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Abstract

In this study, we derive algorithms for es-
timating mixed β-divergences. Such cost
functions are useful for Nonnegative Matrix
and Tensor Factorization models with a com-
pound Poisson observation model. Com-
pound Poisson is a particular Tweedie model,
an important special case of exponential dis-
persion models characterized by the fact that
the variance is proportional to a power func-
tion of the mean. There are several well
known matrix and tensor factorization algo-
rithms that minimize the β-divergence; these
estimate the mean parameter. The proba-
bilistic interpretation gives us more flexibil-
ity and robustness by providing us additional
tunable parameters such as power and dis-
persion. Estimation of the power parame-
ter is useful for choosing a suitable diver-
gence and estimation of dispersion is useful
for data driven regularization and weighting
in collective/coupled factorization of hetero-
geneous datasets. We present three inference
algorithms for both estimating the factors
and the additional parameters of the com-
pound Poisson distribution. The methods
are evaluated on two applications: modeling
symbolic representations for polyphonic mu-
sic and lyric prediction from audio features.
Our conclusion is that the compound poisson
based factorization models can be useful for
sparse positive data.
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1. Introduction

Non-negative Matrix Factorization (NMF) is a widely
used algorithm for data analysis. The goal is calcula-
tion a factorization of the form:

X(i, j) ≈ X̂(i, j) =
∑
k

Z1(i, k)Z2(k, j) (1)

where X is the given data matrix, X̂ is an approxi-
mation to X, and Z1, and Z2 are non-negative fac-
tor matrices. This model has been applied to various
fields including signal processing, finance, bioinformat-
ics, and natural language processing (Cichocki et al.,
2009). One of the most popular approaches for com-
puting factorizations is based on minimization of a di-
vergence D:

(Z∗1 , Z
∗
2 ) = arg min

Z1,Z2≥0
D(X||X̂). (2)

In practice, a separable divergence D(X||X̂) =∑
i,j d(X(i, j)||X̂(i, j)) is used. Some popular diver-

gence (i.e., cost) functions are special cases of the β-
divergence, defined as p = 2− β:

dp(x; x̂) =
x2−p

(1− p)(2− p)
− xx̂1−p

1− p
+
x̂2−p

2− p
(3)

where p is an index parameter. By taking appropriate
limits it is easy to verify that dp is the Euclidean dis-
tance square, information divergence or Itakura-Saito
divergence (Févotte et al., 2009) for p = 0, 1 and 2
respectively.

The key idea of the current paper is to exploit the
close connection between β-divergences and a partic-
ular exponential family, the so-called Tweedie models
(Yılmaz & Cemgil, 2012). It turns out that Tweedie
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densities, to be described in more detail in the follow-
ing section, can be written in the following moment
form

P(x; x̂, φ, p) =
1

Z(x, φ, p)
exp

(
− 1

φ
dp(x; x̂)

)
(4)

where x̂ is the mean, φ is the dispersion and p is the
index parameter of the β-divergence defined in (3). An
important property is that the normalization constant
Z does not depend on x̂; hence it is easy to see that for
fixed p and φ, solving a maximum likelihood problem
for x̂ is indeed equivalent to minimization of the β-
divergence.

Note that for the familiar Gaussian case, we have
d0(x; x̂) = (x− x̂)2/2

P(x; x̂, φ, p = 0) =
1√
2πφ

exp

(
− 1

φ
(x− x̂)2/2

)
(5)

the dispersion is simply the variance. As for all ad-
missible p we have a similar form, Tweedie models
generalize the established theory of least squares lin-
ear regression to more general noise models (restricted
to identity link functions).

Matrix factorization (MF) is often viewed as a diver-
gence minimization problem, and various algorithms
for solving the optimization problem in (2) have been
proposed. Often, multiplicative updates are used
in practice for their simplicity, yet many extensions
and variations have been proposed (Yılmaz et al.,
2011). However, the divergence minimization perspec-
tive does not provide a complete picture of MF models.
One key question is the choice of the divergence. In
practice, several divergence functions are tried on the
problem and models are evaluated according to an ap-
plication specific success criterion. Another problem
arises in collective factorization, for example when we
wish to decompose several matrices collectively as in
the following block matrix model

[X1, X2] ≈ [X̂1, X̂2] = Z1[Z2, Z3]. (6)

This can be viewed as a coupled factorization of X1

and X2 where the factor Z1 is being shared. If the
data matrices are representing different modalities, it
is natural that we might want to choose a cost function
that puts more emphasis on one matrix using weights
as

Cost(Z1:3) = φ−11 Dp1(X1||Z1Z2) + φ−12 Dp2(X2||Z1Z3).

We will refer to such cost functions as mixed β-
divergences. The probabilistic perspective provides
here a natural, data driven formulation in choosing the

relative weights by maximization of a joint likelihood
with respect to the dispersion parameters φν and pos-
sibly the individual divergences Dpν via determination
of pν for ν = 1, 2.

2. Exponential Dispersion Models and
the Tweedie Family

The Tweedie family is a particular exponential dis-
persion model (EDM) (Jørgensen, 1997). EDM’s are
a well-studied family of distributions and have found
place in various fields. It has an important role at
statistical data analysis as the response distribution
of the generalized linear models (McCulloch & Nelder,
1989).

An exponential dispersion model (in canonical form)
can be defined by a two parameter density as follows
(Jørgensen, 1997):

P(x; θ, φ) = h(x, φ) exp

{
1

φ
(θx− κ(θ))

}
(7)

where θ is the canonical (natural) parameter, φ
is the dispersion parameter and κ is the cumulant
(log-partition) function ensuring normalization. Here,
h(x, φ) is the base measure and is independent of the
canonical parameter. For EDM, it is easy to verify
that the mean x̂ (also called expectation parameter)
and the variance Var{x} are obtained directly from the
first and second derivatives of κ(·) with respect to the
canonical parameter

κ′(θ) = 〈x〉p(x;θ,φ) ≡ x̂ (8)

κ′′(θ) =
1

φ
Var{x} ≡ v(x̂). (9)

Here v(x̂), the second derivative, is also known as
the variance function (Tweedie, 1984; Bar-Lev & Enis,
1986; Jørgensen, 1997).

As a special case of EDMs, Tweedie distributions
T W(x; x̂, φ, p) specify the variance function as

v(x̂) = x̂p (10)

The variance function is related to the p’th power of
the mean, therefore it is called a power variance func-
tion. Note that this choice directly dictates the form
of κ(θ) that can be solved as

κ(θ) =


1

2−p ((1− p)θ)
2−p
1−p p 6= 1, 2

−1− log(−θ) p = 2
exp(θ) p = 1

. (11)

Here, different choices for p yield well-known impor-
tant distributions such as the Gaussian (p = 0), Pois-
son (p = 1), compound Poisson (1 < p < 2), Gamma
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(p = 2) and inverse Gaussian (p = 3) distributions.
Excluding the interval 0 < p < 1 for which no EDM
exists, for all other values of p not mentioned above,
one obtains stable distributions (Jørgensen, 1997).

In this study, we focus on the inference in the ma-
trix/tensor factorization models with p ∈ (1, 2) and
p is unknown. Tweedie distribution with p ∈ (1, 2)
is equivalent to the compound Poisson distribution
and has a support for continuous positive data and
a discrete probability mass at zero. The presence of
the discrete mass at zero makes this distribution suit-
able for many applications where observations are of-
ten zero but sometimes are positive. Handling this
using a single family has been illustrated to be useful
in many applications, including actuarial science (no
claim/claim amount), rainfall modeling (no rain/rain
amount), fishery prediction (no catch/some catch)
(Dunn & Smyth, 2005).

Maximum likelihood estimation of the compound Pois-
son distribution is relatively simple only if the index
parameter p is known beforehand. If p is not known,
it is a quite challenging task to make inference on the
compound Poisson models. Related to this problem,
in (Zhang, 2012) the authors present likelihood-based
inferential methods and a Monte Carlo EM algorithm
for making inference in compound Poisson models. In
another recent study (Lu et al., 2012), the authors
present a score matching method for finding the best
p for the simpler case where they assumed unitary dis-
persion. In this study, we present three methods for
making inference in matrix/tensor factorization mod-
els with compound Poisson observation models. In
the first and the second methods, we follow a vari-
ational approach, where in the third method we in-
tegrate out the dispersion parameter. We evaluate
the proposed methods on two applications. Firstly,
we evaluate our methods on modeling symbolic repre-
sentations for polyphonic music. Secondly, we define a
novel coupled tensor factorization model and evaluate
our methods on prediction of the lyrics of a song from
its audio features.

3. The Compound Poisson Distribution

The goal in this section is to give a compact charac-
terization of the compound Poisson distribution as a
Tweedie model (Jørgensen, 1997). We will show that
the Tweedie density with p ∈ (1, 2) coincides with the
compound Poisson density. A random variable x that
is the sum of n independent and identically distributed
Gamma random variables is compound Poisson dis-
tributed, when n is Poisson distributed. The genera-

tive model is (Jørgensen, 1997):

x =

n∑
i=1

gi (12)

where n and gi are

n ∼ PO(n;λ) gi ∼iid G(gi; a, b) (13)

Here, PO and G denote the Poisson and Gamma den-
sities, respectively. The marginal density P(x) is com-
pound Poisson. More compactly, we can also write
x|n ∼ G(x; an, b).

To show the equivalence to the Tweedie, we first note
that the cumulant generating function (CGF) Ku(s)
of a random variable u with density P(u) is defined
as Ku(s) = logGu(es) where Gu(z) = 〈zu〉P(u) is a
generating function. From basic probability theory,
we know that the generating function of the sum of a
random number of iid variables is obtained by nesting
as Gx(z) = Gn(Gg(z)), where

Gn(z) = exp(λ(z − 1)) Gg(z) = (1− log(z)/b)−a

are generating functions for the Poisson and Gamma
densities. By substitution we obtain the CGF of x as

Kx(s) = λ((1− s/b)−a − 1). (14)

Now, we will show that we obtain the same CGF start-
ing from the power variance assumption. We can easily
verify that CGF for EDM in (7) is given by (Jørgensen,
1997; Dunn & Smyth, 2005)

Kx(s; θ, φ) =
1

φ
(κ(sφ+ θ)− κ(θ)) . (15)

If we substitute the expression for κ(θ) in (11) and
then express the result as a function of the expectation
parameter x̂ by noting that

θ =
x̂1−p

1− p
(16)

(as dθ/dx̂ = v(x̂)−1 = x̂−p), we obtain

Kx(s; θ, φ) =
x̂2−p

(2− p)φ

((
1− sφ(p− 1)x̂p−1

) 2−p
1−p − 1

)
that has the same form as (14). By matching term
by term, we see that the Tweedie distribution for 1 <
p < 2 is the compound Poisson distribution with the
following parameter mapping:

λ =
x̂2−p

φ(2− p)
, a =

2− p
p− 1

, b =
x̂1−p

φ(p− 1)
. (17)
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Figure 1. The compound Poisson distribution with p = 1.3,
φ = 5, and x̂ = 40. Note that the probability mass at zero
makes this distribution suitable for sparse positive data.

By using this mapping, the joint distribution can be
written as follows:

P(x, n|x̂, φ, p) =P(x|n, x̂, φ, p)P(n|x̂, φ, p)

=
[
exp(− x̂2−p

(2− p)φ
)
][n=0]

[
exp(− n

p− 1
log(φ) + n

2− p
p− 1

log
x

p− 1

− n log(2− p)− log Γ(n+ 1)

− log Γ(
2− p
p− 1

n)− log(x)

− 1

φ

(
x̂1−px

(p− 1)
+

x̂2−p

(2− p)

)
)
][n>0]

.

(18)

It turns out that
∑
n p(x, n|·) does not have a closed

form. Here, Dunn and Smyth provide numerical meth-
ods for approximate computation (Dunn & Smyth,
2005), but we propose here two simpler algorithms.
An example pdf of a compound Poisson distribution is
given in Figure 1.

4. Parameter Estimation

An interesting property of the joint distribution in (18)
is that x̂ and n are conditionally independent given
the index parameter p and the dispersion φ, as the
joint factorizes such that there are no cross terms that
contain both x̂ and n. Besides, the terms that depend
on x̂ are specified by the β-divergence. Therefore, any
standard algorithm that minimizes the beta divergence
can be used here.

When dealing with factorization models (i.e x̂ is de-
composed into some latent factors), we seek the best
factorization whose form can vary depending on the
application. If we consider the model that is defined
in (6), maximum likelihood estimation of the factors
under mixed cost functions can be achieved by iter-
atively applying the multiplicative update rules given

in (Yılmaz et al., 2011). The update rule for the factor
Z1 can be written as follows:

Z1 ← Z1 ◦
∑2
ν=1 φ

−1
ν ∆ν(Mν ◦Xν ◦ X̂−pνν )∑2

ν=1 φ
−1
ν ∆ν(Mν ◦ X̂1−pν

ν )
(19)

where pν are the index parameters, φν are the disper-
sion parameters, A ◦ B and A

B denotes element-wise
product and division of two matrices A and B, respec-
tively. Here, ∆ν(·) are functions that are defined as
follows:

∆1(A) = AZ>2 (20)

∆2(A) = AZ>3 (21)

where > denotes the matrix transpose. Besides, Mν

is a binary matrix of size Xν that have values of 1 (0)
where Xν is observed (missing).

When pν and φν are not known beforehand, the infer-
ence problem gets complicated. In this study, we focus
on estimating pν and φν when pν ∈ (1, 2). Since pν
and φν are conditionally independent from the factors,
given the mean parameter, our methods can be used
in any matrix and tensor factorization model. There-
fore, we stick to our vector notation where we define
x ≡ vec(Xν), x̂ ≡ vec(X̂ν), m ≡ vec(Mν), and ν
denotes the observed matrix/tensor index for the case
when we have multiple (most likely multimodal) ob-
served matrices/tensors. Here, vec(·) is the vectoriza-
tion operator (i.e. the colon operator in Matlab).

In the next subsections, we present three novel infer-
ence methods for estimating the index parameter in
Tweedie compound Poisson models. In the first and
the second methods we follow a variational approach,
where in the third method we integrate out the dis-
persion parameter and make inference on the marginal
distribution.

4.1. Variational Approach

In this section, we present two variational methods,
namely the Iterative Conditional Modes (ICM) and
the Expectation-Maximization (EM) algorithms.

The ICM algorithm iteratively maximizes over the pa-
rameters n, φ, and p given x and x̂. Even though the
maximization over n is intractable, we can find the
mode n∗ by approximating the log Γ(·) functions in
(18) by using Stirling’s approximation, as proposed in
(Dunn & Smyth, 2005). The mode has the following
analytical form:

n∗(i) =
x(i)2−p

(2− p)φ
. (22)
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Maximizing the dispersion parameter φ is straightfor-
ward, however, since the index parameter p and φ are
closely related to the variance and may affect each
other, it can be necessary to regularize φ in order to
have a better estimate of p. It is easy to verify that the
conjugate prior of the dispersion parameter is the in-
verse Gamma distribution. Therefore, here we assume
an inverse Gamma prior on φ: φ ∼ IG(φ;αφ, βφ). The
optimal dispersion, given the other parameters is as
follows:

φ∗ =

(∑
i
m(i)x̂(i)1−px(i)

(p−1) + m(i)x̂(i)2−p

(2−p)

)
+ βφ∑

im(i)n∗(i)

p−1 + αφ + 1
. (23)

Surprisingly, none of the references we are aware of
used this conjugate prior. In the next section we will
use this property to analytically integrate out the dis-
persion parameter.

The last step of the ICM algorithm is to compute
the maximization over p. Since the optimal p does
not have an analytical solution, we consult numerical
methods. As the domain of p is limited to (1, 2), we
run a simple line search procedure in order to estimate
the index parameter p.

To sum up, at each iteration of the estimation algo-
rithm, we first estimate the factors and compute the
mean parameter x̂. Then, we compute the parameters
n∗ and φ∗ that are described above, and finally we
compute the optimal index parameter p. This proce-
dure is run until convergence.

The EM algorithm is quite similar to the ICM algo-
rithm in algorithmic sense, where we merely replace
n∗ with the expectation 〈n〉 in (23). Unfortunately,
computing this expectation is also intractable. There-
fore, we use a numerical method that is similar to the
one proposed in (Dunn & Smyth, 2005). By using the
fact that the conditional distribution of n is unimodal,
we approximate the expectation by numerically com-
puting it around the mode which is defined in (22).
The rest of the EM algorithm is the same as the ICM
algorithm.

4.2. Integrating out the Dispersion Parameter

The dispersion parameter plays a key role when there
are more than one observed tensor (see (19)). How-
ever, when we have only one observed tensor, the dis-
persion parameter does not contribute to the estima-
tion of the factors in a factorization model as it cancels
out in the multiplicative update rules.

In this section we integrate out the dispersion param-
eter φ and n and make inference on the marginal dis-
tribution. When assumed an inverse Gamma prior on

φ, we obtain the following marginal distribution:

P(x, n) =

[
exp
(
αφ(log βφ − log(

x̂2−p

2− p
+ βφ)

)][n=0]

[
exp
(
n

2− p
p− 1

log
x

p− 1
− n log(2− p)

− log Γ(n+ 1)− log Γ(
2− p
p− 1

n)− log(x)

− (αφ +
n

p− 1
) log(βφ +

x̂1−px

(p− 1)
+

x̂2−p

(2− p)
)

+ αφ log βφ + log Γ(αφ +
n

p− 1
)

− log Γ(αφ)
)][n>0]

. (24)

In order to estimate the index parameter p, we also
marginalize out n by using numerical methods. Fi-
nally, the optimal p is found by a line search algorithm,
similar to ICM and EM.

5. Experiments

In order to evaluate our methods, we conduct experi-
ments on both synthetic and real data. Due to space
limitations, in this paper we only present the experi-
ments that we conduct on real data. The other exper-
iments can be found in http://www.cmpe.boun.edu.

tr/~umut/icml2013.

5.1. Polyphonic Music Modeling

Along with the rapid development of computa-
tional power and statistical modeling techniques,
factorization-based music modeling has become pop-
ular. This paradigm has been shown to be successful
in many applications including polyphonic pitch tran-
scription, source separation and audio restoration.

Recent studies suggest that, when designed properly,
polyphonic pitch transcription methods with higher
level musical models yield better transcription per-
formance (Boulanger-Lewandowski et al., 2012). In
this section, we present a tensor factorization model
for symbolic musical data modeling. This model can
be used as a side model for factorization-based audio
models.

Symbolic music representation is similar to the sheet
representation of music, where symbolic data contain
high level musical information, such as note onset
times, note durations, and the pitch of the notes that
occur in a musical piece. Musical Instrument Digital
Interface (MIDI) is one of the standards of symbolic

http://www.cmpe.boun.edu.tr/~umut/icml2013
http://www.cmpe.boun.edu.tr/~umut/icml2013
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music representation.

One disadvantage of the symbolic representation is
that it does not reflect the temporally varying charac-
teristics of the musical notes. We have the information
of the velocities at the note onsets, however we cannot
obtain the damping structure that the notes naturally
have. Therefore, in order to have a better representa-
tion, we quantize the time into time-frames and encode
the musical information into a matrix X ≡ {X(n, t)}
where n is the note index and t is the time frame in-
dex. Here X(n, t) simulates the time-varying velocity
(volume) of note n during time frame t. For instance,
if the note n is active at both the time-frame t and
t + 1, then the velocities have the following relation:
X(n, t + 1) = αX(n, t) where 0 < α < 1. This repre-
sentation mimics the structure of an excitation matrix
of the Nonnegative Matrix Factorization model for au-
dio signals (Smaragdis & Brown, 2003).

By construction, only a couple of notes will be active
at a given time frame t, therefore X will consist of
mostly zeros and some positive values. We can ob-
serve that assuming a compound Poisson observation
model is quite reasonable as the compound Poisson
distribution has a nonnegative probability mass at 0
and a continuous density on positive values.

In this study, we use Nonnegative Matrix Factor De-
convolution (NMFD) model (Smaragdis, 2004) in or-
der to model the modified symbolic musical data.
Apart from using the benefits of the NMF model, this
model is also capable of modeling the temporal in-
formation of the music. We can define the model as
follows:

X(n, t) ≈ X̂(n, t) =
∑
τ,k

D(n, τ, k)E(k, t− τ) (25)

where D is the dictionary tensor and E encapsulates
the corresponding excitations.

Since we have only one observed tensor in this model,
we can use all three of the inference methods that
have been described. In order to evaluate our methods
on modeling the symbolic data, we firstly erase some
columns (time frames) of the data, then reconstruct
the missing parts by using the NMFD model. This
reconstruction problem is not trivial as entire time
frames (columns of X) can be missing.

In our experiments we use the MIDI Aligned Piano
Sounds (MAPS) database (Emiya et al., 2010). We use
10 excerpts from 5 different classical music pieces. Af-
ter generating the X matrices from the symbolic data,
we randomly erase some columns of the data which are
going to be reconstructed later on. In order to obtain
the reconstructed symbolic data, we simply combine
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Figure 2. Results of the experiments. Initial SNR is com-
puted by substituting 0 as missing values.
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Figure 3. Visualization of the symbolic music reconstruc-
tion.

the observed parts of X and the estimated parts of X̂:
M ◦ X + (1 −M) ◦ X̂, where M is the binary mask
that is introduced in Section 4. We evaluate and com-
pare the performances of our methods by measuring
the signal-to-noise ratio (SNR) between the corrupted
and the reconstructed symbolic musical data.

In our experiment settings, the duration of the ex-
cerpts is 10 seconds, where we use time frames of 93
milliseconds. We select αφ = 5 and βφ = 3, |k| = 50,
and |τ | = 5 for all methods, where | · | denotes cardi-
nality. The results are shown in Figure 2.
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The results suggest that, the methods always improve
the quality of the corrupted symbolic data. The ICM
and the EM algorithm give similar results, where the
Bayesian method seems to be more sensitive to the
missing data than the variational methods. The esti-
mated index parameter p differs for each piece that is
reconstructed. Besides, each algorithm finds different
p values: the average values for the index parameter
are 1.01 (ICM), 1.19 (EM), and 1.26 (Bayesian). For
all methods, we get about 4 dB SNR improvement
where 50% of the data is missing; gracefully degrading
from 10% to 90% missing data. Figure 3 visualizes an
example reconstruction. It can be observed that the
compound Poisson model yields a better reconstruc-
tion, where the Gaussian model introduces spurious
notes.

As the results are encouraging even when quite long
portions of the data are missing, we can say that mod-
eling the polyphonic music with this approach seems
reasonable and might produce good results when used
in more complicated models.

5.2. Coupled Audio and Lyrics Modeling

In this section, we illustrate how our approaches can
be used with multimodal data. Coupled factorization
models have been shown to be useful at fusing infor-
mation from multimodal data (Şimşekli et al., 2012).
Here, we illustrate how the index parameter p and
the corresponding dispersion φ will be estimated under
coupled models with mixed observation models where
at least one of the observation model is the compound
Poisson model.

We present a novel coupled matrix factorization model
which combines audio features and the lyrics of songs.
The aim of this application is to predict the bag-of-
words representation of the lyrics of a song given its
audio features. This is an interesting application which
tries to estimate the keywords that should exist in the
lyrics of a song by making use of its audio features and
the information from other songs.

Suppose we observe the matrices X1 ≡ {X1(f, s)} and
X2 ≡ {X2(w, s)}, where X1 contains the song-level
audio features and X2 contains the bag-of-words rep-
resentation of the lyrics of the songs in their columns.
Here, f denotes the audio feature index, s is the song
index, w is the word index. We decompose these ma-
trices by using the NMF model as follows:

X1(f, s) ≈ X̂1(f, s) =
∑
k

D1(f, k)E1(k, s) (26)

X2(w, s) ≈ X̂2(w, s) =
∑
n

D2(w, n)E2(n, s) (27)

where D1 and D2 are the dictionary matrices and E1

and E2 are the corresponding excitation matrices. By
also assuming a low rank model over the excitation
matrices, we hierarchically factorize the excitations by
using another NMF model as follows:

E1(k, s) =
∑
r

B1(k, r)C(r, s) (28)

E2(n, s) =
∑
r

B2(n, r)C(r, s), (29)

where B1 and B2 are the dictionaries for the excita-
tions. With a final assumption that a particular song
would use the same columns of the dictionaries B1 and
B2, we can say that it would have the same excitations.
By this approach, we can relate the audio features to
the lyrics. We define the ultimate coupled model as
follows:

X̂1(f, s) =
∑
k,r

D1(f, k)B1(k, r)C(r, s) (30)

X̂2(w, s) =
∑
n,r

D2(w, n)B2(n, r)C(r, s). (31)

Figure 4 visualizes this model. Note that, an NMF-
based approach is proposed for modeling lyrics in (Dik-
men & Févotte, 2012) and the authors report success-
ful results.

One can come up with many different applications by
using this model; in this study, we focus on the pre-
diction of the lyrics of a song in a bag-of-words rep-
resentation. It is fairly easy to predict the lyrics of a
particular song by using this model: we mark the re-
lated parts of the binary mask M2 (see Section 4) as
unobserved, then make predictions by using X̂2.
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Figure 5. The ROC curve belonging to the word detection
performance.

In our experiments we use the Million Song Dataset
(MSD) and the MusiXmatch dataset (Bertin-Mahieux
et al., 2011). The MSD is a free collection of audio
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Figure 4. Visualization of the coupled factorization model. The blocks visualize the matrices and the relation between
them. The lower-case letters and arrows near the blocks represent the indices of a particular matrix.

features and metadata that are gathered from a large
number of music tracks. These features include the
key, tempo, time signature, duration, genre tags, year,
loudness, and the chroma features of the songs. We
use the song level features of random 500 pop songs
where we use 2827 features for each song, yielding an
audio feature matrix X1 of size 2827× 500.

The MusiXmatch dataset contains the lyrics of the
songs in a bag-of-words representation. This dataset
contains more than 230 thousand songs, all being
matched with the ones of MSD. Here, we use the num-
ber of occurrences of the most common 5000 words of
each song, where these 5000 words cover over 92% of
all the words in the dataset. We use the same songs
that are selected while constructing X1. Therefore, we
have the lyrics matrix X2 of size 5000×500, where each
column of X2 holds a bag-of-words lyrics of a song.

In our experiment settings, we select p1 = 1 with uni-
tary dispersion, which corresponds to the Poisson ob-
servation model. Note that, we could also optimize the
dispersion φ1, but this is out of the scope of this study.
We set |k| = |n| = 25 and |r| = 10. In order to esti-
mate the factors, we use the method that is presented
in (Yılmaz et al., 2011). At each run, we estimate the
factors, the index parameter p2, and the dispersion φ2.
We predict the lyrics of random 10 songs at once and
we repeat this process 5 times.

In order to assess the quality of the predictions, we
measure the word detection performance. We estimate
the predictions X̂2 and then consider the words as de-
tected if the corresponding entries in X̂2 are above
some threshold. We compute the true positive and
the false positive rates as the performance metrics.

Figure 5 visualizes the results. It can be observed
that both algorithms yield very similar results. We

get more than 80% of true positive rate while keeping
the false positive rate less than 20%. Besides, the ICM
algorithm seems more advantageous since its compu-
tational requirements are much lower than the EM al-
gorithm. These results are encouraging since the lyrics
are predicted by solely using the song level audio fea-
tures.

6. Conclusion

The compound Poisson distribution is a useful distri-
bution for sparse data as it has a discrete probability
mass at zero and a support for continuous positive
data. In this study, we presented inference methods
for estimating the index and the dispersion parame-
ter of the Tweedie compound Poisson models. In the
first two methods, we followed a variational approach,
where in the third method we estimated the index pa-
rameter by using its marginal distribution. One of the
contributions of this study is to make use the conju-
gate prior on the dispersion parameter, which has not
been investigated in the literature yet.

We evaluated and compared our methods on real data.
Firstly, we evaluated our methods on modeling sym-
bolic representations for polyphonic music. Secondly,
we defined a novel coupled tensor factorization model
and evaluated our methods on prediction of the lyrics
of a song from its audio features. Our conclusion is
that the compound poisson based factorization mod-
els can be useful for sparse positive data.

Acknowledgments
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TÜBİTAK.



Learning the Divergence in Tweedie Compound Poisson Matrix Factorization Models

References

Bar-Lev, S. K. and Enis, P. Reproducibility and nat-
ural exponential families with power variance func-
tions. Annals of Stat., 14, 1986.

Bertin-Mahieux, Thierry, Ellis, Daniel P.W., Whit-
man, Brian, and Lamere, Paul. The million song
dataset. In Proceedings of the 12th International
Conference on Music Information Retrieval (ISMIR
2011), 2011.

Boulanger-Lewandowski, Nicolas, Bengio, Yoshua,
and Vincent, Pascal. Modeling temporal depen-
dencies in high-dimensional sequences: Application
to polyphonic music generation and transcription.
In International Conference on Machine Learning
(ICML), 2012.

Cichocki, A., Zdunek, R., Phan, A. H., and Amari,
S. Nonnegative Matrix and Tensor Factorization.
Wiley, 2009.
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