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Abstract

For a well trained Boosting classifier, we are
interested in how to save the testing time,
i.e., to make the decision without evaluating
all the base learners. To address this prob-
lem, in previous work the base learners are
sequentially calculated and early stopping is
allowed if the decision function has been con-
fident enough to output its value. In such a
chain structure, the order of base learners is
critical: better order can lead to less evalua-
tion time.

In this paper, we present a novel method
for ordering. We base our discussion on the
data structure representing Boosting’s deci-
sion function. Viewing the decision func-
tion a boolean expression, we propose a
Binary Valued Tree for its representation.
As a secondary contribution, such a repre-
sentation unifies the work by previous re-
searchers and helps devise new representa-
tion. Also, its connection to Binary Decision
Diagram(BDD) is discussed.

1. Introduction

We are interested in how to save testing time for a
Boosting classifier. Let’s assume there are T ∈ N+

base learners and unit 1 time cost is incurred when-
ever a base learner is evaluated at testing. A naive
evaluation of the decision function by revealing all the
base learners obviously involves time complexity T .
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In this paper we pursue less-than-T algorithms while
preserving the classification accuracy of the original
decision function as much as possible. This would be
helpful for testing time demanding applications, e.g.,
object detection in computer vision, trigger design in
high energy physics, web page ranking, spam filtering,
to name a few (Busa-Fekete et al., 2012; Chen et al.,
2012).

The previous work addressing this problem falls in two
categories: 1) Intrusive modification on Boosting algo-
rithm, including (Viola & Jones, 2004; Saberian & Vas-
concelos, 2010; Reyzin, 2011; Grubb & Bagnell, 2012).
In such work, the trade off between classification error
and evaluation time cost is considered in the training
stage of Boosting. 2) Conversion method, which ex-
ploits the structure of the Decision Function learned
in original Boosting. Due to the additive form, the
output of the Decision Function can be known without
evaluating all the base learners. In FastExit (Sochman
& Matas, 2005; Kim et al., 2012), evaluation stops if
the sign cannot be altered by remaining base learners;
In Direct Backward Pruning (Zhang & Viola, 2007), a
more greedy stopping strategy considering data distri-
bution is proposed; (Busa-Fekete et al., 2012) models
the Decision Function evaluation as a Markov Decision
Process in Reinforcement Learning framework; (Kim
et al., 2012) views the outputs of each base learner on
training dataset as new features and retrain a classifi-
cation tree on them.

Our work belongs to the latter category. Our hope:
given a well trained Boosting classifier on which vari-
ous techniques have been applied to ensure a low gen-
eralization error, we attempt to maximally squeeze
out testing time when preserving, exactly or approxi-
mately, the learned classification boundary. To do this,
we view the Decision Function as a Boolean Expres-
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sion (BE) in line of (Kim et al., 2012). Then we
represent the BE with appropriate data structure that
can be easily manipulated so as to minimise a surro-
gate target function of evaluation time cost.

Binary Decision Diagram (BDD) (Bryant,
1986), a well known data structure for general BE, of
course does the job. However, the BE we are concern-
ing has its own special structure: the additive form.
Noting this, we propose a representation tailored for
this type of BE, which we refer to as Binary Val-
ued Tree (BVT) . BVT is just a conceptual tool in
the sense that one needs not really implement it in
program. Instead, it helps us to unifies previous work
and devise new representation (e.g., see section 3.2).

Akin to BDD, BVT is an “ordered representation”
where a fixed order of base learners is taken for all
possible inputs to the BE. For such a representation,
we argue that the natural order, i.e., the as-is one
yielded after Boosting finished its training, is usually
sub-optimal, while reordering can save more evalua-
tion time. Only a few of researchers seem to have no-
ticed the problem, e.g., (Sochman & Matas, 2005; Kim
et al., 2012), (Bourdev & Brandt, 2005) and (Chen
et al., 2012). 1

Other than the above methods, in this paper we
propose the use of SIFTING algorithm for reorder-
ing. The underlying idea is simple: starting with
a natural order and repeatedly swapping two adja-
cent base learners until some criterion is satisfied.
Firstly introduced by (Rudell, 1993), SIFTING has
been proved to be an effective algorithm for BDD op-
timization (Ebendt et al., 2005). We borrow it here
since we find it applicable to those ”ordered represen-
tations” in BVT family. SIFTING performs well in
our experiments.

The rest of this paper is organized as follows: in sec-
tion 2 we discuss the representation of Boosting’s de-
cision function; in section 3 we further discuss it when
considering data distribution; in section 4 we intro-
duce a measure for evaluation time and show how to
minimize it by reordering; in section 5 we review re-
lated work; finally we show the experimental results in
section 6.

2. Data-Free Representation

In this section we will view Decision Function as BE
with special structure, i.e., the Pseudo Boolean Ex-

1Unfortunately, we were not aware of (Chen et al., 2012)
until a reviewer pointed it to us. It is thus too late to in-
clude a thorough comparison with this work in the current
paper. Our apology!

pression (PBE) . We explain how to represent PBE
and show how this representation is helpful to under-
stand the technique for saving evaluation time.

2.1. Decision Function as Pseudo Boolean
Expression

Boosting’s decision function consists of firstly sum-
ming up many base learners and then taking its sign:

H(h1, . . . , hT ) = sgn(
∑T

t=1 ht), (1)

where sgn(): R 7→ {−1,+1} is sign function and ht
is the scalar output of the t-th base learner. In this
preliminary work, we simply assume the base learner
is binary valued (e.g., a decision stump):

ht ∈ {αt, βt}, (2)

where t = 1, . . . , T and αt, βt ∈ R. Without loss of
generality, we further assume αt ≤ βt always holds.

Expression (1) is essentially boolean in that both the
input ht ∈ {αt, βt} and output H ∈ {−1,+1} are bi-
state. However, the expression involves summation
defined for real numbers. We hence refer to (1) as
Pseudo Boolean Expression (PBE).

2.2. Graphic Representation of PBE

Due to its finitely binary nature and its additive form,
PBE (1)’s all possible states can be “visualized”. We
begin with a helper function.

Definition 1 (Accumulative Sum ). For t =
1, . . . , T , we recursively define the accumulative sum
function as

acc(t) = acc(t− 1) + ht (3)

with initial condition acc(0) = 0.

Depending on context, acc(t) should be understood
as either a set of values for all possible base learner
output h1, . . . , ht or a single value for some specific
base learner output.

We are now ready to show the following concept:

Definition 2 (Binary Valued Tree, BVT ). A tree
visualizing all possible acc(t), t = 0, 1, . . . , T of some
PBE, where

1: Nodes are organised level by level. Each level is
a Real Number Axis. Nodes at the t-th level are
posited by corresponding acc(t) values.

2: The edges outgoing from the (t−1)-th level and in-
coming to the t-th level capture all possible ways
how acc(t) can be computed from acc(t − 1) ac-
cording to (3).
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Figure 1. Left: a BVT for PBE, see texts in Definition 2 and Example 1; Middle: DBVT overlapped on BVT, see texts
in Definition 4; Right: PI (red) and EI (black), see texts in Definition 6 and Definition 5.

3: Each path starting from the root node and ending
at the t-th level denotes a particular output for
h1, . . . , ht.

Example 1. The left graph of Figure 1 show the BVT
for 3 base learners h1 ∈ {−4,+4}, h2 ∈ {−3,+3},
h3 ∈ {−2.1,+2.1}, where

1: Values of the 4 nodes at level 2 are -7, -1, +1, +7.
2: The 4 edges between level 2 and level 1 captures

the recursive relation acc(2) = acc(1) + h2, where
h2 ∈ {−3,+3}.

3: The path for a certain input (h1 = +4, h2 =
−3, h3 = +2.1) is shown in the figure with thick
lines in light blue.

To this extent, we immediately have the following con-
cepts:

Definition 3 (Dual Accumulative Sum ). For t =
T, T − 1, . . . , 1, recursively define

dacc(t− 1) = dacc(t) + (−ht) (4)

with initial condition dacc(T ) = 0. Note the minus
sign before ht!

Definition 4 (Dual Binary Value Tree, DBVT
). A BVT tree plotted bottom up, in reverse order for
base learners −hT ,−hT−1,. . .,−h1.

An example of DBVT is shown by black nodes and
edges in the middle graph of Figure 1, where we also
plot the corresponding BVT for the same Decision
Function.

For either BVT or DBVT, we are interested in where
the leftmost (rightmost) path intersects the level axis.
Formally, we give following definition:

Definition 5 (Range Interval ). For the t-th level,
define the range interval

I = [min{acc(t)},max{acc(t)}] (5)

for BVT and the dual range interval

I ′ = [min{dacc(t)},max{dacc(t)}] (6)

for DBVT. Note acc(t) or dacc(t) denotes a set of val-
ues here.

When range interval of BVT meets that of DBVT, it
gives rise to the following two concepts:

Definition 6 (Prison/Escape Interval PI & EI).
At the t-th level, the Prison Interval (PI) is defined
as

PI = I
⋂
I ′, (7)

while the Escape Interval (EI) is defined as the com-
plement of PI

EI = PI, (8)

where I and I ′ are defined in Definition 5.

The reason why we call them Prison/Escape is re-
vealed short after. We now demonstrate them in the
right graph of Figure 1, where the BVT as well as
DBVT is simply the duplicate of that in the middle
graph of Figure 1. For clarity the nodes and edges
we don’t care are omitted: only the leftmost and right
most paths are plotted for either BVT (in blue lines)
or DBVT (in black lines). At level 1 or level 2, PI is in
red color, while the remaining parts at both sides are
EI in black color. At level 0 or level 4, the cardinality
of PI is zero, while EI coincides with the whole axis.

2.3. FastExit

The so-called FastExit, proposed in (Sochman &
Matas, 2005; Kim et al., 2012), works based on a smart
observation: compute acc(t) for t = 0, 1, ... and stop
immediately while its sign cannot be altered by re-
maining base learners.

This algorithm can be interpreted geometrically:
starting from the root node of BVT, walk left/right
path by revealing the base learners one by one; keep
going if arriving at PI (be prisoned); exit and output
the sign as final decision if arriving at EI (escape).

Such a geometrical explanation, although trivial in it-
self, can help to understand/develop other more com-
plicated algorithms, as what follows.
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Figure 2. BVT+DBVT (Left) and the BDD (Right). See
texts in section 2.4.

2.4. BDD (Binary Decision Diagram)

Since a data structure for any BE, BDD can of course
represent expression (1). We refer to (Sanner, 2011)
for the formalization of BDD and the general construc-
tion algorithm. When considering (1)’s structure (i.e.,
its additive form), however, the construction can be
simplified. This problem is studied under the name
of Threshold BDD and strictly formalized in (Behle,
2010; Mayer-Eichberger, 2008), which is too lengthy
to be restated here. In what follows we just briefly
explain how it works using the geometrical concepts
introduced above and point out how BDD helps save
evaluation time.

Consider a BVT overlapped by a DBVT. The t-th level
is divided into several intervals by DBVT nodes. Each
such intervals can contain more than one BVT nodes
– in case this happens, merge the nodes (since they
are equivalent, see, say, Mayer-Eichberger (2008)) and
use a single node as placeholder for the interval. After
merging all possible BVT nodes we obtain the corre-
sponding BDD, as is exemplified in Figure 2.

What’s interesting is that there may exist BDD nodes
whose left and right edges lead to the same child, which
means this type of node is redundant such that we can
travel to its child without computing the base learner
(e.g., check the BDD node at the 0th level in the right
graph of Figure 2. Note that such a redundancy cannot
be captured by BVT). Theoretically, BDD representa-
tion saves more evaluation time than BVT.

3. Data-Dependent Representation

The representations in previous section are data free
in that they just depend on the form of acc(). To
save more evaluation time, in this section we show how
to modify the representation when considering data
distribution implied in training data set.

3.1. Direct Backwards Pruning

Using the concepts of BVT, we geometrically interpret
how the Direct Backwards Pruning (DBP, Zhang &

Figure 3. The last 4 levels of some BVT, whose nodes and
edges are in blue. PI in red and EI in black at each level
axis. Border paths for PI are in magenta. Left: In case
of FastExit. The sign of the node at top level is known.
Right: In case of DBP. The node at top level falls in PI,
its outgoing paths (blue dashed lines) could reach either
R− or R+ at bottom level. However, the example paths
(blue solid lines) still lead to only R+.

Viola (2007)) algorithm exploits data distribution.

Recall that a BVT shows all 2T possible paths for
acc(T ). When given N training examples, however,
we usually have N � 2T for large enough T , which
means there may be many paths carrying no training
examples in this case! Suppose a BVT node falling in
PI

⋂
R+. While all its possible outgoing paths reach

either R− or R+ at bottom level, all its paths carrying
examples may still lead to only R+ finally (as illus-
trated in the right graph of Figure 3). In case this
happens, we can reset PI’s upper bound to where
the node resides. Similar processing goes for lower
bound. After doing this, the modified PI usually be-
comes smaller, while the modified EI, complement of
the modified PI, becomes larger, as in Figure 4.

When traversing BVT, we may have reached the mod-
ified EI but still stay in original PI. In this sense,
DBP theoretically saves more evaluation time than
FastExit.

3.2. Interpolation between FastExit and DBP

DBP trusts the training data too much. Its EI tends
to be too wide so as to blow up the testing error. Take
the right graph of Figure 3 as an example. The two
paths carrying training examples both lead to R+, but
a testing example could walk the leftmost path reach-
ing R− finally (dashed blue line). In this case, the
pruned PI is immature and testing error is incurred.
To avoid this side effect, we can interpolate between
FastExit and DBP (as shown in Figure 4). We propose
an algorithm as follows.

DBPSYN: Interpolation by Synthesized Data
Since the path walked by an example corresponds to
the binary output of each base learner, it can be seen
as a sequence of 0/1 code. Thus the difference between
training example paths and testing example paths can
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FastExit
Interpolation

DBP

Figure 4. Typical size of PI (red interval) and EI (black
intervals) at the same level for three methods.

be modeled by error code.

For the 0/1 codes of a training example, we can get a
new example by randomly flipping a reasonable por-
tion of the codes, where the portion is determined by
5-fold cross validation of train/test partitions. In this
way we are able to obtain a set of synthesized training
examples that mimic testing examples (3 times the size
of training set in our experiments). This trick is simi-
lar to the one proposed in (Kim et al., 2012). Using the
augmented examples including both original ones and
synthesized ones, we apply DBP method. The PI and
EI we obtain in effect interpolates between FastExit
and DBP.

4. Reordering

In the representation discussed in previous texts, a
certain order for base learners is implicitly assumed.
However, the evaluation time is actually very sensitive
to the order when taking into account data distribu-
tion. We provide an intuitive example as follows:

Example 2. For three base learners: h1 ∈ {−2,+2},
h2 ∈ {−1,+1}, h3 ∈ {−1,+1}, consider two different
orderings : (1) h1, h2, h3. as in left graph of Figure 5;
(2) h3, h2, h1, as in right graph of Figure 5. When
calculating the Decision Function for a certain input
(h1 = +2, h2 = +1, h3 = +1), ordering (1) is obviously
preferred since the path lead to EI at level 1, while for
ordering (2) not until the bottom level does it occur.

In this section we discuss the techniques for evaluation
time reduction by adjusting base learner order. To
begin with, we review two methods in previous work.

Sorting Letting the weight of a base learner be
|α| + |β|, we can simply sort the weights of each base
learner in descending order, as proposed in (Sochman
& Matas, 2005; Kim et al., 2012). The underlying con-
cept is as in Example 2 above. This method is data
independent.

Top-Down Reordering The method proposed
in (Bourdev & Brandt, 2005) can be seen as a “data
version” of Sorting method.

In BVT, consider the mean value difference between
positive and negative examples distributing on some
level axis. Intuitively, larger difference indicates higher

0 

3 

1 

2 

Figure 5. Base learners in descending (left) and ascend-
ing(right) order. Only the leftmost and rightmost paths
are plotted for BVT and DBVT. PI in red and EI in
black. Border paths for PI are in magenta.

possibility for the positive and negative examples to
push each other to EI at both sides of that level. In-
stead of sorting weight, we can therefore sort the dif-
ference.

Based on above observation, (Bourdev & Brandt,
2005) proposed that the order be determined one by
one in a T rounds algorithm. At first round, among
the T base learners the best one leading to the largest
mean value difference is selected for the level one; At
second round, among remaining T − 1 base learners
the best one is selected for the level two, and so on.

Obviously, such a top-down single-pass reordering in-
volves T + (T − 1) + . . . + 1 computations. Thus the
complexity of the algorithm is O(T 2).

4.1. Expected Path Length as a Measure for
Evaluation Time

The above two methods are intuitive in that they try
not to explicitly minimize a target function measuring
the evaluation time. In this subsection we define such
a quantitative measure.

Definition 7 (Path Length ). The number of non-
terminal nodes on a path.

Since computing a base learner incurs unit 1 time cost,
the path length measures the time cost of traversing
BVT or BDD for a single example. For a set of exam-
ples, however, we need the following “average” mea-
sure:

Definition 8 (Expected Path Length ). The ex-
pected path length can be defined either path wise:

EPL =
∑

i pili, (9)

where li is the path length and pi is the probability
traversing that path, or be defined level wise:

EPL =
∑T

t=1 Pt, (10)

where Pt is the portion of examples falling in PI at
t-th level (or falling in redundant BDD nodes).
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Now we can explain our technique that minimizes EPL
by base learner reordering.

4.2. SIFTING

To reorder base learners, in this paper we propose the
use of the so-called SIFTING algorithm (Rudell, 1993;
Ebendt et al., 2005), which searches the optimal order-
ing by repeatedly swapping two adjacent base learners
as in following pseudo codes.

Algorithm 1 SIFTING.

1: Input: An arbitrary base learner order; Maximum
number of rounds M .

2: for round = 1 to M do
3: for each base learner do
4: Swap it with its successive base learner on and

on until it sinks to the bottom; then
5: Swap it with previous base learner on and on

until it floats to the top.
6: During the course, the best level, which leads

to the smallest EPL, is recorded.
7: The base learner being inspected (now at the

top level) is then moved to the best level we
just found.

8: end for
9: end for

Time Complexity Analysis

Theorem 1 (Square Time Complexity). The time
complexity for SIFTING is O(T 2).

Proof. In one round, there are T inner loops (for swap-
ping) in each of the T outer loops (for every base
learner). The square time complexity assertion holds
by noting that swapping base learner is O(1), as in
following lemma.

Lemma 2 (Localized Swapping). The time complexity
for swapping two adjacent base learners is O(1).

Proof. Let 1 ≤ i ≤ T − 1. In BVT or BDD, after
swapping base learner i with i+ 1, acc(t) and dacc(t)
by definition remains for t 6= i, while only acc(i) and
dacc(i) change. Therefore, only the topology at level i
(i.e., the nodes and nodes’ incoming/outgoing edges)
needs updating, since the topology is absolutely deter-
mined by accv() and dacc()). That is to say, in the
summation in EPL (10), only the portion Pi at level
i needs recalculation while other portion Pt stays un-
changed for t 6= i.

i 

i+1 

𝑃1 𝑃2 𝑃3 𝑃4 𝑃1 𝑃2 𝑃3 𝑃4 
i+2 

Figure 6. A snippet of BVT before (left) and after (right)
swapping two adjacent base learners. PI in red, border
paths in magenta.

Why SIFTING

We provide intuitive for why we prefer SIFTING to
Sorting or Top-Down Reordering.

1) Sorting in descending order maybe sub-optimal for
some data distribution, as the example in Figure 6. On
the left of Figure 6 are three levels for two base learn-
ers in some BVT. The base learners are in descending
weight order. For the 4 nodes at level i + 2, the por-
tion of training examples they carry are denoted by p1
to p4. After swapping (as shown on the right of the
Figure 6), level i and level i+2 keep unchanged, while
only level i + 1 needs updating (See proof of Lemma
2). For the node in PI at level i + 1, the portion of
examples it carries changes from p1 + p2 to p1 + p3.
Recalling the definition (10), sorting in ascending or-
der even helps to reduce EPL in this case provided
p3 < p2.

2) Top-Down Reordering is essentially a single-pass
greedy algorithm. SIFTING may find a better result
than it by finely tuning the order, with feasible time
complexity.

5. Related Work

5.1. BDD and MDP

(Busa-Fekete et al., 2012) models the Decision Func-
tion by Markov Decision Process (MDP) that is repre-
sented by a Directed Acyclic Graph (DAG) with pre-
cisely T nodes for each of the T base learners. When
calculating, the node is considered sequentially follow-
ing the natural order, i.e., the as-is order in Boost-
ing. At each node, one of three possible Actions, i.e.,
{Go To Next Node, Quit, Skip}, is taken based on the
States consisting of current acc() value and the index
of current base learner.

In regards of internal structure, the DAG for MDP is
actually equivalent to BDD we explain in section 2.4.
“Expanding” the t-th node in DAG yields the t-th level
of a BDD. In another words, the BDD nodes at t-th
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Figure 7. EPL (horizontal axis) v.s. test error (vertical axis) curve, for datasets #2, #3, #6, #8, #10.

level can be seen as the States in MDP. Therefore,
taking actions in MDP is to traverse different types
of nodes in BDD (i.e., “Skip”: traverse a redundant
BDD node; “Quit”: traverse a BDD node in EI; “Go
To Next Node”: traverse an ordinary BDD node).

The State-to-Action mapping is learned from a set of
training data by trading off error rate and evaluation
time via Reinforcement Learning framework in (Busa-
Fekete et al., 2012). In contrast, the BDD nodes con-
nection in section 2.4 is derived from BVT, which pre-
cisely captures all possible inputs to Decision Function
(1).

5.2. BDD and Tree

In view of Boolean Expression, the Decision Function
(1) can be represented by either BDD or Tree. In
BDD, all paths share a common order of base learner,
while in Tree each path can have its own order. There-
fore, it is very difficult to minimize EPL for a tree by
reordering the base learner.

(Kim et al., 2012) proposed that one simply grows a
new tree. The outputs of base learners on training data
(including the synthesized data in order not to alter
the decision function too much) are seen as new feature
vectors and are thus fed into some top-down tree grow-
ing procedure. Information gain is used as split crite-
rion. Actually, (Goodman & Smyth, 1988) pointed out
that this method is a type of Shannon-Fano coding at-
tempting a minimum average code length, which by
definition is precisely the EPL (10) discussed in this
paper.

There is other work utilizing tree structure where each
node associates a linear combination of the base learn-
ers, including (Grossmann, 2004; Tu, 2005; Xu et al.,
2013).

5.3. Others

In supplement, we discuss the problem of imbalanced
class prior, which is common in object detection in
Computer Vision. Also, we briefly review the related

work from community other than Machine Learning.

6. Experiments

To achieve small EPL, we compare three reordering
methods: 1) SORT(weight sorting, Sochman & Matas
(2005); Kim et al. (2012)); 2) TD(top down Reorder,
Bourdev & Brandt (2005)); 3) SIFT(SIFTING, advo-
cated in this paper), for either exact or approximate
representation of Boosting’s decision function.

6.1. Setup

We carry out experiments on the following data sets:
#1: optdigits bin05 #2: pendigits80
#3: optdigits17 #4: pendigits49
#5: mnist10k06 #6: mnist10k37
#7: mnist10k49 #8: zipcode38
#9: covertype145k06 #10: poker25kT109

They are adopted from UCI and MNIST, see
supplement for details.

LogitBoost (Friedman et al., 2000) with decision
stump is used to generate the binary valued base learn-
ers (2) and the Decision Function (1). We run Boost-
ing for 1000 iterations and combine those duplicate de-
cision stumps. Therefore, the number of unique base
learners T < T ′.

SORT and TD have no tuning parameters. For SIFT,
up to M = 4 rounds are tried on training data. During
the course, we stop it whenever the EPL increases after
some round.

6.2. Results and Analysis

An exact representation precisely reproduces Boost-
ing’s classification boundary and thus has the same
testing error with Boosting. To tell whether a re-
ordering method is good in this case, we can simply
check the EPL. In Table 1 we show the results for an
exact representation–FastExit, using three reordering
methods. We also include as baseline the results of
Boosting, where EPL is the number of its unique base
learners T .
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Table 1. Results for FastExit with natural order and three reordering methods: SORT, TD and SIFTING. Results for
original Boosting, as baseline, is shown at first row. At each entry, the first cell is EPL and the second is error rate, both
in testing stage. Lower EPL in boldface.

dataset#1 dataset#2 dataset#3 dataset#4 dataset#5 dataset#6 dataset#7 dataset#8 dataset#9 dataset#10

Boosting 26 0.83% 136 3.29% 54 0.28% 87 0.29% 220 1.32% 314 1.9% 518 4.02% 256 3.31% 475 4.68% 22 0.00%

fastexit 11.54 0.83% 72.79 3.29% 27.01 0.28% 40.37 0.29% 138.88 1.32% 222.41 1.9% 409.09 4.02% 179.03 3.31% 409.30 4.68% 6.68 0.00%
fastexit-SORT 9.37 0.83% 54.74 3.29% 23.14 0.28% 32.15 0.29% 119.86 1.32% 200.83 1.9% 370.52 4.02% 163.52 3.31% 311.35 4.68% 4.98 0.00%
fastexit-TD 9.56 0.83% 56.27 3.29% 24.31 0.28% 34.73 0.29% 130.60 1.32% 237.48 1.9% 425.62 4.02% 172.82 3.31% 449.77 4.68% 5.18 0.00%
fastexit-SIFT 9.07 0.83% 50.86 3.29% 22.25 0.28% 31.00 0.29% 115.40 1.32% 190.16 1.9% 349.95 4.02% 159.30 3.31% 223.02 4.68% 4.59 0.00%

Table 2. Results for FastExit and BDD with reordering by SIFTING. At each entry, the first cell is EPL and the second
is error rate, both in testing stage.

dataset#1 dataset#2 dataset#3 dataset#4 dataset#7 dataset#10

Boost 23.00 1.11% 110.00 3.43% 64.00 0.28% 86.00 0.29% 92.00 4.9% 6.48 0.00%

fastexit 12.34 1.11% 63.65 3.43% 32.53 0.28% 47.45 0.29% 69.64 4.9% 19.00 0.00%
BDD 12.28 1.11% 63.65 3.43% 32.51 0.28% 46.48 0.29% 62.23 4.93% 5.13 0.00%

fastexit-SIFT 8.67 1.11% 35.96 3.43% 20.20 0.28% 24.64 0.29% 57.96 5.07% 4.59 0.00%
BDD-SIFT 8.58 1.11% 36.06 3.43% 20.44 0.28% 25.19 0.29% 58.02 4.93% 4.67 0.00%

Given a fixed T ′ for the approximate representation
DBPSYN, we find none of the three reordering meth-
ods is able to have both lower EPL and lower test error.
Therefore, for each reordering method we vary the T ′

to generate a sequence of (EPL, test error) pairs and
connect those points as a curve (i.e., the Pareto front),
as is shown in Figure 7 (More results in supplement).
The closer to bottom left corner the curve, the better
the reordering method.2

As can be seen in Table 1 and Figure 7, all three
reordering methods yield improved EPL. Besides, we
find that:

1) SIFT > SORT > TD on a majority of the datasets
for both exact and approximate representation, where
> means outperform. That is to say, SIFTING is al-
ways a preferred reordering method.

2) Approximate methods lead to significantly smaller
EPL than exact methods. However, testing error rate
for approximate methods is usually greater. The DBP-
SYN seems a good trade off.

We also compare two exact representations, i.e., Fas-
tExit and BDD, with reordering by SIFTING. Basi-
cally, in BDD we need store too many nodes which is
beyond our computational resources. So we implement
a fixed small step LogitBoost. After training Logit-
Boost and combining the duplicate decision stumps,
the outputs of base learners can thus be quantized to
integers. This largely reduces the space complexity for
BDD. Even so, it is still space demanding and the base
learner swapping is very slow. In Table 2, we report

2Comparison using Pareto front by varing T ′ is sug-
gested by a reviewer.

the results for part of the datasets.

From Table 2, it seems that BDD shows little im-
provements over its close relative FastExit. We believe
it’s due to the fact that in BDD the redundant nodes
within PI are actually very rare. Recalling the con-
nection between BDD and the work in (Busa-Fekete
et al., 2012) (section 5.1), we thus cautiously suggest
that the Action “Skip” in MDP (Busa-Fekete et al.,
2012) be not necessary provided a proper base learner
ordering be found (In (Busa-Fekete et al., 2012) the
natural order is taken and no reordering is attempted).

7. Conclusion and Future Work

We discuss the representation of decision function in
Boosting. To reduce the evaluation time of decision
function, we propose a novel method for base learner
reordering. In the future, we will take into account
feature cost, general base learner other than decision
stump and multi-class classification.
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