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Abstract

Motivated by the need to identify new and
clinically relevant categories of lung disease,
we propose a novel clustering with con-
straints method using a Dirichlet process
mixture of Gaussian processes in a varia-
tional Bayesian nonparametric framework.
We claim that individuals should be grouped
according to biological and/or genetic simi-
larity regardless of their level of disease sever-
ity; therefore, we introduce a new way of
looking at subtyping/clustering by recasting
it in terms of discovering associations of in-
dividuals to disease trajectories (i.e., group-
ing individuals based on their similarity in re-
sponse to environmental and/or disease caus-
ing variables). The nonparametric nature
of our algorithm allows for learning the un-
known number of meaningful trajectories.
Additionally, we acknowledge the usefulness
of expert guidance by providing for their
input using must-link and cannot-link con-
straints. These constraints are encoded with
Markov random fields. We also provide an
efficient variational approach for performing
inference on our model.

1. Introduction

Personalized medicine holds the promise of providing
individuals tailored medical care optimally suited to
their needs. In recent years, there has been an ex-
plosion of clinical, biological, and genetic data, the
analysis of which will hopefully bring us closer to real-
izing this goal. Understanding distinct mechanisms of
disease – unique biological pathways and their genetic
determinants – is at the core of this endeavor and is
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often referred to as “disease sub-typing”.

In this paper, we are specifically motivated by the
task of identifying novel and clinically relevant cat-
egories of Chronic Obstructive Pulmonary Disease
(COPD), a smoking related lung disease with a signifi-
cant health burden worldwide. Alpha1-antitrypsin de-
ficiency is one known form of genetic disorder leading
to COPD (Silverman & Sandhaus, 2009); experts hy-
pothesize that there are other distinct, as yet unkown,
categories of this disease determined by genetic predis-
position (Cho, 2010; 2012; Barker & Brightling, 2013).
The challenge is to identify these subgroups given large
amounts of data obtained from clinical studies. The
key difficulty is grouping individuals with similar ge-
netic make-up in spite of significantly different levels
of disease severity. For example, a younger person
with little exposure to smoke and relatively healthy
lungs should be placed in the same category with an
older, life-long smoker with advanced lung disease pro-
vided they have the same genetic or biological pre-
disposition.

The manner in which lung health changes as a func-
tion of age and smoke exposure can be used to identify
meaningful subgroups. Some people are genetically re-
sistant to the effects of smoke exposure and have pre-
served lung health even after years of smoking. On the
other hand, others are highly sensitive to smoke and
experience rapid health decline given similar levels of
exposure. This leads to the notion of “disease trajecto-
ries”, and indeed there is an analogy to the trajectories
of projectiles moving through space. We seek meaning-
ful disease trajectories with the hypothesis that those
individuals associated with the same trajectory have
similar genetic predispositions to lung health decline.
The problem is that we do not know how many such
trajectories (disease subgroups) exist, nor do we know
the functional forms of those trajectories.

The traditional way to discover unknown subgroups
given data is by clustering (Jain et al., 1999). Clus-
tering algorithms group data based on some notion
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of similarity. Standard clustering algorithms typically
define similarity in the form of some metric or a prob-
ability model. Most standard methods do not take the
structure of the problem into account and treat all the
features/variables in the same way; however, in our
COPD sub-typing problem, we have variables such as
age and smoking that are causative agents of variables
that indicate lung function and disease severity. The
type of grouping we are interested in discovering re-
lates to how different groups of individuals respond to
exposure. This led us to the design of a mixture of
Gaussian process (GP) regression model.

There are algorithms for clustering time series data (Li
& Prakash, 2011). These methods assume that each
sample has a time-sampled measurement. In our case,
it is not always possible to work with longitudinal data
(data in which a given individual is studied at multi-
ple time points); many studies are cross-sectional. Our
approach is flexible in the sense that input variables
can represent any entity that directly affects measur-
able lung health or disease severity, including age and
smoke exposure. Our model is also able to learn com-
ponent “trajectory” functions even when we only have
one sample per patient. This is possible because com-
plete clinical datasets typically have multiple repre-
sentatives of the same trajectory captured at different
stages of the disease process.

We use a mixture of GPs rather than the standard
mixture of regression models (Grün & Leisch, 2007),
because we do not know what the regression model
is. A Gaussian process (Rasmussen & Williams, 2006)
provides a nonparametric distribution over functions.
There has been work combining GPs with mixture
models (Rasmussen & Ghahramani, 2002; Meeds &
Osindero, 2006; Yuan & Neubauer, 2009). These works
address modeling data where there are local disconti-
nuities. In a local region of the input space, there is a
gating function that determines which GP component
it is generated from. Our work addresses GP compo-
nents at a global scale.

In 2012 Lázaro-Gredilla et al. (2012) introduced a mix-
ture of Gaussian Processes to address the data associ-
ation problem, which arises in multi-target tracking
scenarios. As alluded to in the earlier paragraphs,
this scenario is similar to the one we are interested
in, with one important difference: whereas they as-
sumed the number of trajectories is known, we do
not. To address this issue, we recast their formula-
tion in a Bayesian nonparametric framework using the
stick-breaking Dirichlet Process Model (Blei & Jordan,
2006).

The added flexibility provided by the nonparamet-

ric model makes finding local minima more likely.
We steer inference towards meaningful solutions by
incorporating must-link and cannot-link constraints
(Wagstaff & Cardie, 2000; Zhu, 2008) between data in-
stances. This is an important feature of our model as it
provides a mechanism to include expert input (doctors,
biologists, geneticists, etc.). Basu et al. (2006) demon-
strated the use of Hidden Markov Random Fields
(HMRF) to apply such constraints for semi-supervised
clustering. Orbanz & Buhmann (2008) used MRFs to
impose constraints in a nonparametric setting for spa-
tial smoothing in image segmentation; they performed
inference using Gibbs sampling. Inspired by these ap-
proaches, we also use MRFs to encode must-link and
cannot-link constraints, and we further demonstrate a
variational approach for performing approximate in-
ference.

In this paper, we introduce a novel variational Dirich-
let process mixture of Gaussian processes that can also
learn from must-link and cannot-link constraints. The
contributions of this work are: 1) our model is able to
learn the number of clusters (trajectories) automat-
ically for a mixture of GPs; 2) we provide a model
allowing a mixture of GPs to learn from constraints;
3) we derive a variational inference approach to clus-
tering with contraints encoded using MRFs; and 4) we
present a transformative way of looking at sub-typing
COPD; instead of applying traditional clustering al-
gorithms, we utilize our domain knowledge regarding
the disease mechanism and cast it as a problem of dis-
covering multiple “disease trajectories”.

The rest of the paper is organized as follows. In Sec-
tion 2 we give a brief overview of the theory behind
our model. In Section 3 we describe our probabilis-
tic model; we define both the structure and the con-
stituent probability distributions. The update equa-
tions used for variational inference are given in 4, and
we describe the conditions under which efficient com-
putation is possible. We demonstrate algorithm per-
formance on both synthetic and real-world datasets in
Section 5, and we conclude in Section 6.

2. Background

In this section we briefly review theory on which our
model builds: Gaussian processes, Markov random
fields, and Dirichlet process mixtures.

2.1. Gaussian Processes

Gaussian Processes (GPs) have been used extensively
for Bayesian nonlinear regression. We cover the key
concepts here as they pertain to our framework and
refer the reader to Rasmussen & Williams (2006) for
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details.

Gaussian Processes can be interpreted as a nonpara-
metric prior over functions. They have the property
that given a finite sampling of the domain, the corre-
sponding vector of function values, f , are distributed
according to a multivariate Gaussian with mean 0 (ar-
bitrary but used in standard practice) and covariance
matrix K:

f ∼ N (f |0,K ) (1)

The elements of K are determined by the kernel func-
tion, k : [K ]n,n′ = k (xn ,xn′ ). The choice of kernel
function and selection of its parameter values controls
the behavior of the GP. One popular kernel function
(and the one used throughout our experiments) is the
exponential of a quadratic form given by

k (xn ,xn′ ) = θ0 exp

(
-
θ1
2
‖xn -xn′ ‖2

)
(2)

In order to perform GP regression, we assume an ob-
served dataset of inputs and corresponding (noisy) tar-

gets, D ≡ {xn, yn }Nn=1, where we model the targets as
p (y|f ) = N

(
y|f , σ2IN

)
. Here, σ2 is the variance on

the target variables. It can then be shown that the pre-
dicted mean and variance of target value y∗ at some
new input x∗ are given by

µ∗ = k>∗
(
K + σ2IN

)−1
y (3)

σ2
∗ = σ2 + k∗∗ − k>∗

(
K + σ2IN

)−1
y (4)

where k∗∗ = k (x∗,x∗ ) and [k∗ ]n = k (xn ,x∗ ).

2.2. Markov Random Fields

A Markov random field (MRF) is represented by an
undirected graphical model in which the nodes repre-
sent variables or groups of variables and the edges indi-
cate dependence relationships. An important property
of MRFs is that a collection of variables is condition-
ally independent of all others in the field given the
variables in their Markov blanket. The Hammersley-
Clifford theorem states that the distribution, p (Z ),
over the variables in a MRF factorizes according to

p (Z ) =
1

Z
exp

(
-
∑
c∈C

Hc (zc )

)
(5)

where Z is a normalization constant called the parti-
tion function, C is the set of all cliques in the MRF,
zc are the variables in clique c, and Hc is the energy
function over clique c (Geman & Geman, 1984; Be-
sag, 1974). The energy function captures the desired
configuration of local variables.

C

zn

Yn,·

vk

F(k)

α

X

N ∞

Figure 1. Probabilistic graphical model for constrained,
nonparametric, Gaussian process regression.

2.3. Dirichlet Process Mixtures

Ferguson (1973) first introduced the Dirichlet process
(DP) as a measure on measures. It is parameterized by
a base measure, G0, and a positive scaling parameter
α:

G | {G0, α } ∼ DP (G0, α ) (6)

The notion of a Dirichlet process mixture (DPM)
arises if we treat the k th draw from G as a parameter
of the distribution over some observation (Antoniak,
1974). DPMs can be interpreted as mixture models
with an infinite number of mixture components.

More recently, Blei & Jordan (2006) described a
variational inference algorithm for DPMs using the
stick-breaking construction introduced by Sethuraman
(1991). The stick-breaking construction represents G
as

πk (v ) = vk

k −1∏
j=1

(1- v j ) (7)

G =

∞∑
i=1

πi (v ) δη∗i (8)

where δη∗i is the Kronecker delta, and the v i are
distributed according to a beta distribution: v i ∼
Beta (1, α ), and η∗i ∼ G0. The use of the stick-
breaking construction in our formulation will be dis-
cussed in Section 3.

3. Our Formulation

In this section we describe our formulation, including
a definition of the variables in our model.

Let X = [x1 · · ·xQ ] be the N ×Q matrix of observed
inputs where N is the number of instances and Q is the



Nonparametric Mixture of Gaussian Processes with Constraints

dimension of the inputs. Let Y = [y1 · · ·yD ] be the
N×D matrix of corresponding target values, where D
represents the dimension of the target variables. We
introduce the N × ∞ binary indicator matrix, Z, to
represent the association between the data instances
and the latent regression functions. Following the no-
tation in Lázaro-Gredilla et al. (2012), we designate

the set of latent functions as
{

f
(k )
d (x)

}∞,D
k=1,d=1

. We

collect all latent functions of trajectory k in the matrix

F(k) =
[
f
(k)
1 · · · f (k)D

]
, and we designate the complete

set of latent functions as
{
F(k)

}
.

The probabilistic graphical model describing our for-
mulation can be seen in Figure 1. The set C is a collec-
tion of data instance pairs representing given must-link
and cannot-link constraints. With these quantities de-
fined, we give the joint distribution of our model:

p
(
Y,Z,v, {F(k)}

)
=

p
(
{F(k)} |X

)
p
(
Y| {F(k)},Z

)
p (Z |v, C) p (v |α)

(9)

where

p
(
{F(k)} |X

)
=

∞∏
k=1

D∏
d=1

N
(
f
(k)
d |0,K

(k)
)

(10)

p
(
Y| {F(k)},Z

)
=

N∏
n=1

∞∏
k=1

D∏
d=1

N
(
Yn,d |F(k)

n,d , σ
2
)Zn,k

(11)

p (Z |v, C) =
1

Z
exp

-
∑

(i,j )∈C

H (zi , zn )


N∏

n=1

∞∏
k=1

(
vk

k-1∏
j=1

(1-vj )

)Zn,k

(12)

p (v |α) =

∞∏
k=1

Beta (vk |1, α) (13)

Equation 10 represents the prior distribution over the
infinite collection of Gaussian processes. The likeli-
hood in our model is given in Equation 11; note that
this distribution factorizes over the target dimensions
but that the same Gaussian process covariance matrix
for a given regressor is used for all dimensions. We
also assume that the variances for each target variable

dimension, σ2, are known and constant. This is a re-
alistic assumption for our disease sub-typing use case:
devices that measure disease severity can have their
measurement variance characterized. For applications
where σ2 is not known, this and other hyperparame-
ters can be automatically learned via empirical Bayes.

Equation 12 describes the distribution over Z and con-
sists of two terms: the first is a MRF that captures the
pairwise constraints, and the second is a multinomial
distribution with parameters drawn for a Dirichlet
process using the stick-breaking construction. Equa-
tion 13 expresses the distribution over the variable,
v, used for the stick-breaking process; here α is the
concentration parameter.

The energy function used in our experiments is given
by

H (zi , zj ) =

 −w i,j , < zi , zj >= 1 and (i , j ) is ML
−w i,j , < zi , zj >= 0 and (i , j ) is CL

0, Otherwise

(14)

where < zi , zj > represents the inner product between
zi and zj , ML stands for must-link and CL for cannot-
link, and w i,j is in the interval [0, 1] with lower values
expressing less confidence in the constraint and vice-
versa.

While our formulation has similarities to Lázaro-
Gredilla et al. (2012), we emphasize that our algorithm
is both nonparametric in the number of mixture com-
ponents and semi-supervised, important features for
our intended application. Additionally, while Orbanz
& Buhmann (2008) showed that MRFs can be incor-
porated with DPMs, but they performed inference us-
ing Gibbs sampling. In Section 4 we will show that
variational inference can be applied provided certain
conditions are satisfied by the constraints.

4. Inference

In this section we give the variational inference up-
date equations used in our model. Variational infer-
ence is a method of approximate inference that makes
assumptions (typically a factorization) over the dis-
tribution of interest, and it turns an inference prob-
lem into an optimization problem (Jordan et al., 1999;
Jaakkola, 2001). Additionally, whereas approximate
inference methods based on sampling (such as Monte
Carlo Markov Chain) can be slow to converge, varia-
tional inference enjoys a greater computational advan-
tage in this regard.

For our application, we are interested in the distribu-
tion over the latent variables in our model given our
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observations: p
(
Z,v, {F(k)} |X,Y

)
. The posterior

probability is approximated by optimizing the varia-
tional lower bound. The standard variational inference
approach is to assume a factorized approximation of
this distribution, in our case p∗ (Z) p∗

(
{F(k)}

)
p∗ (v).

In order to derive the expression for one of these fac-
tors, the expectation with respect to the other factors
is considered. Derivation of the variational distribu-
tions begins with the following expressions

ln p∗ (Z) = E{F(k)},v

{
ln p

(
Y,Z,v, {F(k)}

)}
+const

(15)

ln p∗
(
{F(k)}

)
= EZ,v

{
ln p

(
Y,Z,v, {F(k)}

)}
+const

(16)

ln p∗ (v) = EZ,{F(k)}

{
ln p

(
Y,Z,v, {F(k)}

)}
+const

(17)

Given space limitations, we provide the expressions for
each factor without derivation.

The variational distribution over {F(k)} is given as

p∗
(
{F(k)}

)
=

K∏
k=1

D∏
d=1

N
(
f
(k)
d |µ(k),C(k)

)
(18)

where

C(k) =
(
K(k)-1 +R(k)

)−1
(19)

µ(k) = C(k) R(k) yd (20)

and

R(k) =
1

σ2


EZ {Z }1,k 0 · · ·

0
. . .

... EZ {Z }N,k

 (21)

Note that as in Blei & Jordan (2006), our approximate
distribution truncates the stick-breaking construction,
so that k ranges from 1 to K (set to 20 in all our
experiments).

The expression for p∗ (v) is given by

p∗ (v) =

K∏
k=1

Beta

(
vk

∣∣∣∣1 +

N∑
n=1

EZ {Z }n,k,

α+

K∑
j=k+1

N∑
n=1

EZ {Z }n,j


(22)

Finally, the distribution for p∗ (Z) is given by

p∗ (Z) =
∏
V∈V

[
1

ZV
exp

-
∑

(i,j )∈C
i,j∈V

H (zi , zn )


∏
n∈V

K∏
k=1

r
Zn,k

n,k

]
(23)

where

rn,k =
ρn,k∑K
k=1 ρn,k

(24)

ln ρn,k =

D∑
d=1

[
ln

1√
2πσ2

− 1

2σ2

(
Yn,d

2 -

2Yn,d E{F(k)}

{
F

(k)
n,d

}
+E{F(k)}

{
F

(k)
n,d

2 })]
+

Ev {ln vk}+

k-1∑
j=1

Ev {ln (1− vj)} (25)

In Equation 23, V represents a set of sets. Each el-
ement V of V is a set of data indices belonging to a
connected subgraph of the constraint MRF. Because
the set of constraints is generally sparse, the MRF
can be characterized by a collection of disconnected
subgraphs. If the constraint set is dense, we can ap-
proximate the distribution by truncating the neigh-
borhood to enforce low cardinality. It is important
to note that the distribution factorizes over the resul-
tant subgraphs. Given that each subgraph cardinality
is small, it is feasible to compute the corresponding
partition function, ZV. This in turn enables efficient
computation of EZ {Z }.

As an example, consider the MRF shown in Fig. 2.
Here, V = {{1, 4 }, {2 }, {3, 5, 6, 8 }, {7 }, {9 } }. Note
that each subgraph cardinality is low (with a max-
imum of four in this example), so that their corre-
sponding partition functions are easily computed.

Inference begins by randomly initializing the matrix Z
such that each element is equal to or greater than zero
and each row sums to one. We then iteratively update
equations 18, 22, and 23 until we observe no change in
EZ {Z } or until a pre-specified number of iterations is
reached.

5. Experiments

In this section we demonstrate algorithm performance
on both synthetic and real-world datasets. For all
our experiments, the cardinality of the constraint sub-
graphs was kept below 5. No special attention was
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z1 z2 z3

z4 z5 z6

z7 z8 z9

Figure 2. Example MRF illustrating disconnected sub-
graphs. Each graph edge represents either a must-link or
cannot-link constraint.

given to the reported parameter settings for α, θ0, or
θ1. Rather, a coarse parameter selection of reasonable
values was used.

5.1. Experiments on Synthetic Data

We tested algorithm performance on two synthetic
datasets. The first consists of noisy samples taken
from two curves: a sinusoid and a sinusoid with a
modest linear offset. The second dataset is made up
of noisy samples taken from two interlaced helices in
3D. For both cases, the algorithm was run for 50 iter-
ations. α was set to 1.0, and θ0 was set to 1.0 in both
cases. For the sinusoids experiment, σ2 = 0.02 and
θ1 = 0.005. For the helices experiment, σ2 = 0.1 and
θ1 = 0.0005. Must-link constraints were generated by
randomly choosing pairs of points from a given func-
tion, preferring pairs that are spaced farther apart.
Cannot-link constraints were generated by randomly
choosing pairs of points from different functions, pre-
ferring pairs in regions where the functions tend to be
closer to one another.

We used normalized mutual information
(NMI ) (Strehl & Ghosh, 2003) to investigate al-
gorithm performance for a number of different
constraints. Letting A represent the cluster assign-
ments determined by the algorithm and B represent
the ground-truth cluster assignments, the NMI is

given by NMI = H(A)−H(A|B)√
H(A)H(B)

, where H(·) is the

entropy. Higher NMI values mean that the clustering
results are more similar to ground-truth; the criterion
reaches its maximum value of one when there is
perfect agreement.

Figure 3 gives the results of the synthetic experiments.
Each entry in the rightmost plot of this figure repre-
sents the average NMI score across fifty, randomly ini-
tialized runs. There is a clear increase in performance

Figure 4. Illustration of an algorithm output for the un-
constrained case. While the curves provide a reasonable
explanation of the data, it may not be the solution of in-
terest.

Figure 5. Left: example of learned regressors during train-
ing for the unconstrained cases. Right: learned regressors
using constraints. Plots are taken from different folds.

with added constraints in both cases. The center plots
illustrate the regression curves found by the algorithm,
and the data instances are color coded according to
their association to each curve.

Without constraints, the algorithm has a greater ten-
dency to converge on solutions that may not be of
interest. This is illustrated in Figure 4. While the so-
lution shown does a reasonably good job of explaining
the data, this particular solution might not be “opti-
mal”. By adding constraints, the optimization land-
scape is modified to one more favorable for finding
interesting solutions.

5.2. Experiments on Real-World Data

As stated in the introduction, the motivation for our
model stems from the need to identify clinically mean-
ingful subtypes of lung disease. Here we show results
on data from the Normative Aging Study (NAS) (Bell,
1972), a longitudinal study designed to investigate the
role of aging on various health issues, including lung
function. The complete dataset includes a large num-
ber of features; here we focus on the effects of age on
a widely used measure of lung function, FEV1 (forced
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Figure 3. Illustration of algorithm performance on two synthetic datasets. Left: original data. Middle: a correct result
found by the algorithm, color-coded by association to regression curves. Right: Average NMI score as a function of
totaled ML and CL constraints used.

expiratory volume in one second). We randomly chose
a subset of forty subjects such that each subject was
represented at a minimum of five time points and ev-
eryone had approximately the same height.

Since our goal is to identify regression curves that asso-
ciate subjects according to genetics, longitudinal stud-
ies like NAS provide a good arena in which to test and
implicitly provide constraints: all data instances be-
longing to a given subject are must-linked together
(i.e., there are “built-in” constraints).

It is known that lung function decline (as measured
by a decrease in FEV1) is a natural part of the aging
process, even in healthy individuals. However, some
individuals are thought to experience a more rapid de-
cline while others a more modest decline. This effect
is thought to be even more pronounced as a function
of smoke exposure. For our initial analysis we focus on
age as the input variable. (Accurately capturing ex-
posure to smoke is nontrivial and will be the focus of
our future work). We investigate our algorithm’s per-
formance by performing a five-fold cross validation.
For each fold the test set consists of a randomly se-
lected time point for each individual, and the training
set consists of the remaining data. No data point is re-
peated as a test instance across the different folds. For
each of the five training sessions, we learn regression
curves both with and without constraints, identifying
solutions with the lowest variational bound in each
case.

We want to identify curves that are geneti-
cally/biologically meaningful despite various levels of
measured lung function, so we desire solutions such
that the data points for an individual are associated
to the same curve during the training phase. We re-
port the percentage of times this occurs for each of the
five folds, both with and without constraints.

We are also interested in the predictive power of the
learned regressors. For each instance in the test set we
identify the curve most often associated to that indi-
vidual in the training set and use that regressor to pre-

Figure 6. Detected individuals in a frame from EU
CAVIAR video sequence.

dict the FEV1 value associated with the test instance;
we do this for both the constrained and unconstrained
cases. Additionally, we compare our predictions to
those made by the currently accepted prediction equa-
tion used in clinical practice (Hankinson, 1999) given
by

FEV1 = 0.5536− 0.01303× age−
0.000172× age2 + 0.00011607× height2 (26)

We ran 50 iterations for all experiments and set σ2 =
0.0225, α = 1.0, θ0 = 1.0, and θ1 = 0.002. The results
are summarized in Table 1.

We also highlight examples of learned regressors for
both the constrained and unconstrained case in Fig-
ure 5. The constrained case depicts trends that agree
well with clinical expectation, while the unconstrained
case shows an unexpected increase in lung health for
one of the sub-populations, clearly contrary to what is
known about lung physiology and the aging process.

Although our algorithm was designed specifically for
application to lung disease sub-typing, our last exper-
iment shows that it is potentially useful for related
tracking scenarios. We demonstrate this by consid-
ering a video-sequence taken from the EU CAVIAR
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Table 1. Five-fold cross-validation results on clinical data taken from the Normative Aging Study. The first three columns
show the average mean squared error between actual and predicted FEV1 measures using the standard clinical prediction
equation (“Clin. Pred.”) and predictions using our algorithm with (“Alg. Pred. (Constr.)”) and without (“Alg. Pred.
(Unconstr.)”) constraints. The last two columns show the matching percentages for the constrained and unconstrained
cases; see text for details.

Fold Clin. Pred. Alg. Pred. (Constr.) Alg. Pred. (Unconstr.) Match Perc. (Constr.) Match Perc. (Unconstr.)

1 0.57 0.24 0.38 0.88 0.57
2 0.36 0.06 0.18 0.84 0.63
3 0.58 0.20 0.37 0.84 0.60
4 0.46 0.28 0.40 0.84 0.56
5 0.49 0.24 0.31 0.83 0.59

dataset1. This is a human-labeled benchmark se-
quence featuring four individuals walking through a
scene. Each of the 1, 164 data instances used here con-
sist of the sequence’s frame number, and the target val-
ues are the centroids of each detected bounding-box.
Each of the four individuals in the scene is assigned a
unique ID in the available ground-truth, and we use
that information to impose ML and CL constraints on
our algorithm. We again run for 50 iterations and set
σ2 = 2.0, α = 0.03, θ0 = 100.0, and θ1 = 0.0005.
Results are shown in Figure 7.

Figure 7. Algorithm performance on the EU CAVIAR
video sequence. Left: original data. Middle: a correct
result found by the algorithm, color-coded by association
to regression curves. Right: Average normalized mutual
information NMI score as a function of totaled ML and
CL constraints used.

For all experiments described in this section, our algo-
rithm was able to identify meaningful results both in
terms of the number of regressors as well as their func-
tional forms. As the number of constraints increases,
the results converged on are more likely to represent
the solution of interest. The flexibility to automati-
cally identify both the number of regressors and their
forms while honoring valuable expert input are the key
advantages of our approach.

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

6. Conclusion

We have introduced a nonparametric, mixture of
Gaussian process regression framework that uses must-
link and cannot-link constraints to identify solutions
of interest. Our motivation for building this model is
to assist with lung disease sub-type idenfication; we
have provided a new way of looking at this problem
by recasting it in terms of discovering associations of
individuals to disease trajectories, and we have demon-
strated the efficacy of our approach on real-world clin-
ical data. In the process of designing an appropriate
learning model for solving this clinical problem, we
have developed a novel Dirichlet process mixture of
Gaussian processes with constraints. It is applicable
to other applications requiring clustering/data associ-
ation to trajectories or nonparametric functions. We
have also successfully shown its effectiveness on syn-
thetic and tracking data.
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