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S.1. Truncated Gaussian Properties

In the main text we examined a truncated Gaussian
of the form:
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with A representing a Gaussian distribution. The first
two moments of TN (fixq, 53,) are:
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representing the scaled complementary error function.
The entropy is
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S.2. Shifted Equivalence Classes

Here we discuss the “shifted” equivalence class of bi-
nary matrices first proposed by Ding et al. (2010). For
a given N x K binary matrix Z, the equivalence class
for this binary matrix [Z] is obtained by shifting all-
zero columns to the right of the non-zero columns while
maintaining the non-zero column orderings, see Fig-
ure 1. Placing independent Beta(4,1) priors on the
Bernoulli entries of Z and integrating over these pri-
ors yields the following probability for Z, see Eq. 27
in Griffiths & Ghahramani (2005):
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where my = ij:l Znk. Letting K — oo yields
P(Z) = 0 for all Z. However, the probability of cer-
tain equivalence classes of binary matrices, P([Z]), can
remain non-zero as K — co. Specifically, Griffiths &
Ghahramani (2005) show P([Z]) remains non-zero for
the “left-ordered form” equivalence class of binary ma-
trices, whereby the columns of Z are ordered such that
the binary values of the columns are non-increasing,
where the first row is the most significant bit. Here
we outline a similar result for the shifted equivalence
class.!

We obtain the probability of the shifted equivalence
class by multiplying the multiplicity of the equivalence
class by the probability of a matrix within the class.
For a given matrix with K columns and K non-zero
columns, each shifted equivalence class has ( IZ ) ma-
trices that map to it, yielding:
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Following a similar algebraic rearrangement as Grif-
fiths & Ghahramani (2005) Eqgs. 30-33, except replac-

ing the 2NK1 term with (Iﬁi)—which occurs be-

]-_-[h 0 L
cause of the different equivalence class multiplicities—

results in:
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We then take the limit X — oo for each of the four
terms. The first term has no K dependence and does

'Ding et al. (2010) proposed this equivalence class but

did not explicitly show that it remains well defined as K —
oo. Furthermore, they did not discuss the collapsed case
where we first marginalize over the beta priors on Z.
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Figure 1. Example of a binary matrix (left) and its shifted equivalence matrix (dark squares are 1, white squares are
0)—placing the two all-zero columns anywhere in the matrix will yield the same equivalence matrix.

not change in the infinite limit. For the second term we
let Ko = K — K+ and haveK 'KK+ Equations 60-62
in Griffiths & Ghahramani (2005) show that this term
becomes 1 as K — oo. The infinite limit of the third
and fourth terms are determined in the Appendix of
Griffiths & Ghahramani (2005). Combining all four
terms together yields:
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where Hy is the N** harmonic number.

The probability of the shifted equivalence class is
nearly identical to the probability of the left-ordered-
form equivalence class:
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where K}, is the number of columns of Z with binary
value h € {1,...,2Y71} when the first row is taken
to be the most significant bit. The only difference be-
tween Eq. 9 and Eq. 10 is the denominator of the first
fraction. For the left-ordered-form, this term penal-
izes Z matrices with identical columns. In the feature
assignment view, this term penalizes features that are
assigned to the exact same set of observations. The
K, ! term in the shifted equivalence class prior does
not distinguish between identical and distinct columns
of Z, and in turn, does not penalize repeated feature
assignments. These two equivalence class probabilities
are proportional in the limit of large N as the proba-
bility of two columns being identical approaches 0

S.3. Hyperparameter Inference

In the main text we assumed the hyperparameters
0 = {ox,04,a} were known (i.e. estimated from the
data). Placing conjugate gamma hyperpriors on these
parameters allows for a straightforward extension in

which we infer their values. Formally, let

p(tx) = Gamma(7x;ax, bx) (11)
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where T represents the precision, equivalent to the in-
verse variance %, for the variance parameter indicated
in the subscript. Update equations for the variational
distributions follow from standard update equations
for variational inference in exponential families, cf. At-

tias (2000), and yield:
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with variance updates
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MEIBP inference is carried out exactly as discussed
in the main text except all instances of ox,04, and «
are replaced with the expectation from their respective
variational distribution. Furthermore the variational
lower bound also has three additional entropy terms
for gamma distributions, one for each hyperparameter.

S.4. Evidence as a function of Z,,.

As shown in the main text, we obtain a submodular
objective function for each Z,., n € {1,...,N} by ex-
amining the evidence as a function of Z,,. while holding
constant all n’ € {1,..., N} \ n. The evidence is
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which nearly factorizes over the Z,. because the like-
lihood component and parts of the prior components
naturally fit into a quadratic function of Z,.. The
In K;! and ny only couple the rows of Z when K
changes, while the log-factorial term couples the rows
of Z through the sums of the columns. Both of these
terms only depend on statistics of Z (the my values
and K ), not the Z matrix itself, e.g. permuting the
rows of Z would not affect these terms. Furthermore,
In Ky and 7, have no N dependence and become in-
significant as N increases. These observations, in con-
junction with the MEIBP performance in the exper-
imental section of the main text, indicate that opti-
mizing Eq. 24 for Z,. is a reasonable surrogate for
optimizing Z.

Here we explicitly decompose Eq. 24 to show its
Z,. dependency. Decomposing lnw is
straightforward if we first define the functlon
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where the “\n” subscript indicates the variable with

the n'® row removed from Z. For a given n we have:
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which makes the Z,,. dependency explicit and lets us
add v(zpr = 1) — v(2pk = 0) into the inner-product
term, &,., and place v(z,, = 0) into a constant term.
We can incorporate 7, into the inner-product term in
a similar manner for a given n € {1,...,N} :
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where the first term does not depend on Z,,. and is
added to the constant term, while the second term is
added to the inner-product term. Finally, for a given
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n € {l,...,N} the In K! term becomes
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where 1;.3 is the indicator function. As stated in
the main text, combining the above terms yields
the following submodular objective function for n =

1,...,N:
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1{-} is the indicator function, and the subscript “\ n”
is the value of the given variable after removing the
nt" row from Z.

S.5. Additional MEIBP Characterization

In this section, we will maintain a growing list of
additional MEIBP characterization experiments. See
http://arxiv.org/abs/1304.3285 for the current
version.
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S.5.1. LEARNING K

An ostensible advantage of using Bayesian nonpara-
metric priors is that a user does not need to specify
the multiplicity of the prior parameters. Clever sam-
pling techniques such as slice sampling and retrospec-
tive sampling allow samples to be drawn from these
nonparametric priors, c.f. Teh et al. (2007) and Pa-
paspiliopoulos & Roberts (2008). However variational
methods are not directly amenable to Bayesian non-
parametric priors as the variational optimization can-
not be performed over an unbounded prior space. In-
stead, variational methods must specify a maximum
model complexity (parameter multiplicity). Several
heuristics have been proposed to address this limita-
tion: Wang & Blei (2012) sampled from the variational
distribution for the local parameters—which included
sampling from the unbounded prior— and used the
empirical distributions of the local samples to update
the global parameters, while Ding et al. (2010) simply
started with K = 1 and greedily added features. We
did not address these techniques in this work as the
MEIBP performed competitively with the unbounded
sampling techniques without employing these types of
heuristics. Furthermore, here we demonstrate that the
MEIBP can robustly infer the true number of latent
features when the K, bound is greater than the true
number of latent features.

For this experiment we generated the binary images
dataset used in Griffiths & Ghahramani (2005), where
the dataset, X, consisted of 2000 6 x 6 images. Each
row of X was a 36 dimensional vector of pixel inten-
sity values that was generated by using Z to linearly
combine a subset of the four binary factors shown in
Figure 2. Gaussian white noise, N'(0,0x), was then
added to each image, yielding X = ZA + E. The
feature vectors, Z,,. were sampled from a distribution
in which each factor was present with probability 0.5.
Figure 3 shows four of these images with different ox
values.

Figure 2. The four binary latent factors used in the sensi-
tivity analysis in this section. The white squares are ones
and the dark squares are zeros.

We initialized the MEIBP with K = 20, ox=1.0,
oa = 1.0, @ = 2, figg ~ |N(0,0.05)| (variational fac-
tor means), ogq ~ [N (0,0.1)| (variational factor stan-
dard deviations), z,x ~ Bernoulli(1). With this ini-

3
tialization, we tested the MEIBP robustness by per-

forming MEIBP inference on X for ox = 0.1,...,1.0
in 100 evenly spaced increments with all hyperparam-
eters and algorithm options unchanged during the ex-
periment. MEIBP convergence was determined in the
same way as the main experimental section. Figure 4
(top) shows a histogram of the final number of MEIBP
features (Kire = 4) and Figure 4 (bottom) shows the
final number of MEIBP features as a function of ox.
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Figure 3. Example data used in the sensitivity analysis dis-
cussed in §S.5.1. Each column contains the same combina-
tion of latent factors, where the top row has a data noise
term of ox = 0.1, the middle row has ox = 0.5, and the
bottom row has ox = 1.0. Top: histogram of final K
value. Bottom: final K} value as a function of ox.

These results indicate that the regularizing nature of
the IBP prior tends to lead to the correct number of
latent features even when the Ky bound is much larger
than the true K. Furthermore this experiment indi-
cates that MEIBP inference is robust to model noise,
at least, for the simple data used in this experiment.
At a medium level of data noise, the inference occa-
sionally finished with K| = 3, which resulted from
two true latent factors collapsing to the same inferred
latent feature. Omnce this occurred, MEIBP did not
have a mechanism for splitting the features. For ox
comparable to the latent factors, ox > 0.9, MEIBP
often inferred “noise features,” which were essentially
whitenoise and were typically active for less than 4%
of the data instances. In future experiments we will
attempt to flesh out the practical differences between
unbounded priors and priors that operate in a large
bounded latent space.
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Figure 4. Final feature count (K value) for MEIBP infer-
ence where Kirye = 4 for the binary image data with K
initialized to 20 for ox = 0.1,...,1.0 in 100 evenly spaced
increments with all hyperparameters and algorithm options
fixed during the experiment.
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