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A. Proofs of Theoretical Results

This appendix contains the proofs of the various the-
oretical results presented in this paper.

A.1. Preliminaries

We begin by proving a number of lemmas about mono-
tone submodular functions, which will be useful to
prove our main results.

Lemma 1. Let S be a set and f be a monotone sub-
modular function defined on list of items from S. For
any lists A,B, we have that:

f(A⊕B)− f(A) ≤ |B|(Es∼U(B)[f(A⊕ s)]− f(A))

for U(B) the uniform distribution on items in B.

Proof. For any list A and B, let Bi denote the list of
the first i items in B, and bi the ith item in B. We
have that:

f(A⊕B)− f(A)

=
∑|B|
i=1 f(A⊕Bi)− f(A⊕Bi−1)

≤
∑|B|
i=1 f(A⊕ bi)− f(A)

= |B|(Eb∼U(B)[f(A⊕ b)]− f(A))

where the inequality follows from the submodularity
property of f .

Lemma 2. Let S be a set, and f a monotone submod-
ular function defined on lists of items in S. Let A,B be
any lists of items from S. Denote Aj the list of the first
j items in A, U(B) the uniform distribution on items
in B and define εj = Es∼U(B)[f(Aj−1 ⊕ s)] − f(Aj),
the additive error term in competing with the average
marginal benefits of the items in B when picking the
jth item in A (which could be positive or negative).

Then:

f(A) ≥ (1−(1−1/|B|)|A|)f(B)−
|A|∑
i=1

(1−1/|B|)|A|−iεi

In particular if |A| = |B| = k, then:

f(A) ≥ (1− 1/e)f(B)−
k∑
i=1

(1− 1/k)k−iεi

and for α = exp(−|A|/|B|) (i.e. |A| = |B| log(1/α)):

f(A) ≥ (1− α)f(B)−
|A|∑
i=1

(1− 1/|B|)|A|−iεi

Proof. Using the monotone property and previous
lemma 1, we must have that: f(B) − f(A) ≤ f(A ⊕
B)− f(A) ≤ |B|(Eb∼U(B)[f(A⊕ b)]− f(A)).

Now let ∆j = f(B) − f(Aj). By the above we have
that

∆j

≤ |B|[Es∼U(B)[f(Aj ⊕ s)]− f(Aj)]
= |B|[Es∼U(B)[f(Aj ⊕ s)]− f(Aj+1)

+f(Aj+1)− f(B) + f(B)− f(Aj)]
= |B|[εj+1 + ∆j −∆j+1]

Rearranging terms, this implies that ∆j+1 ≤ (1 −
1/|B|)∆j + εj+1. Recursively expanding this recur-
rence from ∆|A|, we obtain:

∆|A| ≤ (1− 1/|B|)|A|∆0 +

|A|∑
i=1

(1− 1/|B|)|A|−iεi

Using the definition of ∆|A| and rearranging terms, we

obtain f(A) ≥ (1 − (1 − 1/|B|)|A|)f(B) −
∑|A|
i=1(1 −
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1/|B|)|A|−iεi. This proves the first statement of the
theorem. The following two statements follow from
the observations that (1− 1/|B|)|A| = exp(|A| log(1−
1/|B|)) ≤ exp(−|A|/|B|) = α. Hence (1 − (1 −
1/|B|)|A|)f(B) ≥ (1 − α)f(B). When |A| = |B|,
α = 1/e and this proves the special case where |A| =
|B|.

For the greedy list construction strategy, the εj in the
last lemma are always ≤ 0, such that Lemma 2 implies
that if we construct a list of size k with greedy, it must
achieve at least 63% of the value of the optimal list of
size k, but also that it must achieve at least 95% of
the value of the optimal list of size bk/3c, and at least
99.9% of the value of the optimal list of size bk/7c.

A more surprising fact that follows from the last
lemma is that constructing a list stochastically, by
sampling items from a particular fixed distribution,
can provide the same guarantee as greedy:

Lemma 3. Let S be a set, and f a monotone sub-
modular function defined on lists of items in S. Let
B be any list of items from S and U(B) the uniform
distribution on elements in B. Suppose we construct
the list A by sampling k items randomly from U(B)
(with replacement). Denote Aj the list obtained after
j samples, and Pj the distribution over lists obtained
after j samples. Then:

EA∼Pk [f(A)] ≥ (1− (1− 1/|B|)k)f(B)

In particular, for α = exp(−k/|B|):

EA∼Pk [f(A)] ≥ (1− α)f(B)

Proof. The proof follows a similar proof to the previ-
ous lemma. Recall that by the monotone property and
lemma 1, we have that for any list A: f(B)− f(A) ≤
f(A ⊕ B) − f(A) ≤ |B|(Eb∼U(B)[f(A ⊕ b)] − f(A)).
Because this holds for all lists, we must also have
that for any distribution P over lists A, f(B) −
EA∼P [f(A)] ≤ |B|EA∼P [Eb∼U(B)[f(A ⊕ b)] − f(A)].
Also note that by the way we construct sets, we have
that EAj+1∼Pj+1

[f(Aj+1)] = EAj∼Pj [Es∼U(B)[f(Aj ⊕
s)]]

Now let ∆j = f(B)−EAj∼Pj [f(Aj)]. By the above we
have that:

∆j

≤ |B|EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]− f(Aj)]
= |B|EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]− f(B)

+f(B)− f(Aj)]
= |B|(EAj+1∼Pj+1

[f(Aj+1)]− f(B)
+f(B)− EAj∼Pj [f(Aj)])

= |B|[∆j −∆j+1]

Rearranging terms, this implies that ∆j+1 ≤ (1 −
1/|B|)∆j . Recursively expanding this recurrence from
∆k, we obtain:

∆k ≤ (1− 1/|B|)k∆0

Using the definition of ∆k and rearranging terms we
obtain EA∼Pk [f(A)] ≥ (1 − (1 − 1/|B|)k)f(B). The
second statement follows again from the fact that (1−
(1− 1/|B|)k)f(B) ≥ (1− α)f(B)

Corollary 1. There exists a distribution that when
sampled k times to construct a list, achieves an ap-
proximation ratio of (1−1/e) of the optimal list of size
k in expectation. In particular, if A∗ is an optimal list
of size k, sampling k times from U(A∗) achieves this
approximation ratio. Additionally, for any α ∈ (0, 1],
sampling dk log(1/α)e times must construct a list that
achieves an approximation ratio of (1−α) in expecta-
tion.

Proof. Follows from the last lemma using B = A∗.

This surprising result can also be seen as a special case
of a more general result proven in prior related work
that analyzed randomized set selection strategies to
optimize submodular functions (lemma 2.2 in (Feige
et al., 2011)).

A.2. Proofs of Main Results

We now provide the proofs of the main results in this
paper. We provide the proofs for the more general
contextual case where we learn over a policy class Π̃.
All the results for the context-free case can be seen as
special cases of these results when Π = Π̃ = {πs|s ∈ S}
and πs(x, L) = s for any state x and list L.

We refer the reader to the notation defined in section
3 and 5 for the definitions of the various terms used.

Theorem 2 . Let α = exp(−m/k) and k′ =
min(m, k). After T iterations, for any δ, δ′ ∈ (0, 1),
we have that with probability at least 1− δ:

F (π,m) ≥ (1− α)F (L∗π,k)− R

T
− 2

√
2 ln(1/δ)

T

and similarly, with probability at least 1− δ − δ′:

F (π,m) ≥ (1− α)F (L∗π,k)− E[R]
T −

√
2k′ ln(1/δ′)

T

−2
√

2 ln(1/δ)
T
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Proof.

F (π,m)

= 1
T

∑T
t=1 F (πt,m)

= 1
T

∑T
t=1 ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]

= (1− α)Ex∼D[fx(L∗π,k(x))]

−[(1− α)Ex∼D[fx(L∗π,k(x))]

− 1
T

∑T
t=1 ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]]

Now consider the sampled states {xt}Tt=1 and the
policies πt,i sampled i.i.d. from πt to construct
the lists {Lt}Tt=1 and denote the random variables
Xt = (1 − α)(Ex∼D[fx(L∗π,k(x))] − fxt(L

∗
π,k(xt))) −

ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]−fxt(Lt)]. If πt is deter-
ministic, then simply consider all πt,i = πt. Because
the xt are i.i.d. from D, and the distribution of poli-
cies used to construct Lt only depends on {xτ}t−1

τ=1 and
{Lτ}t−1

τ=1, then the Xt conditioned on {Xτ}t−1
τ=1 have

expectation 0, and because fx ∈ [0, 1] for all state
x ∈ X , Xt can vary in a range r ⊆ [−2, 2]. Thus
the sequence of random variables Yt =

∑t
i=1Xi, for t

=1 to T , forms a martingale where |Yt − Yt+1| ≤ 2.
By the Azuma-Hoeffding’s inequality, we have that
P (YT /T ≥ ε) ≤ exp(−ε2T/8). Hence for any δ ∈
(0, 1), we have that with probability at least 1 − δ,

YT /T ≤ 2
√

2 ln(1/δ)
T . Hence we have that with proba-

bility at least 1− δ:

F (π,m)
= (1− α)Ex∼D[fx(L∗π,k(x))]

−[(1− α)Ex∼D[fx(L∗π,k(x))]

− 1
T

∑T
t=1 ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]]

= (1− α)Ex∼D[fx(L∗π,k(x))]

−[(1− α) 1
T

∑T
t=1 fxt(L

∗
π,k(xt))

− 1
T

∑T
t=1 fxt(Lt)]− YT /T

= (1− α)Ex∼D[fx(L∗π,k(x))]

−[(1− α) 1
T

∑T
t=1 fxt(L

∗
π,k(xt))

− 1
T

∑T
t=1 fxt(Lt)]− 2

√
2 ln(1/δ)

T

Let wi = (1− 1/k)m−i. From Lemma 2, we have:

(1− α) 1
T

∑T
t=1 fxt(L

∗
π,k(xt))− 1

T

∑T
t=1 fxt(Lt)

≤ 1
T

∑T
t=1

∑m
i=1 wi(Eπ∼U(L∗π,k)[fxt(Lt,i−1 ⊕ π(xt))]

−fxt(Lt,i))
= Eπ∼U(L∗π,k)[

1
T

∑T
t=1

∑m
i=1 wi(fxt(Lt,i−1 ⊕ π(xt))

−fxt(Lt,i))]
≤ maxπ∈Π[ 1

T

∑T
t=1

∑m
i=1 wi(fxt(Lt,i−1 ⊕ π(xt))

−fxt(Lt,i))]
≤ maxπ∈Π̃[ 1

T

∑T
t=1

∑m
i=1 wi(f(Lt,i−1 ⊕ π(xt))

−fxt(Lt,i))]
= R/T

Hence combining with the previous result proves the
first part of the theorem.

Additionally, for the sampled environments {xt}Tt=1

and the policies πt,i, consider the random variables
Qm(t−1)+i = wiEπ∼πt [fxt(Lt,i−1 ⊕ π(xt, Lt,i−1))] −
wifxt(Lt,i). Because each draw of πt,i is i.i.d. from πt,
we have that again the sequence of random variables
Zj =

∑j
i=1Qi, for j = 1 to Tm forms a martingale and

because each Qi can take values in a range [−wj , wj ]
for j = 1 + mod(i − 1,m), we have |Zi − Zi−1| ≤ wj .

Since
∑Tm
i=1 |Zi − Zi−1|2 ≤ T

∑m
i=1(1 − 1/k)2(m−i) ≤

T min(k,m) = Tk′, by Azuma-Hoeffding’s inequality,
we must have that P (ZTm ≥ ε) ≤ exp(−ε2/2Tk′).
Thus for any δ′ ∈ (0, 1), with probability at least 1−δ′,
ZTm ≤

√
2Tk′ ln(1/δ). Hence combining with the pre-

vious result, it must be the case that with probabil-

ity at least 1 − δ − δ′, both YT /T ≤ 2
√

2 ln(1/δ)
T and

ZTm ≤
√

2Tk′ ln(1/δ′) holds.

Now note that:

maxπ∈Π̃[ 1
T

∑T
t=1

∑m
i=1 wi(f(Lt,i−1 ⊕ π(xt))− fxt(Lt,i))]

= maxπ∈Π̃[ 1
T

∑T
t=1

∑m
i=1 wi(fxt(Lt,i−1 ⊕ π(xt))

−Eπ′∼πt [f(Lt,i−1 ⊕ π′(xt, Lt,i−1))])] + ZTm/T
= E[R]/T + ZTm/T

Using this additional fact, and combining with previ-
ous results we must have that with probability at least
1− δ − δ′:

F (π,m)

≥ (1− α)F (L∗π,k)− [(1− α) 1
T

∑T
t=1 fxt(L

∗
π,k(xt))

− 1
T

∑T
t=1 fxt(Lt)]− 2

√
2 ln(1/δ)

T

≥ (1− α)F (L∗π,k)− E[R]/T − ZTm/T − 2
√

2 ln(1/δ)
T

≥ (1− α)F (L∗π,k)− E[R]/T −
√

2k′ ln(1/δ′)
T

−2
√

2 ln(1/δ)
T

We now show that the expected regret must grow with√
k′ and not k′, hen using Weighted Majority with the

optimal learning rate (or with the doubling trick).

Corollary 2 . Under the event where Theorem 2 holds
(the event that occurs w.p. 1−δ−δ′), if Π̃ is a finite set
of policies, using Weighted Majority with the optimal
learning rate guarantees that after T iterations:

E[R]/T ≤ 4k′ ln |Π̃|
T + 2

√
k′ ln |Π̃|

T

+29/4(k′/T )3/4(ln(1/δ′))1/4

√
ln |Π̃|
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For large enough T in Ω(k′(ln |Π̃|+ ln(1/δ′))), we ob-
tain that:

E[R]/T ≤ O(

√
k′ ln |Π̃|
T

)

Proof. We use a similar argument to Streeter &
Golovin Lemma 4 (Streeter & Golovin, 2007) to
bound E[R] in the result of theorem 2 . Consider
the sum of the benefits accumulated by the learning
algorithm at position i in the list, for i ∈ 1, 2, . . . ,m,
i.e. let yi =

∑T
t=1 b(πt,i(xt, Lt,i−1)|xt, Lt,i−1), where

πt,i corresponds to the particular sampled policy by
Weighted Majority for choosing the item at position i,
when constructing the list Lt for state xt. Note that∑m
i=1(1 − 1/k)m−iyi ≤

∑m
i=1 yi ≤ T by the fact that

the monotone submodular function fx is bounded in
[0, 1] for all state x. Now consider the sum of the bene-
fits you could have accumulated at position i, had you
chosen the best fixed policy in hindsight to construct
all list, keeping the policy fixed as the policy is con-
structed, i.e. let zi =

∑T
t=1 b(π

∗(xt, Lt,i−1)|xt, Lt,i−1),
for π∗ = arg maxπ∈Π̃

∑m
i=1(1 −

1/k)m−i
∑T
t=1 b(π

∗(xt, Lt,i−1)|xt, Lt,i−1) and let

ri = zi − yi. Now denote Z =
√∑m

i=1(1− 1/k)m−izi.
We have Z2 =

∑m
i=1(1 − 1/k)m−izi =∑m

i=1(1 − 1/k)m−i(yi + ri) ≤ T + R, where R is
the sample regret incurred by the learning algorithm.
Under the event where theorem 2 holds (i.e. the
event that occurs with probability at least 1− δ− δ′),
we had already shown that R ≤ E[R] + ZTm, for
ZTm ≤

√
2Tk′ ln(1/δ′), in the second part of the

proof of theorem 2 . Thus when theorem 2 holds, we
have Z2 ≤ T +

√
2Tk′ ln(1/δ′) + E[R]. Now using

the generalized version of weighted majority with
rewards (i.e. using directly the benefits as rewards)
(Arora et al., 2012), since the rewards at each update
are in [0, k′], we have that with the best learning

rate in hindsight 1: E[R] ≤ 2Z
√
k′ ln |Π̃|. Thus we

obtain Z2 ≤ T +
√

2Tk′ ln(1/δ′) + 2Z
√
k′ ln |Π̃|.

This is a quadratic inequality of the form

Z2− 2Z
√
k′ ln |Π̃| −T −

√
2Tk′ ln(1/δ′) ≤ 0, with the

additional constraint Z ≥ 0. This implies Z is less
than or equal to the largest non-negative root of the

polynomial Z2 − 2Z
√
k′ ln |Π̃| − T −

√
2Tk′ ln(1/δ′).

Solving for the roots, we obtain

Z ≤
√
k′ ln |Π̃|+

√
k′ ln |Π̃|+ T +

√
2Tk′ ln(1/δ′)

≤ 2
√
k′ ln |Π̃|+

√
T + (2Tk′ ln(1/δ′))1/4

1if not a doubling trick can be used to get the same
regret bound within a small constant factor (Cesa-Bianchi
et al., 1997)

Plugging back Z into the expression E[R] ≤
2Z

√
k′ ln |Π̃|, we obtain:

E[R] ≤ 4k′ ln |Π̃|+ 2
√
Tk′ ln |Π̃|

+2(2T ln(1/δ′))1/4(k′)3/4

√
ln |Π̃|

Thus the average regret:

E[R]
T ≤ 4k′ ln |Π̃|

T + 2

√
k′ ln |Π̃|

T

+29/4(k′/T )3/4(ln(1/δ′))1/4

√
ln |Π̃|

For T in Ω(k′(ln Π̃ + ln(1/δ′))), the dominant term is

2

√
k′ ln |Π̃|

T , and thus E[R]
T is O(

√
k′ ln |Π̃|

T ).

Corollary 3 . Let α = exp(−m/k) and k′ =
min(m, k). If we run an online learning algorithm on
the sequence of convex loss Ct instead of `t, then af-
ter T iterations, for any δ ∈ (0, 1), we have that with
probability at least 1− δ:

F (π,m) ≥ (1− α)F (L∗π,k)− R̃

T
− 2

√
2 ln(1/δ)

T
− G

where R̃ is the regret on the sequence of con-
vex loss Ct, and G = 1

T [
∑T
t=1(`t(πt) − Ct(πt)) +

minπ∈Π̃

∑T
t=1 Ct(π) − minπ′∈Π̃

∑T
t=1 `t(π

′)] is the
“convex optimization gap” that measures how close the
surrogate losses Ct is to minimizing the cost-sensitive
losses `t.

Proof. Follows immediately from Theorem 2 using the

definition of R, R̃ and G, since G = R−R̃
T
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