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Abstract

Inference for latent feature models is inher-
ently difficult as the inference space grows
exponentially with the size of the input data
and number of latent features. In this
work, we use Kurihara & Welling (2008)’s
maximization-expectation framework to per-
form approximate MAP inference for linear-
Gaussian latent feature models with an In-
dian Buffet Process (IBP) prior. This for-
mulation yields a submodular function of the
features that corresponds to a lower bound on
the model evidence. By adding a constant to
this function, we obtain a nonnegative sub-
modular function that can be maximized via
a greedy algorithm that obtains at least a 1

3 -
approximation to the optimal solution. Our
inference method scales linearly with the size
of the input data, and we show the efficacy of
our method on the largest datasets currently
analyzed using an IBP model.

1. Introduction

Nonparametric latent feature models experienced a
surge of interest in the machine learning community
following Griffiths & Ghahramani (2006)’s formula-
tion of the Indian Buffet Process (IBP)—a nonpara-
metric prior for equivalence classes of sparse binary
matrices. These binary matrices have a finite num-
ber of exchangeable rows and an unbounded number
of columns, where a 1 in row n and column k indicates
that observation n expresses latent feature k. For ex-
ample, given an image dataset of human faces, each
observation is an image, and the latent features might
be “is smiling,” “is wearing glasses,” etc. More gener-
ally, feature models can be viewed as a generalization
of unsupervised clustering, see Broderick et al. (2012).
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The IBP prior is often used in sparse matrix factoriza-
tion models where a data matrix of N D-dimensional
observations is expressed as a product of two matrices
that factor over K latent factors plus a noise term:
X = ZA+E. Formally, this model has a binary fea-
ture matrix Z ∈ {0, 1}N×K that linearly combines a
latent factor matrix A ∈ RK×D plus a noise matrix
E ∈ RN×D to form the observed data X ∈ RN×D.
Placing an IBP prior on Z lets K be unbounded and
allows the number of active features K+ (those with
non-zero Z column sums) to be learned from the data
while remaining finite with probability one. The IBP
inspired several infinite-limit versions of classic matrix
factorization models, e.g. infinite independent compo-
nent analysis models (Knowles & Ghahramani, 2007).

Inference with IBP models is challenging as its discrete
state space has 2NK+ possible assignments. In turn,
the IBP has found limited application to large data in
comparison to the Chinese Restaurant Process, which
assigns one feature to each observation. In this paper,
we use Kurihara & Welling (2008)’s Maximization-
Expectation (ME) framework to perform approximate
MAP inference with IBP matrix factorization models,
termed MEIBP inference. For nonnegativeA, we show
that we can obtain approximate MAP solutions for Z
by maximizingN submodular cost functions. The sub-
modularity property enables the use of a simple greedy
algorithm that obtains at least a 1

3 -approximation to
the optimal solution. While the worst-case complex-
ity of MEIBP inference is comparable to sampling and
variational approaches, in §5 we show that MEIBP in-
ference often converges to better solutions than varia-
tional methods and similar solutions as the best sam-
pling techniques but in a fraction of the time.

This paper is structured as follows: in §2 we present
background material that sets the foundation for our
presentation of MEIBP inference in §3 and the re-
sulting submodular maximization problem that arises,
then in §4 we discuss related work, and in §5 we com-
pare the MEIBP with other IBP inference techniques
using both synthetic and real-world datasets.
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2. Background

2.1. The Indian Buffet Process

Griffiths & Ghahramani (2006) derived the IBP prior
by placing independent beta priors on Bernoulli gener-
ated entries of an N×K binary matrix Z, marginaliz-
ing over the beta priors, and letting K go to inifinity.
In this infinite limit, however, P (Z) is zero for any
particular Z. Griffiths & Ghahramani (2006) there-
fore take the limit of an equivalence classes of binary
matrices, [Z], defined by the “left-order form” (lof )
ordering of the columns and show that P ([Z]lof) has a
non-zero probability as K goes to infinity.

The lof ordering arranges the columns of Z such that
the binary values of the columns are non-increasing,
where the first row is the most significant bit. Ding
et al. (2010) examine different “shifted” equivalence
classes formed by shifting all-zero columns to the right
of non-zero columns while maintaining the non-zero
column ordering. Given K+ non-zero columns, the
IBP prior for the shifted equivalence classes is

P ([Z]|α) =
αK+

K+!
e−αHN

K+∏
k=1

(N −mk)!(mk − 1)!

N !
(1)

where α is a hyperparameter, HN is the N th harmonic
number, and mk =

∑N
n=1 znk. The supplementary

material has a derivation of P ([Z]|α) as well as a com-
parison to the lof equivalence classes. The derivations
in §3 can be applied using either equivalence class.
However, the shifted equivalence classes simplify the
mathematics and produce the same results in practice.

2.2. Maximization-Expectation

Kurihara & Welling (2008) presented the ME algo-
rithm: an inference algorithm that exchanges the
expectation and maximization variables in the EM
algorithm. Consider a general probabilistic model
p(X,Z,A), where X are the observed random vari-
ables (RVs), Z are the local latent RVs, and A are the
global latent RVs. RVs are qualified as “local” if there
is one RV for each observation, and RVs are “global” if
their multiplicity is constant or inferred from the data.

ME can be viewed as a special case of a Mean-Field
Variational Bayes (MFVB) approximation to a poste-
rior that cannot be computed analytically, p(Z,A|X).
MFVB operates by approximating the posterior dis-
tribution of a given probabilistic model by assuming
independent variational distributions, p(Z,A|X) ≈
q(Z)q(A) (Attias, 2000; Ghahramani & Beal, 2001).
The independence constraint lets us compute the vari-
ational distribution q that minimizes the KL diver-

gence between the variational distribution and true
posterior. Without this constraint, the distribution
that minimizes the KL-divergence is the true posterior,
returning us to our original problem. In MFVB, we de-
termine the variational distributions and their param-
eters using coordinate ascent optimization in which we
iteratively update:

q(Z) ∝ exp E
q(A)

[ln p(X,Z,A)] (2)

q(A) ∝ exp E
q(Z)

[ln p(X,Z,A)] , (3)

which commonly has closed-form solutions.

The EM algorithm can be viewed as a special case
of MFVB that obtains MAP values of the global RVs
by letting q(A) = δ(A −A∗), where δ(·) is the delta
function and A∗ is the MAP assignment. The ME al-
gorithm instead maximizes the local RVs Z and com-
putes the expectation over the global RVs A, which
can be viewed as MFVB with q(Z) = δ(Z − Z∗).
In the limit of large N , the ME algorithm recovers
a Bayesian information criterion regularization term
(Kurihara & Welling, 2008). Also, maintaining a vari-
ational distribution over the global RVs retains the
model selection ability of MFVB, while using point es-
timates of the local RVs allows the use of efficient data
structures and optimization techniques. As we will
show, the ME algorithm leads to a scalable submodu-
lar optimization problem for latent feature models.

2.3. Submodularity

Submodularity is a set function property that makes
optimization of the function tractable or approx-
imable. Given ground set V and set function f : 2V →
R, f is submodular if for all A ⊆ B ⊆ V and e ∈ V \B:

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B), (4)

which expresses a “diminishing returns” property,
where the incremental benefit of element e diminishes
as we include it in larger solution sets. Submodularity
is desirable in discrete optimization because submod-
ular functions are discrete analogs of convex functions
and can be globally minimized in polynomial time
(Lovász, 1983). However, global submodular maxi-
mization is NP-hard, but submodularity often enables
approximation bounds via greedy algorithms. In the
next section, we show that determining a MAP esti-
mate of Z in the ME algorithm is a scalable submod-
ular maximization problem.

3. Maximization-Expectation IBP

Here we present the ME algorithm for nonnegative
linear-Gaussian IBP models and show that approxi-
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mate MAP inference arises as a submodular maximiza-
tion problem. Boldface variables are matrices with
(row, column) subscripts; a dot indicates all elements
of the dimension, and lowercase variables are scalars.

3.1. Nonnegative Linear-Gaussian IBP Model

We consider the following probabilistic model:

p(X,Z,A|θ) = p(X|Z,A, σ2
X)p(A|σ2

A)p(Z|α) (5)

p(X|Z,A, σ2
A) =

N∏
n=1

N (Xi·;Zi·A, σ
2
AI) (6)

p(A|0, σ2
A) =

K∏
k=1

D∏
d=1

TN (akd; 0, σ2
A) (7)

with p([Z]|α) specified in Eq. 1. This is a nonnegative
linear-Gaussian IBP model, where the prior over the
latent factors, p(A|0, σ2

A), is a zero-mean i.i.d. trun-
cated Gaussian with nonnegative support, denoted
TN . As we show below, this nonnegative prior yields
a submodular maximization problem when optimizing
Z. We use a truncated Gaussian as it is conjugate to
the Gaussian likelihood, but other nonnegative priors
(e.g. exponential) can be used. For brevity we assume
the hyperparameters, θ = {α, σ2

A, σ
2
X}, are known and

discuss θ inference in the supplementary material.

3.2. MEIBP Evidence

In the ME framework, we approximate the true pos-
terior distribution via a MFVB assumption:

p(Z,A|X,θ) ≈ q(A)δ(Z −Z∗). (8)

That is, we maintain a variational distribution over the
latent factors A and optimize the latent features Z.
Given the MFVB constraint, we determine the varia-
tional distributions by minimizing the KL-divergence
between the variational distributions and the true
posterior, which is equivalent to maximizing a lower
bound on the evidence (Attias, 2000):

ln p(X|θ) = E
q
[ln p(X,A,Z|θ)] +H[q] +D(q‖p)

≥ E
q
[ln p(X,A,Z|θ)] +H[q] ≡ F (9)

where H[q] is the entropy of q and D(q‖p) represents
the KL-divergence between the variational distribution
and the true posterior. The evidence lower bound, F ,
for the nonnegative linear-Gaussian IBP model is:

1

σ2
X

N∑
n=1

[
−1

2
Zn·ΦΦTZTn· +Zn·ξ

T
n·

]
− lnK+!

+

K+∑
k=1

[
ln

(N −mk)!(mk − 1)!

N !
+ ηk

]
+ const (10)

with

ξnk = Φk·X
T
n· +

1

2

D∑
d=1

[
E[akd]

2 − E[a2kd]
]

(11)

and

ηk =

D∑
d=1

[
−

ln
πσ2

A

2α2/D

2
− E[a2kd]

2σ2
A

+H(q(akd))
]

(12)

where Φk· = (E [ak1] , . . . ,E [akD]), and all expecta-
tions are with respect to q(A), which is defined in the
next subsection. In §3.5 we show that maximizing this
lower bound with respect to Z can be formulated as a
submodular maximization problem.

3.3. Variational Factor Updates

Maximizing Eq. 10 with respect to q(A) yields

q(A) =

K∏
k=1

D∏
d=1

TN (akd; µ̃kd, σ̃
2
kd), (13)

with parameter updates

µ̃kd = ρk

N∑
n=1

znk

(
xnd −

∑
k′ 6=k

znk′ E [ak′d]
)

(14)

σ̃2
kd = ρkσ

2
X , (15)

where ρk =
(
mk +

σ2
X

σ2
A

)−1
. These updates take

O(NK2D), and the relevant moments are:

E [akd] = µ̃kd + σ̃kd

√
2/π

erfcx (℘kd)
(16)

E
[
a2kd
]

= µ̃2
kd + σ̃2

kd + σ̃kdµ̃kd

√
2/π

erfcx (℘kd)
(17)

with ℘kd = − µ̃kd

σ̃kd

√
2

and erfcx (y) = ey
2

(1 − erf(y))

representing the scaled complementary error function.

3.4. Evidence Lower Bound as K →∞
Here we show that the evidence lower bound [Eq. 10] is
well-defined in the limit K →∞; in fact, all instances
of K are simply replaced by K+. Therefore, similar to
variational IBP methods, a user must specify a maxi-
mum model complexity K+. A benefit over variational
IBP methods, however, is that the q(Z) updates are
not affected by inactive features—see §4.

We take this limit by breaking the evidence into com-
ponents 1, . . . ,K+ and K+ + 1, . . . ,K and note that
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when mk = 0: µ̃kd = 0, σ̃2
kd = σ2

A, and H(akd) =
1
2 ln

πeσ2
A

2 . After some algebra, the evidence becomes:

ψK+
+

1

2

K∑
k=K++1

D∑
d=1

[
− ln

πσ2
A

2
− E[a2kd]

σ2
A

+ ln
πeσ2

A

2

]
(18)

where ψK+
is Eq. 10 but with K+ replacing all K.

From Eq. 17, we see that E[a2kd] = σ2
A when mk = 0,

which causes all terms to cancel in Eq. 18 except ψK+ .

The evidence lower bound remains well-defined be-
cause both the likelihood and IBP prior terms do not
depend on inactive features, so for inactive features
the KL-divergence between the posterior and varia-
tional distributions is simply the KL-divergence be-
tween p(A) and q(A). For inactive features, p(A) =
q(A), and as a result, the KL-divergence is zero.

3.5. Z Objective Function

Given q(A), we compute MAP estimates of Z by max-
imizing the evidence [Eq. 10] for each n ∈ {1, . . . , N}
while holding constant all n′ ∈ {1, . . . , N}\n. Decom-
posing Eq. 10 into terms that depend on Zn· and those
that do not yields (see the supplementary material):

F(Zn·) =− 1

2σ2
X

Zn·ΦΦTZTn· +Zn·ω
T
n· + const

− ln
(
K+\n +

K+∑
k=1

[
1{mk\n=0}znk

])
! (19)

Φk· =
(
E [ak1] , . . . ,E [akD]

)
ωnk =

1

σ2
X

(
Φk·X

T
n· +

1

2

D∑
d=1

[
E[akd]

2 − E[a2kd]
])

+ ν(znk = 1)− ν(znk = 0) + 1{mk\n>0}ηk,

which is a quadratic pseudo-Boolean function plus a
term that penalizes K+, where 1{·} is the indicator
function, a “\n” subscript indicates the given variable
is determined after removing the nth row from Z, and

ν(znk) =


0, if mk\n = 0 and znk = 0

ln (N −mk\n − znk)!

+ ln (mk\n + znk − 1)!, otherwise

We can prove F(Zn·) is submodular given the follow-
ing two well-known propositions, see Fujishige (2005):

Proposition 1. Nonnegative linear combinations of
submodular functions are submodular.

Proposition 2. A quadratic pseudo-Boolean function
with quadratic weight matrix W is submodular if and
only if Wij ≤ 0 for all i, j.

Via Proposition 2, we see that − 1
2σ2

X
Zn·ΦΦTZTn· +

Zn·ωTn· is submodular when Φ is nonnegative. From
Proposition 1, Eq. 19 is submodular if and only if

G(Zn·) = − ln
(
K+\n +

K+∑
k=1

[
1{mk\n=0}znk

])
! (20)

is submodular. We prove this property by rephras-
ing G(Zn·) as a set function and using the defini-
tion of submodularity given by Eq. 4. Let An ⊆
Bn ⊆ V where V = {1, . . . ,K+} and An, Bn ∈ 2V

with G(An) = − ln (K+\n +KAn)!. Here we let

KAn
=
∑K+

k=1 1{mk\n=0}1{k∈An} where k ∈ An indi-
cates znk = 1. G is submodular if for all e ∈ V \Bn:

G(An ∪ {e})− G(An) ≥ G(Bn ∪ {e})− G(Bn)

ln

(
K+\n +KAn

)
!(

K+\n +KAn∪{e}
)
!
≥ ln

(
K+\n +KBn

)
!(

K+\n +KBn∪{e}
)
!

(21)

Eq. 21 has two cases: (1) me\n > 0 so KBn∪{e} = KBn

and KAn∪{e} = KAn
, yielding 0 ≥ 0 for Eq. 21, which

is true for all e ∈ V \ Bn and An ⊆ Bn, (2) me\n =
0 so KBn∪{e} = KBn + 1 and KAn∪{e} = KAn + 1.
After some algebra this yields KBn∪{e} ≥ KAn∪{e} for
Eq. 21, which is again true for all e ∈ V \ Bn and
An ⊆ Bn. As a result, both components of Eq. 19 are
submodular, and by Proposition 1, adding these terms
yields a submodular function.

3.6. Z Optimization

Eq. 19 is an unconstrained nonmonotone submodular
function. Feige et al. (2011) prove that an approx-
imibility guarantee is NP-hard for this class of func-
tions. However, Feige et al. (2011) also show that a
local-search (ls) algorithm obtains a constant-factor
approximation to the optimal solution, provided the
submodular objective function is nonnegative. For a
submodular function F : 2V → R with ground set
V = {1, . . . ,K+} and solution set A ⊆ V , the ls-
algorithm operates as follows:

1. initialize: let A = {arg maxw∈V F({w})}
2. grow : while there is an element w ∈ V \ A s.t.
F(A ∪ {w}) > (1 + ε

|V |2 )F(A): let A := A ∪ {w}

3. prune: if there is an element w ∈ A s.t. F(A \
{w}) > (1 + ε

|V |2 )F(A): let A := A \ {w}, goto 2.

4. return: maximum of F(A) and F(V \A).

The ls-algorithm obtains a solution that is greater than
1
3 (1 + ε

|V |2 )OPT—where ε is a parameter and OPT is
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the maximum value of F . The ls-algorithm performs
O(|V |3 log |V |) function calls in the grow/prune steps.
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Figure 1. Fraction of ls-algorithm and random solutions
that obtain [within 95% of] the true optimum using data
generated from the nonnegative linear-Gaussian model
with N = 500, D = 50, σX = 1.0.

Since Eq. 19 is strictly negative, we use its normal-
ized cost function to interpret the ls-approximability
guarantee: F(Zn·)− Fn0, where Fn0 is the minimum
value of F(Zn·). Using the normalized cost function,
we obtain the following optimality guarantee:

F(Z ls
n·) ≥ Fn0 +

1

3
(F(Z∗n·)−Fn0) (22)

where the superscript “ls” denotes the solution from
the greedy ls-algorithm and an asterisk denotes the
set that obtains the true maximum. This inequality
states that the ls-algorithm solution is guaranteed to
perform better as the disparity between the maximum
and minimum solution increases. However, we empha-
size that this inequality does not provide an optimality
guarantee for the global MAP solution.

We studied the empirical performance of the ls-
algorithm by generating high noise data (σX = 1)
from the nonnegative linear-Gaussian model with N =
500, D = 50 and compared the ls-algorithm with the
brute-force optimal solution as K varied from 2 to 12,
performing 1000K total optimizations for each of ten
randomly generated datasets. Furthermore, we com-
pared the ls-algorithm with randomly sampled Zn· so-
lutions to demonstrate that the optimization space was
not skewed to favor solutions near the optimal value.

Figure 1 shows the fraction of solutions that obtain the
true optimum as well as the fraction of solutions that
were greater than 95% of F(Z∗n·) − Fn0, where the
error bars indicate the combined standard deviation
over the 10 × 1000K optimizations. The ls-algorithm
found the optimal solution roughly 70% of the time
for K = 12 and obtained within 95% of the optimal
solution over 99.9% of the time for all K—meaning we
could empirically replace the 1

3 in Eq. 22 with 19
20 . The

random sampling comparison indicated that the opti-
mization space did not favor nearly-optimal solutions:
its convergence to 5% for within-95% optimal solutions
was characteristic of a uniform solution space.

By precomputing ΦΦT and maintaining an auxil-
iary vector of K+ weights, we can evaluate Eq. 19
in constant time when adding/removing elements to
the solution set. In turn, the ls-algorithm optimizes
F(Zn·) in K2

+D + O(K3
+ logK+) operations. The

O(K3
+ logK+) component arises from the add/removal

operations, but as we show in Figure 2, it is a loose
upper bound that scales sub-quadratically in practice.
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es K*logK fit
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Figure 2. Number of O(1) updates per ls-optimization us-
ing data generated from the nonnegative linear-Gaussian
model with N = 1000, D = 1000, σX = 1.0.

4. Related Work

Several proposals have been made for efficient infer-
ence with latent feature models. Table 1 summarizes
the per-iteration complexity of the methods discussed
below. In the next section we compare these methods
on two synthetic and three real-world datasets.

Doshi-Velez et al. (2009) formulated a coordinate as-
cent variational inference technique for IBP models
(VIBP). This method used the “stick breaking” for-
mulation of the IBP, which maintained coupled beta-
distributed priors on the entries of Z—marginalizing
these priors does not allow closed-form MFVB up-
dates. Unlike MEIBP inference, maintaining the beta
priors has the undesirable consequence that inactive
features contribute to the evidence lower bound and
must be ignored when updating the variational distri-
butions. This was not a problem for Doshi-Velez et al.
(2009)’s finite variational IBP, which computes vari-
ational distributions for a linear-Gaussian likelihood
with a parametric beta-Bernoulli prior on the latent
features. The inference complexity for both methods
is O(NK2

+D), which is dominated by updating q(Z).
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Ding et al. (2010) used mixed expectation-propagation
style updates with MFVB inference in order to per-
form variational inference for a nonnegative linear-
Gaussian IBP model (INMF). The expectation-
propagation style updates are more complicated than
MFVB updates and have per-iteration complexity
O(N(K3D+KD2)). Ding et al. (2010) motivated this
framework by stating that the evidence lower bound
of a linear-Gaussian likelihood with a truncated Gaus-
sian prior on the latent factors is negative infinity. This
is only true if the variational distribution is a Gaus-
sian, however the free-form variational distribution for
their model is a truncated Gaussian, which has a well-
defined evidence lower bound.

Doshi-Velez & Ghahramani (2009) presented a linear-
time “accelerated” Gibbs sampler for conjugate IBP
models that effectively marginalized over the latent
factors (AIBP). The per-iteration complexity was
O(N(K2 + KD)). This is comparable to the uncol-
lapsed IBP sampler (UGibbs) that has per-iteration
complexity O(NDK2) but does not marginalize over
the latent factors, and as a result, takes longer to
mix. In terms of both complexity and empirical per-
formance, the accelerated Gibbs sampler is the most
scalable sampling-based IBP inference technique cur-
rently available. One constraint of the accelerated IBP
is that the latent factor distribution must be conjugate
to the likelihood, which for instance, does not allow
nonnegative priors on the latent factors.

Rai & Daume III (2011) introduced a beam-search
heuristic for locating approximate MAP solutions to
linear-Gaussian IBP models (BS-IBP). This heuris-
tic sequentially adds a single data point to the model
and determines the latent feature assignments by scor-
ing all 2K+ latent feature combinations. The scor-
ing heuristic uses an estimate of the joint probability,
P (X,Z) to score assignments, which evaluates the col-
lapsed likelihood P (X|Z) for all 2K+ possible assign-
ments: an expensive N3(K+ +D) operation, yielding
a per-iteration complexity of O(N3(K+ +D)2K+).

5. Experiments

We evaluated the inference quality and efficiency of
MEIBP inference on two synthetic and three real-
world datasets. We used the runtime and predic-
tive likelihood of held-out observations as our perfor-
mance criteria and compared MEIBP inference with
the methods listed in Table 1 (the finite and infinite
VIBP are differentiated with an “f-” and “i-” prefix).
We used a truncated Gaussian prior on the latent fac-
tors for UGibbs and INMF, and Gaussian priors for
the AIBP and variational methods. In our evalua-

Table 1. Worst-case per-iteration complexity given a
linear-Gaussian likelihood model for N D-dimensional ob-
servations and K+ active latent features.

Algorithm Iteration Complexity
MEIBP O(N(K2

+D+K3
+ lnK+))

VIBP (Doshi-Velez et al.,
2009)

O(NK2
+D)

AIBP (Doshi-Velez &
Ghahramani, 2009)

O(N(K2
+ +K+D))

UGibbs (Doshi-Velez &
Ghahramani, 2009)

O(NK2
+D)

BS-IBP (Rai &
Daume III, 2011)

O(N3(K+ +D)2K+)

INMF (Ding et al., 2010) O(N(K3
+D +K+D

2))

tions, we also included Schmidt et al. (2009)’s iterated
conditional modes algorithm, which computes a MAP
estimate of a parametric nonnegative matrix factoriza-
tion model: X = BA+E, where B and A have expo-
nential priors and E is zero-mean Gaussian noise. We
abbreviate this model “BNMF”; it has a per-iteration
complexity of O(N(K2

+ +K+D)).

The VIBP and MEIBP inference methods specify a
maximum K value, while the sampling methods are
unbounded. Therefore, we also included truncated
versions of the sampling methods (indicated by a “t-”
prefix) for a fairer comparison. We centered all in-
put data to have a 0-mean for the models with 0-
mean Gaussian priors and a 0-minimum for nonneg-
ative models, and all inferred matrices were initial-
ized randomly from their respective priors. Following
Doshi-Velez & Ghahramani (2009), we fixed the hyper-
parameters σX and σA to 3

4σ, where σ was the stan-
dard deviation across all dimensions of the data, and
set α = 3. We ran each algorithm until the multiplica-
tive difference of the average training log-likelihood
differed by less than 10−4 between blocks of five it-
erations with a maximum runtime of 36 hours. Our
experiments used MATLAB implementations of the
algorithms, as provided by the respective authors, on
3.20 GHz processors.

Synthetic Data We created high-noise synthetic
datasets in the following way: (1) sample zn,k ∼
Bernoulli(p = 0.4), (2) generate A with K random,
potentially overlapping binary factors, (3) let X =
ZA + E, where E ∼ N (0, 1). We evaluated the pre-
dictive likelihood on 20% of the dimensions from the
last half of the data (see supplementary information).

Figure 3 shows the evolution of the test log-likelihood
over time for a small dataset with N = 500, D =
500,K = 20 and a large dataset with N = 105, D =
103,K = 50. All models were initialized randomly
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Figure 3. Evolution of test log-liklihood over time for a synthetic dataset; Left: dataset with N = 500, D = 500,K = 20
(NB: x-axis is log-scale) Right: dataset with N = 105, D = 103,K = 50 (NB: x-axis is linear-scale).

with the true number of latent features, and the error
regions display the standard deviation over five ran-
dom restarts. The BS-IBP and INMF methods were
removed from our experiments following the synthetic
dataset tests as both methods took at least an order
of magnitude longer than the other methods: in 36
hours, the BS-IBP did not complete a single iteration
on the small dataset, and the INMF did not complete
a single iteration on the large dataset.

MEIBP converged quickest among the IBP models
for both the small and large dataset, while the para-
metric BNMF model converged much faster than all
IBP models. However, the IBP models captured the
sparsity of the latent features and the MEIBP and
UGibbs eventually outperformed the BNMF on the
small dataset, while only the MEIBP outperformed the
BNMF on the large dataset. The VIBP methods con-
verged quicker than the sampling counterparts but had
trouble escaping local optima. The uncollapsed sam-
plers eventually performed as well as the MEIBP on
the small dataset but did not mix to a well-performing
distribution for the large dataset.

Real Data Table 2 summarizes the real-world
datasets used in our experiments. Piano and Yale-
BC are dense real-valued datasets, whereas the Flickr
dataset is a sparse binary dataset (0.81% filled). For
the Piano and Flickr datasets, we evaluated the pre-
dictive likelihood on a held-out portion of 25% of the
dimensions from the last half of the datasets. The
Yale-BC dataset had roughly sixty-four facial images
of thirty-eight subjects, and we removed the bottom
half of five images from each subject for testing.

Figure 4 shows the test log-likelihood and convergence
time for all inference methods applied to the real-world
datasets, averaged over five random restarts. All in-
ference methods were initialized with K = {10, 25, 50}
as indicated by the size of the marker (the smallest
marker shows the K = 10 results). The sampling

Table 2. Summary of real-world datasets.

Dataset Size (N ×D) Details
Piano (Poliner
& Ellis, 2006)

16000× 161
DFT of piano
recordings

Flickr (Kollar &
Roy, 2009)

25000× 1500
binary image-tag
indicators

Yale-BC (Lee
et al., 2005)

2414× 32256
face images with
various lightings

methods (AIBP, UGibbs) also include a large faded
marker that shows the results for unbounded K.

The Piano results were similar to the small synthetic
dataset. The BNMF converged much faster than the
IBP models, and the MEIBP performed best among
the IBP models in terms of runtime and test log-
likelihood—it converged to a similar solution as the
AIBP in one-third the time. Though UGibbs has the
best per-iteration complexity, it got stuck in poor local
optima when randomly initialized. The VIBP meth-
ods and MEIBP expressed large uncertainty about the
latent factors early on and overcame these poor lo-
cal optima. By using hard latent feature assignments,
the MEIBP took larger steps in the inference space
than the VIBP methods, which was beneficial for this
dataset, and achieved similar results to the AIBP.

MEIBP inference performed comparable to the best
IBP sampling technique for the sparse binary Flickr
dataset and converged over an order of magnitude
faster. Surprisingly, the dense BNMF inference per-
formed very well on this dataset even though the
dataset was sparse and binary. The BNMF con-
verged slower than the MEIBP because it inferred a
sparse matrix from a dense prior, which took over four
times as many iterations to converge compared to the
dense datasets. While the t-AIBP converged to a bet-
ter solution than the MEIBP, it took over an order-
of-magnitude longer to surpass the MEIBP’s perfor-
mance. As we demonstrate with the Flickr results, ini-
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Figure 4. Inference results on real-world datasets. The size of the marker indicates the K value for K = {10, 25, 50},
with larger markers indicating a larger K. AIBP and UGibbs also include a larger faded marker that shows the inference
results for unbounded K. The Flickr plot also shows the result of initializing the AIBP using the MEIBP result. The
error-bars indicate the standard deviation of convergence time and test log-likelihood over five random restarts.

tializing the AIBP with the MEIBP outcome obtained
a similar solution in a fraction of the time (indicated
as “meibp+aibp” on the figure).

The MEIBP converged faster than the other IBP
methods for the Yale-BC dataset but to a lower test
likelihood. The UGibbs and BNMF also experienced
difficulty for this dataset, where BNMF converged to
a test log-likelihood around −3.6 × 106 (not visible
in the figure). These linear-Gaussian models with
nonnegative priors performed worse than the models
with Gaussian priors because the dataset contained
many images with dark shadows covering part of the
face. The nonnegative priors appeared to struggle
with reconstructing these shadows, because unlike the
Gaussian priors, they could not infer negative-valued
“shadow” factors that obscured part of the image.

In the above experiments, the MEIBP consistently ex-
hibited a sudden convergence whereby it obtained a lo-
cal optima and the ls-algorithm did not change any Z
assignments. This is a characteristic of using hard as-
signments with a greedy algorithm: at a certain point,
changing any latent feature assignments decreased the
objective function. This abrupt convergence, in combi-
nation with the speed of the ls-algorithm, helped the
MEIBP consistently converge faster than other IBP
methods. Furthermore, the submodular maximization
algorithm converged to local optima that were compa-
rable or better than the sampling or variational results,
though at the cost of only obtaining a MAP solution.
Like the variational methods, it maintained a distri-
bution over A that prevented it from getting stuck in
local optima early on, and like the sampling methods,
the MEIBP used hard Z assignments to take larger
steps in the inference space and obtain better optima.

6. Summary and Future Work

We presented a new inference technique for IBP mod-
els that used Kurihara & Welling (2008)’s ME frame-
work to perform approximate MAP inference via
submodular maximization. Our key insight was to
exploit the submodularity inherent in the evidence
lower bound formulated in §3, which arose from the
quadratic pseudo-Boolean component of the linear-
Gaussian model. MEIBP inference converged faster
than competing IBP methods and obtained compara-
ble solutions on various datasets.

There are many discrete Bayesian nonparametric pri-
ors, such as the Dirichlet process, and an interest-
ing area for future research will be to generalize our
results in order to phrase inference with these pri-
ors as submodular optimization problems. Further-
more, we used a simple local-search algorithm to
obtain a 1

3 -approximation bound, but concurrently
with this work, Buchbinder et al. (2012) proposed a
simpler stochastic algorithm for unconstrained sub-
modular maximization that obtains an expected 1

2 -
approximation bound. Using this algorithm, MEIBP
inference has an improved worst case complexity of
O(NK2

+D). We will investigate this algorithm in an
extended technical version of this paper.

Code: A MATLAB implementation of MEIBP is
available at https://github.com/cjrd/MEIBP.
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