Multiplier and gradient methods. Jour-
nal of Optimization Theory & Applications, 4:303–
320, 1969.

L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso
with overlap and graph lasso. In Proceedings of the

26th International Conference on Machine Learn-

ing, 2009.

A. Nemirovskii and D. Yudin. Problem complexity and

method efficiency in optimization. John Wiley, New
York, 1983.

H. Ouyang, N. He, L. Q. Tran, and A. Gray. Stochas-
tic alternating direction method of multipliers. In
Proceedings of the 30th International Conference on

Machine Learning, 2013.

M. Powell. A method for nonlinear constraints in mini-
mization problems. In R. Fletcher, editor, Optimiza-

tion, pages 283–298. Academic Press, London, New
York, 1969.

Z. Qin and D. Goldfarb. Structured sparsity via al-
ternating direction methods. Journal of Machine

Learning Research, 13:1435–1468, 2012.

R. T. Rockafellar. Convex Analysis. Princeton Uni-
versity Press, Princeton, 1970.

R. T. Rockafellar. Augmented Lagrangians and ap-
plications of the proximal point algorithm in convex
programming. Mathematics of Operations Research,
1:97–116, 1976.

M. Signoretto, L. D. Lathauwer, and J. Suykens. Nu-
clear norms for tensors and their use for convex mul-
tilinear estimation. Technical Report 10-186, ESAT-
SISTA, K.U.Leuven, 2010.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and
K. Knight. Sparsity and smoothness via the fused
lasso. Journal of Royal Statistical Society: B, 67(1):
91–108, 2005.

R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima.
Statistical performance of convex tensor decomposi-
tion. In Advances in Neural Information Processing

Systems 25, 2011.

R. Tomioka, T. Suzuki, and M. Sugiyama. Super-
linear convergence of dual augmented lagrangian al-
gorithm for sparsity regularized estimation. Journal
of Machine Learning Research, 12:1537–1586, 2012.

H. Wang and A. Banerjee. Online alternating direction
method. In Proceedings of the 29th International

Conference on Machine Learning, 2012.

L. Xiao. Dual averaging methods for regularized
stochastic learning and online optimization. In Ad-

vances in Neural Information Processing Systems

23, 2009.

L. Yuan, J. Liu, and J. Ye. Efficient methods for over-
lapping group lasso. In Advances in Neural Infor-

mation Processing Systems 24, 2011.

X. Q. Zhang, M. Burger, and S. Osher. A unified
primal-dual algorithm framework based on Bregman
iteration. Journal of Scientific Computing, 46(1):
20–46, 2011.

