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Abstract
In this paper, we explore applications in
which a company interacts concurrently with
many customers. The company has an ob-
jective function, such as maximising revenue,
customer satisfaction, or customer loyalty,
which depends primarily on the sequence of
interactions between company and customer.
A key aspect of this setting is that interac-
tions with different customers occur in par-
allel. As a result, it is imperative to learn
online from partial interaction sequences, so
that information acquired from one customer
is efficiently assimilated and applied in sub-
sequent interactions with other customers.
We present the first framework for concur-
rent reinforcement learning, using a variant
of temporal-difference learning to learn ef-
ficiently from partial interaction sequences.
We evaluate our algorithms in two large-
scale test-beds for online and email interac-
tion respectively, generated from a database
of 300,000 customer records.

1. Introduction

In many commercial applications, a company or organ-
isation interacts concurrently with many customers.
For example, a supermarket might offer customers dis-
counts or promotions at point-of-sale; an online store
might serve targeted content to its customers; or a
bank might email appropriate customers with loan or
mortgage offers. In each case, the company seeks to
maximise an objective function, such as revenue, cus-
tomer satisfaction, or customer loyalty. This objective
can be represented as the discounted sum of a reward
function. A stream of interactions occurs between the
company and each customer, including actions from
the company (such as promotions, advertisements, or
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emails) and actions by the customer (such as point-of-
sale purchases, or clicks on a website).

Typically, thousands or millions of these interaction
streams occur with different customers in parallel. Our
goal is to maximise the future rewards for each cus-
tomer, given their history of interactions with the com-
pany. This setting differs from traditional reinforce-
ment learning paradigms, due to the concurrent na-
ture of the customer interactions. This distinction
leads to new considerations for reinforcement learn-
ing algorithms. In particular, when large numbers of
interactions occur simultaneously, it is imperative to
learn both online and to bootstrap, so that feedback
from one customer can be assimilated and applied im-
mediately to other customers.

The majority of prior work in customer analytics,
data mining and customer relationship management
collects data after-the-fact (i.e. once interaction se-
quences have been completed), and analyses the data
offline (for example, Tsiptsis and Chorianopoulos
2010). However, learning offline or from complete in-
teraction sequences has a fundamental inefficiency: it
is not possible to perform any learning until interac-
tion sequences have terminated. This is particularly
significant in situations with high concurrency and
delayed feedback, for example during an email cam-
paign. In these situations it is imperative to learn
online from partial interaction sequences, so that in-
formation acquired from one customer is efficiently as-
similated and applied in subsequent interactions with
other customers. In these cases the final outcome of
the sequence is unknown, and therefore it is necessary
to bootstrap from a prediction of the final outcome.

It is often also important to learn from the absence of
customer interaction. For example, customer attrition
(where a customer leaves the company due to an un-
desirable sequence of interactions with the company)
is often only apparent after months of inactivity by
that customer. Waiting until a time-out event occurs
is again inefficient, because learning only occurs af-
ter the time-out event is triggered. However, the lack
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of interaction by the customer provides accumulating
evidence that the customer is likely to attrite. Boot-
strapping can again be used to address this problem;
by learning online from predicted attrition, the com-
pany can avoid repeating the undesirable sequence of
interactions with other customers.

In addition to concurrency, customer-based reinforce-
ment learning raises many challenges. Observa-
tions may be received, and decisions requested, asyn-
chronously at different times for each customer. The
learning algorithm must scale to very large quantities
of data, whilst supporting rapid response times (for
example, < 10 ms for online website targeting). In ad-
dition, each customer is only partially observed via a
sparse series of interactions; as a result it can be very
challenging to predict subsequent customer behaviour.
Finally, there is usually a significant delay between
an action being chosen, and the effects of that action
occurring. For example, offering free shipping to a
customer may result in several purchases over the fol-
lowing few days. More sophisticated sequential inter-
actions may also occur, for example where customers
are channelled through a “sales funnel” by a sequence
of progressively encouraging interactions.

In this paper we formalise the customer interac-
tion problem as concurrent reinforcement learning.
This formalism allows for interactions to occur asyn-
chronously, by incorporating null actions and null
observations to represent the absence of interaction.
We then develop a concurrent variant of temporal-
difference (TD) learning which bootstraps online from
partial interaction sequences. To increase computa-
tional efficiency, we allow decisions to be taken at any
time, using an instance of the options framework (Sut-
ton et al., 1999); and we allow updates to be performed
at any time, using multi-step TD learning (Sutton
and Barto, 1998). We demonstrate the performance
of concurrent TD on two large-scale test-beds for on-
line and email interaction respectively, generated from
real data about 300,000 customers.

2. Prior Work

Reinforcement learning has previously been applied to
sequential marketing problems (Pednault et al., 2002;
Abe et al., 2002), cross-channel marketing (Abe et al.,
2004), and market discount selection (Gomez-Perez
et al., 2008). This prior work has found that model-
free methods tend to outperform model-based meth-
ods (Abe et al., 2002); has applied model-free meth-
ods such as batch Sarsa (Abe et al., 2002) and batch
Monte-Carlo learning (Gomez-Perez et al., 2008); us-
ing regression trees (Pednault et al., 2002) and neural
networks (Gomez-Perez et al., 2008) to approximate

the value function. However, this prior work ignored
the concurrent aspect of the problem setting: learn-
ing was applied either in batch (incurring opportunity
loss by not learning online), and/or by Monte-Carlo
learning (incurring opportunity loss by waiting un-
til episodes complete before learning). Our approach
to concurrent reinforcement learning both learns on-
line and bootstraps using TD learning, avoiding both
forms of opportunity loss. In Section 5 we provide em-
pirical evidence that both components are necessary
to learn efficiently in concurrent environments.

Much recent research has focused on a special case
of the customer-based reinforcement learning frame-
work, using contextual bandits. In this setting, ac-
tions lead directly to immediate rewards, such as the
click-through on an advert (Graepel et al., 2010), or
news story (Li et al., 2010). A key assumption of
this setting is that the company’s actions do not affect
the customer’s future interactions with the company.
However, in many cases this assumption is false. For
example, advertising too aggressively to a customer in
the short-term may irritate or desensitise a customer
and make them less likely to respond to subsequent
interactions in the long-term. We focus specifically on
applications where the sequential nature of the prob-
lem is significant and contextual bandits are therefore
a poor model of customer behaviour.

To avoid any ambiguity, we note that there has been
significant prior work on distributed (sometimes also
referred to as parallel) reinforcement learning. This
body of work has focused on how a serial (i.e. con-
tinuing or episodic) reinforcement learning environ-
ment can be efficiently solved by distributing the al-
gorithm over multiple processors. Perhaps the best
known approach is distributed dynamic programming
(Bertsekas, 1982; Archibald, 1992), in which Bellman
backups can be applied to different states, in par-
allel and asynchronously; the value function is then
communicated between all processors. More recently,
a distributed TD learning algorithm was developed
(Grounds and Kudenko, 2007). Again, this focused
on efficient distributed computation of the solution, in
this case applying TD backups in parallel to different
states, and then communicating the value function be-
tween processors. Other work has investigated multi-
agent reinforcement learning, where multiple agents
interact together within a single environment instance
(Littman, 1994). Our focus is very different to these
approaches: we consider a single-agent reinforcement
learning problem that is fundamentally concurrent
(because the agent is interacting with many instances
of the environment), rather than a distributed solution
to a serial problem (where the agent interacts with a
single instance of the environment at any given time).
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We note that algorithms for concurrent reinforcement
learning may themselves utilise distributed processing,
however that is not the focus of this paper and is not
discussed further.

3. Concurrent Reinforcement Learning

Reinforcement learning optimises long-term reward
over the sequential interactions between an agent and
its environment. Environments are typically divided
into two categories: episodic and continuing environ-
ments (Sutton and Barto, 1998). In an episodic en-
vironment, the interaction sequence eventually termi-
nates, at which point the environment resets and a
new interaction sequence begins; whereas in continu-
ing environments, there is a single interaction sequence
that never terminates. In both cases, interactions oc-
cur serially: the agent receives an observation, takes
an action, and receives a reward.

We introduce a third category for reinforcement learn-
ing environments. In a concurrent environment, the
agent interacts in parallel with many instances of the
environment. In our motivating application, the agent
is a company and the environment instances are cus-
tomers. At any given time, the company may be
involved in interaction sequences with many differ-
ent customers; furthermore new customers may ar-
rive, or old customers may leave, at any time. This
is quite different from episodic reinforcement learning,
in which one customer must complete its sequence be-
fore a new customer arrives; or from continuing rein-
forcement learning, which considers a single customer
forever. The distinct nature of concurrent environ-
ments leads to new challenges and considerations for
reinforcement learning algorithms.

One challenge that arises naturally in concurrent envi-
ronments is that actions and observations may occur
asynchronously : actions may be executed, and obser-
vations or rewards received, at different times for each
customer. We address this asynchronicity by repre-
senting customer interaction sequences at a fine time-
scale, and introducing null actions and observations
to represent the absence of interaction with a given
customer. Specifically, we define ait to be the decision
(or decisions) taken by the company with respect to
customer i at time t. If the company does not take any
action at time t, then that action is defined to be null,
ait = a∅. Similarly, we define oit to be the observation
of the customer (which might include actions by the
customer, or any new information acquired about the
customer) i at time t; if we do not observe anything
for that customer, then that observation is defined to
be null, oit = o∅. Finally, we define rit to be the re-
ward for customer i at time t; in the absence of any

response, the reward is defined to be zero, rit = 0.
Real (non-null) observations and real actions may oc-
cur at different time-steps, with many intervening null
interactions and zero rewards. Each time-step has a
duration of d; this is typically short and real inter-
actions with each customer are typically sparse.1 We
assume that there are a total of N customers; if cus-
tomers arrive in or exit the system, then their periods
of inactivity are represented by null actions.

A second challenge is partial observability. Reinforce-
ment learning often focuses on the fully observable set-
ting where observations oit satisfy the Markov property
P
(
oit+1 | oit, ait

)
= P

(
oit+1 | oi1, ai1, ..., oit, ait

)
, in other

words the agent is provided with full knowledge of the
state of the environment. However, when interacting
with a customer, the environmental state includes the
latent “mental” state of the customer. Rather than
attempting to model beliefs over this unwieldy envi-
ronmental state – the approach taken by POMDPs
(Kaelbling et al., 1995) – we represent the customer’s
state directly by the history of their interactions. This
is, by definition, a Markov state representation: the
interaction histories form an infinite, tree-structured
Markov decision process with the empty history at the
root, and histories of length t at depth t.

We make a simplifying assumption that customer be-
haviour is identically distributed and conditionally in-
dependent given their personal interaction history. In
other words, customers are fully described by the ob-
servable facts about that customer: interactions with
one customer do not affect the behaviour of other
customers (for example via communication between
customers); and unobservable variations between cus-
tomers (for example due to personality or mood) are
modelled as noise.2 Informally, our goal is to maximise
future rewards for a customer given the interactions
with that customer. We therefore focus on predict-
ing future rewards directly from interaction histories,
rather than marginalising over latent variables that
model human decision-making behaviour.

Formally, we define an interaction history to be a se-
quence ht = {a1, o1, r1, ..., at, ot, rt}, containing ac-
tions ak ∈ A ∪ a∅, observations ok ∈ O ∪ o∅, and
rewards rk ∈ R. There are a total of N interac-
tion histories, ht = [h1t ; ...;h

N
t ], occurring concurrently

(the superscript i is henceforth used to denote the
customer, which will be suppressed when discussing
a single customer; and bold font to denote the vector

1The continuous-time case is derived from the limit d→
0; for simplicity we treat time as discrete.

2Note however that fine distinctions between the be-
haviour of individual customers may still be modelled, for
example by including customer attributes such as gender
or location, as an initial observation.
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of all customers). The observations and rewards are
assumed to be i.i.d. given their interaction history,
P (ot+1, rt+1 | ht,at) =

∏N
i=1 P

(
oit+1, r

i
t+1 | hit, ait

)
.

We define a policy π(at+1 | ht) = P (at+1 | ht) to be
a single strategy that can be applied to any customer;
the next action is selected according to the interaction
history for that customer only. We define a concurrent
algorithm πππ(at+1 | ht) = P (at+1 | ht) to be a strategy
that depends on interaction histories for all customers.
In particular, a concurrent algorithm can apply expe-
rience gained from interactions with one customer so
as to improve the policy for another customer.

The return is the discounted sum of rewards for a sin-
gle customer, Rt:∞ =

∑∞
k=0 γ

krt+k+1, where γ ∈ [0, 1]
is the discount factor. This represents, for example,
the total revenue from a customer. The action-value
function Qπ, is the expected return for a customer,
given their interaction history followed by action a,
Qπ(hta) = E (Rt:∞ | hta). The optimal value func-
tion is the maximum action-value function achievable
by any policy, Q∗(hta) = maxπ Q

π(hta); our goal is
to approximate the optimal policy π∗(at+1 | ht) that
achieves this maximum, i.e. the best policy given the
accumulated information about that customer.

There are an infinite number of possible interaction
histories, and therefore it is not feasible to repre-
sent the value function for all distinct histories. We
utilise linear value function approximation, Qπ(hta) ≈
Qθ(hta) = φ(hta)>θ to estimate the value function for
the current policy π, where φ(hta) is a n × 1 feature
vector, θ is an n×1 parameter vector. The feature vec-
tor φ(hta) summarises the relevant information about
both the interaction history ht and also the proposed
action a into a compact representation.

4. Concurrent TD Learning

In concurrent reinforcement learning, the importance
of bootstrapping is accentuated and it is crucial to use
TD learning. However, naive application of TD(λ) is
computationally inefficient and does not exploit the
asynchronous structure of concurrent reinforcement
learning. In this section we develop a simple variant of
TD learning that is practical for large-scale concurrent
reinforcement learning environments.

If the time interval d is very small, and the number of
customers N is large, it is computationally inefficient
to update all customers at all time-steps. Typically,
little changes between time-steps in which only null
actions and null observations are observed. Learning
at microscopic time-scales may also be data inefficient:
for example when using TD(0), backups must propa-
gate over many time-steps, and the algorithm’s be-
haviour depends on the choice of time interval d.
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Figure 1. Concurrent TD applied to two example cus-
tomers. Only real (non-null) actions and observations are
shown. Curved red lines indicate concurrent TD backups;
curved blue lines indicate concurrent TD options.

In our approach, the system only makes decisions
at specific time-steps where a decision has been re-
quested; and “executes” null actions (i.e. does noth-
ing) at all other time-steps, without any further com-
putation. Decisions may be requested for a variety of
reasons: for online content serving, a real customer
response will typically trigger a decision request; for
email serving, a timer event might trigger a decision
request (note that the decision may be a null action,
i.e. choosing to do nothing). In addition, it is not nec-
essary to perform learning updates at all time-steps,
but only at those time-steps where an update has been
requested. Again, updates might be triggered by real
customer responses, but also by timer events. In gen-
eral, our approach is fully asynchronous and there is
no requirement that decisions and updates occur at
the same time-step.

To implement asynchronous decision requests, we de-
fine a set of options {ω(a) | a ∈ A}, corresponding to
actions a ∈ A. Each option ω(a) performs the corre-
sponding real action a exactly once, then performs null
actions at all subsequent time-steps until the next de-
cision request or a time-out event. We seek the optimal
policy over these options, taking account of the ran-
domness in the decision requests; i.e. the best we can
do under the constraint that non-null actions can only
be taken on time-steps when decisions are requested.3

3We note that the history hta uniquely identifies the
event of starting an option ω(a) at time-step t, and so
the action-value function Q(hta) also defines the value of
each corresponding option ω(a). Unlike options in general,
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To implement asynchronous update requests, we
utilise multi-step TD learning (Sutton and Barto,
1998) to evaluate the current option-selection policy.
K-step TD updates provide a consistent learning al-
gorithm for any K; mixing over different K leads to
the well-known TD(λ) algorithm (Sutton, 1988). In
our algorithm, we apply TD updates between succes-
sive update requests at time-steps t and t′. In par-
ticular, these time-steps need not correspond to de-
cision requests, since the value of taking an option
may legitimately be evaluated by intra-option value
learning at any time-steps during its execution (Sut-
ton et al., 1999). Specifically, we perform a t′ − t
step Sarsa update. This updates the action-value
function Q(htat+1), towards the subsequent action-
value function Q(ht′at′+1), discounted t′ − t times,
plus the discounted reward accumulated along the way,

Rt:t′ =
∑t′−t
k=0 γ

krt+k+1,

∆θ = α
(
Rt:t′ + γt′−tQ(ht′at′+1)−Q(htat+1)

)
φ(htat+1)

(1)

The concurrent temporal-difference learning algorithm
combines the options framework for asynchronous de-
cision requests, with multi-step TD updates for asyn-
chronous update requests (Figure 1). The implemen-
tation of this algorithm is straightforward (Algorithm
1): at every decision request, an action is selected
by ε-greedy maximisation of the action-value function
Q(hta); and at every update request, the action-value
function is updated according to Equation 1.

As discussed earlier, it is often desirable to learn from
the absence of customer feedback. To allow for this
possibility, we include updates for time-steps at which
no real observation occurred (for example, the final
update for each customer in Figure 1). These updates
can be scheduled so as to minimise computational ex-
pense, while ensuring that learning takes place for any
significant change in customer value. In the following
experiments these updates are scheduled at exponen-
tially increasing time intervals after the last real obser-
vation, eventually resulting in a time-out and a final
update upon termination of the interaction sequence.

5. Experiments

To evaluate our concurrent reinforcement learning al-
gorithms, we used a commercial simulator for inter-
net targeting and email campaign scenarios.4 The
simulator was based on a nearest neighbour model,

which require a semi-Markov representation (Sutton et al.,
1999), these simple options do not violate the Markov prop-
erty since the event of starting the macro-action ω(a) at
time-step t is represented in the interaction history hta. As
a result, whenever a decision request is received, an option
is selected simply by maximising (with some exploration)
over the action-value function at = argmax Q

a∈A
(hta).

4Simulator developer anonymised for blind review.

Algorithm 1 Concurrent TD

Initialise θ
Initialise ui ← 0, Ri ← 0,∀i ∈ [1, N ]
for each time-step t do

for each customer i do
if decision requested for customer i then
ait+1 ← ε-greedy(Q)

else
ait+1 ← a∅

end if
if update requested for customer i then
δ ← Ri + γt−u

i

Q(hita
i
t+1)−Q(hiuiaiui+1)

θ ← θ + αδφ(hiuiaiui+1)

ui ← t, Ri ← 0
end if
if reward observed for customer i then
Ri ← Ri + γt−u

i

rit+1

end if
end for

end for

constructed from a database containing 300,000
anonymised customer records from an online bank.
Our experiments were designed to evaluate two ques-
tions. First, how important is it to learn online, and
to bootstrap, when operating at different levels of con-
currency (i.e. when interacting with different numbers
of customers in parallel)? Second, in a concurrent set-
ting, how important is it to learn from delayed rewards
(i.e. the full reinforcement learning problem), com-
pared to learning from immediate rewards (i.e. the
popular contextual bandit setting)? To answer these
questions, we compared TD learning (which learns
online from partial interaction sequences) to Monte-
Carlo learning (which learns after-the-fact from com-
plete interaction sequences) and to a contextual ban-
dit algorithm (which learns online from immediate re-
wards). The simulator included eight scenarios for in-
ternet targeting and email campaigns, which varied
considerably in their “sequentiality” (i.e. whether ac-
tions have long-term consequences). We investigated
how the relative performance of the three algorithms
changed across different levels of sequentiality. We
now give details for both the simulator and algorithms.

Each customer was represented by 30 variables such
as session count, page view counters, and maximum
credit. In addition, time-based variables have a spe-
cial importance, due to the time-dependence of many
customer interactions. For example, the probability
of a positive customer response is typically dependent
on the recency and frequency with which the company
has been interacting with that customer: too little in-
teraction and the customer is unlikely to respond; too
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much interaction and the customer is likely to be de-
sensitised or annoyed; similarly, the current enthusi-
asm of the customer is often captured by the recency
and frequency with which the customer has been inter-
acting with the company. To represent these factors,
we also included two time-based variables that depend
directly on the recent interaction history. One of these
variables, τo, measured the time since the last real ob-
servation; the second variable, τa, measured the time
since the last real action.

Each simulated customer was initialised with a real be-
havioural history taken from the customer database.
Subsequently, the reward and transition probabilities
were generated from a commercial simulator. The sim-
ulator included four internet targeting and four email
campaign scenarios. In all scenarios, the agent was
able to select amongst 7 real actions plus the null (do
nothing) action a∅. Customers were limited to a binary
response at each time-step (i.e. they either respond or
fail to respond). The reward was r = 1 for a positive
response and r = 0 for no response. The probabil-
ity of response is a Bernoulli random variable with a
mean that depends on all 30 customer variables, based
on a nearest-neighbour representation, multiplied by a
function of the two time-based variables. Customers
returned after a mean time interval of 13 time-steps,
but with a probability of attrition of 0.05. Once a
customer attrites, she never returns (this is therefore
equivalent to a discount factor of γ = 0.996). Action
decisions were requested for each customer: once ini-
tially, and subsequently once each time they return.

In high-dimensional problems based on real customer
data, it is common for some variables to be more sig-
nificant than others; for some variables to be collinear;
and for other variables to be predominantly noisy.
This effect was modelled in the simulator by weighting
the variables appropriately in the nearest neighbour
response model. We combined two techniques to deal
with the high-dimensional nature of the input.

First, each of the 30 customer variables and 2 time-
based variables was discretised into twelve bins with
dynamically adapted bin boundaries, using a variant
of online k-means in each dimension. The feature vec-
tor φ(hta) contained one feature for each combination
of bin and action (for customer variables), and one fea-
ture for each combination of bin and real or null action
(for time-based variables) to give a total of n = 2916
features, each of which captures an aspect of the rela-
tionship between one variable and one action.

Second, we automatically adapted the step-size for
each feature, by stochastic gradient meta-descent (Sut-
ton, 1992; Schraudolph, 1999). The key idea of this
algorithm is to adapt a gain vector of step-sizes, by

gradient descent, so as to minimise the mean-squared
prediction error. Using this algorithm, the step-size
of noise variables is gradually reduced, allowing more
credit to be assigned to the significant variables.

We compared three reinforcement learning algorithms,
all of which used the adaptive discretisation and adap-
tive step-size algorithm described above. The compu-
tation required by each of these algorithms is min-
imal, and they are therefore suitable for large-scale
implementation with rapid response times. In each al-
gorithm we used a naive exploration policy, based on
ε-greedy with ε = 0.1. We note that, although more
sophisticated exploration strategies have been consid-
ered in the literature (especially in the contextual ban-
dit setting), these do not always perform significantly
better in real applications, and often less robustly,
than a naive ε-greedy algorithm (Li et al., 2010).

Monte-Carlo This algorithm learns after-the-fact
from complete interaction sequences. A time-out
event is generated if a customer i does not respond
for 100 time-steps. No updates are performed un-
til the time-out event occurs; at which point the
value function is retrospectively updated towards
the observed return: for each time-step at which
a real action was selected, {t | ait 6= a∅}, the pa-
rameter vectors are updated by linear regression,
∆θ = α(Rit:∞ −Q(hait))φ(hait).

Contextual bandit This was a simple instance of a
contextual bandit algorithm, under the simplify-
ing assumption that actions do not affect the cus-
tomer’s state. This was implemented in the same
way as the Monte-Carlo algorithm, but a time-out
was generated before the next real action.

Concurrent TD A (t′ − t) step TD update was ap-
plied between successive time-steps (t, t′) at which
decisions were requested {t | ait 6= a∅}, or where a
time-out event has occurred. The update is iden-
tical to that described in Algorithm 1,

∆θ = α
(
Rit:t′ + γt

′−tQ(hait′)−Q(hait)
)
φ(hait).

In all cases we compared a variety of constant step-
size parameters α, and also an automatically adapted
step-size, using a variety of meta-step-size parameters
β. For each algorithm we report the results for the
best-performing parameters.

We compared the three algorithms on all eight scenar-
ios of the simulator. To evaluate the performance of
the algorithms, we measured their efficiency. We de-
fine the efficiency Eπππ(t1, t2) of an algorithm πππ to be the
mean total reward over time-period [t1, t2], normalised
such that the uniform random policy has efficiency 0
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Internet Email
A B C D A B C D
100 99 66 52 40 30 22 15

Table 1. Efficiency of the greedy oracle in each scenario.
In a true bandit, the greedy oracle has efficiency 100.

and the optimal policy5 has efficiency 100. To esti-
mate the sequentiality of each scenario, we used an or-
acle that greedily maximises immediate reward, when
provided with the true reward function. We measured
the efficiency of this “greedy oracle”, Egreedy(0, T ), for
large T (Table 1). We note that Internet A scenario is
a true bandit scenario (i.e. actions have no effect on
customers beyond their immediate response), whereas
the other seven scenarios are increasingly sequential.

Each algorithm was run approximately 100 times for
each setting. In our first experiment, we measured
the efficiency of the algorithms over time, using 100
concurrent customers and online updates. We mea-
sured the efficiency over windows of 1,000 time-steps,
E(t, t + 1000), and plotted the learning curves (Fig-
ure 2a). For the true bandit scenario, Internet A,
the Contextual Bandit outperformed Concurrent TD.
This is not surprising, since the contextual bandit ex-
ploits prior knowledge that the immediate response
by the customer is independent of subsequent visits.6

However, whenever there was any significant degree
of sequentiality, such as the Internet C, D and email
scenarios, Concurrent TD outperformed the Contex-
tual Bandit, by learning the sequential behaviour of
customers during repeated visits. The advantage of
Concurrent TD over the Contextual Bandit became
more pronounced with increasing levels of sequential-
ity. Monte-Carlo learning was more effective in the
email scenario; however, it was slower to learn than
Concurrent TD, due to the opportunity-loss incurred
by waiting until a time-out before learning.7

In our second experiment, we measured the efficiency
of the algorithms at different levels of concurrency. For
this experiment we continued until customers had re-
turned 100,000 times in total (requiring 100,000 deci-
sions to be made), but we varied the number of con-
currently interacting customers at any given time. In
other words we maintained a constant size pool of ac-
tive customers; if one customer attrited then a new
customer would join the pool. A concurrency level of
1 is just like an episodic environment: the company in-
teracts with a single customer at a time, until 100,000

5The simulator was designed such that the optimal pol-
icy and optimal greedy policy could both be computed.

6This could be implemented in Concurrent TD by γ = 0
7If time-out is too small, Monte-Carlo truncates se-

quences too early; if it’s too big, opportunity loss is ex-
aggerated; results are only reported for optimal time-out.

decisions have been completed. At the other extreme,
at a concurrency level of 10,000, there is a pool of
10,000 customers interacting in parallel, each of which
returns just 10 times. We started each run with a
“warm-up” period (selecting actions randomly, with-
out any learning updates) to ensure that the customer
pool included customers at a variety of different stages
of interaction. The efficiency was measured over the
second half of each run (Figure 2c). The results show
a general degradation of performance with larger con-
currency, illustrating the increased opportunity loss.
In all cases, the Monte-Carlo algorithm was most sensi-
tive to concurrency; at high concurrency levels Monte-
Carlo barely outperformed the uniform random base-
line. This demonstrates that after-the-fact learning in-
curs a prohibitively large opportunity loss at high con-
currency. In contrast, the Concurrent TD algorithm is
more robust at high concurrency, thanks to bootstrap-
ping. In non-sequential scenarios such as Internet A,
the Contextual Bandit was the most robust to high
concurrency. However, for the non-sequential Email
scenarios, the Contextual Bandit performed poorly,
only occasionally stumbling on important sequences
of null actions through random exploration. For all
algorithms, the degradation of performance with con-
currency was most apparent in the strongly sequential
scenarios. In these scenarios customers must return
several times before positive responses are observed,
increasing the potential for opportunity loss.

Finally, we compared the efficiency of Concurrent TD
between online and batch learning. Rather than learn-
ing online at each time-step, updates were batched
together and executed every m time-steps, where m
is the batch length; m = 1 is closest to online learn-
ing. Efficiency was measured over the full duration of
each run. The results clearly show a very significant
drop in performance for higher batch lengths. Further-
more, the greater the concurrency level, the faster this
drop occurred. At low concurrency, batch length was
not too important; for example when the concurrency
level is 1 (corresponding to an episodic environment in
classic reinforcement learning) performance was main-
tained up to m = 100000. However, at high concur-
rency batching becomes much more problematic; for
example at a concurrency level of 10,000 the perfor-
mance started dropping significantly at m = 50. The
natural conclusion is that, when interacting concur-
rently with large numbers of customers, it is impera-
tive to use online updates rather than the offline up-
dates or large batch lengths used in prior work, e.g.
(Pednault et al., 2002; Abe et al., 2002; 2004).

Our experiments show the importance of bootstrap-
ping online. We would expect similar performance for
a well-tuned TD(λ) algorithm. Unfortunately, TD(λ)
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Figure 2. a) Efficiency of algorithms over time (on a scale from random=0 to optimal=100), when applied to four internet
targeting and four email campaign scenarios of increasing sequentiality, at concurrency 100. Each point represents the
average result over a window of 1,000 time-steps; results were averaged over approximately 100 runs. b) Efficiency of
algorithms at various levels of concurrency (number of customers interacting with the system at any given time).

requires orders of magnitude more computation, as it
updates all weights at every microscopic time-step.

Finally, we note that the performance of all algorithms
is significantly below the optimal policy, due largely to
limitations of the linear function approximator; this
could perhaps be addressed by a richer set of features.

6. Conclusion

We have introduced a framework for reinforcement
learning from customer interaction histories. Its cru-
cial component, compared to traditional reinforce-
ment learning approaches, is that the agent interacts
with many customers concurrently. Our solution is a
temporal-difference learning algorithm that bootstraps
online from concurrent interactions. Our algorithm is
computationally efficient and suitable for large-scale
online learning. We evaluated Concurrent TD in a
high dimensional commercial simulator against non-
bootstrapping (Monte-Carlo), non-online (batch TD),
and non-sequential (Contextual Bandit) algorithms re-
spectively. Our results clearly demonstrate that, in
highly concurrent and sequential scenarios, it is vi-
tally important to bootstrap from partial interaction
sequences, to learn online, and to use sequential rein-
forcement learning algorithms. Unlike prior work, our
algorithm combines all three of these key properties.

Figure 3. Efficiency of Concurrent TD at various levels
of concurrency (number of customers interacting with the
system at any given time) and batch lengths (number of
time-steps between batch updates).



Concurrent Reinforcement Learning from Customer Interactions

References
Abe, N., Pednault, E., Wang, H., Zadrozny, B., Fan,

W., and Apte, C. (2002). Empirical comparison of
various reinforcement learning strategies for sequen-
tial targeted marketing. In International Conference
on Data Mining, pages 3–10.

Abe, N., Verma, N., Schroko, R., and Apte, C.
(2004). Cross channel optimized marketing by re-
inforcement learning. In International Conference
on Knowledge Discovery and Data Mining (KDD),
pages 767–772.

Archibald, T. (1992). Parallel dynamic programming.
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