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Abstract

Sum of Squares Error and Normalized Cut
are two widely used clustering functional. It
is known their minimum values are monotone
with respect to the input number of clusters
and this monotonicity does not allow for a
simple automatic selection of a correct num-
ber of clusters. Here we study monotonicity
not just on the minimizers but on the entire
clustering lattice. We show the value of Sum
of Squares Error is strictly monotone under
the strict refinement relation of clusterings
and we obtain data-dependent bounds on the
difference between the value of a clustering
and one of its refinements. Using analogous
techniques we show the value of Normalized
Cut is strictly anti-monotone. These results
imply that even if we restrict our solutions to
form a chain of clustering, like the one we get
from hierarchical algorithms, we cannot rely
on the functional values in order to choose
the number of clusters. By using these re-
sults we get some data-dependent bounds on
the difference of the values of any two clus-
terings.

1. Introduction

Sum of Squares Error and Normalized Cut are two
different clustering functionals widely used in Machine
Learning applications (von Luxburg, 2007; Jain, 2010).
Minimizing the Sum of Squares Error on a set of points
allows the representation of each cluster with a sin-
gle point called prototype, or centroid. On the other
side, minimizing the Normalized Cut aims at divid-
ing a graph into components with balanced volumes.
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These two minimization problems are NP-complete,
but they both enjoy approximation algorithms which
are quite successful in applications.

A principal area of research for these functionals is
model validation, i.e. choosing a correct number of
clusters. It is easy to empirically observe, on a given
set of points, that the minimum Sum of Squares Error
value decreases with the number of clusters and it is
zero if we cluster each point within itself. Similarly in
(Nagai, 2007) it was proved that the minimum Nor-
malized Cut value is monotonically decreasing with
respect to the number of clusters. This monotonicity
property characterizes these functionals and does not
allow for automatic selection of the number of clusters,
which is a trivial solution separating each data, or col-
lecting all of them together. This is in contrast with
other model-based approaches, like Gaussian Mixture
Models, where the number of clusters can be learned
from the data (Figueiredo & Jain, 2002), or from Cor-
relation Clustering (Bansal et al., 2004), where the
functional is not monotone in the number of clusters.

Our main purpose here is to prove strict monotonic-
ity, for both functionals, not just on the minimizers but
on the entire clustering lattice, which is the algebraic
structure of a set partitions (Meila, 2005). E.g., we
prove that the split operation, which divides a cluster
into smaller different ones, strictly decreases the Sum
of Squares Error, or strictly increases the Normalized
Cut. In general a chain of clusterings, the typical out-
put of hierarchical clustering algorithms, leads to a
strictly monotone function. As a further relevant re-
sult, we obtain data-dependent bounds on the change
of the functional value for any pair of clusterings.

These results furnish further evidences that for these
two functionals it is not appropriate to choose the
number of clusters by using solely the functional value.
This fact is the main result of (Nagai, 2007) for the
Normalized Cut and it is largely recognized, see (Jain,
2010), for the minimum Sum of Squares Error. How-
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ever, from a more general point of view, these results
can be used as a base of reference for developing clus-
tering techniques which allow the user to explore the
clustering lattice.

The reason for dealing, at the same time, with these
two different functionals is the unified treatment with
Linear Algebra tools which allow for clean, direct
proofs and provide data-dependent rates. By proving
strict anti-monotonicity of Normalized Cut we improve
a result of (Nagai, 2007) with a short proof.

1.1. Related Literature

In general, the problems of minimizing the Sum
of Squares Error and the Normalized Cut are NP-
complete (Aloise et al., 2009; Drineas et al., 2004; Shi
& Malik, 2000). Minimization of Sum of Squares Error
functional is usually approximated, in practice, by the
K-means algorithm (Ding & He, 2004; Meila, 2006;
Jain, 2010). On the other side, the Normalized Cut is
approximated using spectral techniques (von Luxburg,
2007).

A main tool in our proofs is eigenvalue interlacing.
This was used in (Bolla, 1993; Bollobás & Nikiforov,
2004; 2008) to prove lower and upper bounds on the
Ratio Cut, a functional which has the same principle
as Normalized Cut, and in (Zha et al., 2001; Steinley,
2011) for Sum of Squares Error. From this point of
view our results can be considered as generalizations
of theirs.

The rest of the paper is structured as follows. In sec-
tion 2 we present the necessary preliminaries of Linear
Algebra, in section 3 we prove Sum of Squares Error
is, under certain conditions, strictly monotone in the
clustering lattice and in in section 4 we prove Nor-
malized Cut is strictly anti-monotone in the clustering
lattice.

2. Definitions and Preliminaries of
Linear Algebra 1

In a typical clustering problem we have n input objects
that we want to divide into K < n clusters, where K is
a user-chosen parameter. To do so we usually minimize
a functional which represent our notion of cluster. The
resulting clustering C : {1, . . . , n} → {1, . . . ,K} is a
surjective function which assigns a cluster to each of
these data. Alternatively, we write C = {C1, . . . , CK},
with Ci = C−1(i). Let C be a clustering into K clusters
and C′ a clustering into K ′ ≥ K clusters. We say the
C′ is a refinement of C if for each pair i, j ∈ {1, . . . , n}
we have C′(i) = C′(j) ⇒ C(i) = C(j). In that case we
write C′ ⊆ C. Equivalently, we say C is a coarsening of

C′. If K ′ > K then the relation is strict. Transitivity,
C′′ ⊂ C′ and C′ ⊂ C implies C′′ ⊂ C, clearly holds. The
join C∨C′ is the clustering with the maximum number
of clusters such that C ⊆ C ∨ C′ and C′ ⊆ C ∨ C′. The
meet C∧C′ is the clustering with the minimum number
of clusters such that C ∧ C′ ⊆ C and C ∧ C′ ⊆ C′. For
every pair C and C′ both join and meet exist. Given
these properties the pair (C,⊆) is called lattice. This
lattice has at least two elements, ⊥ and >, and it holds
⊥ ⊆ C ⊆ >. Thus ⊥ is the clustering with K = n and
> is the clustering with K = 1. A chain of clusterings
is an ordered refinement of clusterings, for example
on the set {a, b, c} we may have the following chain:
⊥ = {{a}, {b}, {c}} ⊂ {{a, b}, {c}} ⊂ {{a, b, c}} = >.
We refer to (Meila, 2005) for comparing elements of a
clustering lattice.

We say that a clustering functional f : Kn → R+ is
strictly monotone with respect to the lattice of clus-
terings if C′ ⊂ C ⇒ f(C) < f(C

′
), or strictly anti-

monotone if C′ ⊂ C ⇒ f(C) > f(C
′
).

Given a matrix M ∈ Rn,m, with m ≤ n, we denote its
singular values with σ(M) = σ1(M) ≥ · · · ≥ σm(M).
If A is square and symmetric its eigenvalues are simi-
larly represented as λ(A) = λ1(A) ≥ · · · ≥ λn(A). It
holds λ(MMt) = σ2

i (M) for i = 1, . . . ,m. The trace

of a matrix product Tr(AB) =
∑
i,j

Ai,jBi,j .

Our main tool in proofs is the interlacing theorem. We
say that a vector of numbers µ1 ≥ · · · ≥ µm interlace
λ1 ≥ · · · ≥ λn, with n > m, if

λi ≥ µi ≥ λn−m+i, i = 1, . . . ,m.

Theorem 1. (Haemers, 1995) Let S ∈ Rn,m be a
real matrix such that StS = I and let A ∈ Rn,n be
a symmetric matrix with eigenvalues λ1 ≥ . . . ,≥ λn.
Define B = StAS and let B have eigenvalues µ1 ≥
· · · ≥ µm and respective eigenvectors v1, . . . , vm.

i) The eigenvalues of B interlace those of A.

ii) If µi = λi or µi = λn−m+i for some i ∈ [1,m],
then B has a µi-eigenvector v such that Sv is a
µi-eigenvector of A.

iii) If for some integer l, µi = λi for i = 1, . . . , l
(or µi = λn−m+i for i = l, . . . ,m), then Svi is
a µi-eigenvector of A for i = 1, . . . , l (respectively
i = l, . . . ,m).

iv) If the interlacing is tight then SB = AS.
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3. Sum of Squares Error

We suppose we are given as input a set of n distinct
d-dimensional points and a target number of clusters
K ∈ 1, . . . , n. The input points are stacked as rows
of a matrix X ∈ Rn,d. Given a subset Cr of points,
XCr is the sub-matrix of X with the points belonging
to Cr.

We define the centroid of a cluster Cr as the mean of
its points, that is

µr =
1

|Cr|
∑
j∈Cr

xj

The Sum of Squares Error evaluates the sum of
squared euclidean distances of input points from their
own centroids:

SSE(X, C) =

K∑
r=1

∑
j∈Cr

‖xj − µr‖2 (1)

When matrix X is clear from the context we simply
write SSE(C). By minimizing the Sum of Squares Er-
ror we seek for the best set of K prototypes represent-
ing the data. It is possible that choosing a correct K
is part of the problem but it is well known that we
cannot rely only on the minimum value of SSE(., .)
itself because it is strictly monotone and an optimal
clustering is the one putting each point by itself.

Observation 2 (Strict Monotonicity of Minimum
Sum of Squares Error Clustering). Consider an input
dataset X ∈ Rn,d made of n distinct d-dimensional
points. Then if K < n

min
{C||C|>K}

SSE(C) < min
{C||C|=K}

SSE(C) (2)

This observation is simple and provable in many dif-
ferent ways. Here we refer to our result of theorem
9.

Proof of Observation 2. Let C∗ be the K-clusters min-
imizer. We can create a new cluster C′ with K + 1
clusters by choosing a cluster Ci from C with more
than one point and putting in the new cluster just a
point of Ci with higher distance from its centroid. By
theorem 9 we obtain SSE(C′) < SSE(C∗).

Our purpose is extending observation 2 with the addi-
tional hypothesis that the solutions are related by the
refinement relation of the lattice. In order to appreci-
ate the impact of this hypothesis we should consider

(a) (b)

Figure 1. Examples of datasets which admit non-proper
clusterings.

that the minimizers of (1), with different values of K,
can be substantially different within each other, i.e.
the minimizer with K+1 clusters may not be a refine-
ment of the minimizer with K clusters. A simple ex-
ample of this fact is that of figure 1, a one-dimensional
set of equally spaced points. The solutions here are
equally-distributed partitions and clearly one solution
with K ′ clusters refines one with K clusters only if K
divides K ′.

It is central to our treatment to rewrite the Sum of
Squares Error as the trace of a matrix product. To
do so we use the following square indicator matrix of
clusterings (Ding & He, 2004; Meila, 2006):

HC(i, j) =


1

|Cr|
if i ∈ Cr ∧ j ∈ Cr

0 otherwise
(3)

Matrices H⊥ and H> represent, respectively, the clus-
tering where every point is put by itself and the clus-
tering where all points are put together. Their dimen-
sions depend on the context. The following lemma
summarizes the relation between the Sum of Squares
Error and indicator matrices,

Lemma 3. Let X ∈ Rn,d be an input set of n distinct
d-dimensional points and let C = {C1, . . . , CK} be a
clustering.

i) The following equalities hold.

SSE(C) =

K∑
r=1

SSE(XCr ,H>)

=

K∑
r=1

Tr(XCrXCr

t)

−Tr(H>XCrXCr

tH>)
= Tr(XXt)−Tr(HCXXtHC)

=

n∑
i=1

λi(XXt)−
K∑
j=1

λj(HCXXtHC).
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ii) Matrix HCXXtHC has K, or less, strictly positive
eigenvalues and these eigenvalues interlace those
of XXt.

Proof of Lemma 3. i) The second equality is given
by the well known Huygens theorem (Aloise &
Hansen, 2009). The third and fourth equalities
come from basic properties of matrix trace and
eigenvalues.

ii) Define the indicator matrix

QC(i, r) =


1√
|Cr|

if i ∈ Cr

0 otherwise.

Since QC
tQC = I by theorem 1 λ(QC

tXXtQC)
interlace λ(XXt), but the greatest eigenvalues are
the same as of λ(QCQC

tXXtQCQC
t) and HC =

QCQC
t.

Intuitively speaking, if a clustering C is coarser than
C′ then it contains less information than C′, but the
contained information is consistent with the one of C′.
Next lemma shows how this fact reflects into indicator
matrices.

Lemma 4. Let C be a clustering with K < n clus-
ters and C′ a refinement of C. Then HCHC′ = HC =
HC′HC.

Proof of Lemma 4. Suppose i ∈ Cs and j ∈ C ′r, then

HCHC′(i, j) =
∑
k

HC(i, k)HC′(j, k)

=
1

|Cs|
∑
k∈Cs

HC′(j, k)

=
1

|Cs||C ′r|
∑
k∈Cs

1[k∈C′
r]
.

So if C ′r ⊆ Cs the last term is equal to 1/|Cs| and
otherwise, since C ′r ∩ Cs = ∅, it is zero. Since HC is
symmetric we get HC = HC′HC .

The monotonicity result we obtain on the Sum of
Squares Error does not hold in general for every
dataset and every clustering, because there exist par-
ticular configurations of data which allow for not valid
clusterings. The subset of clusterings we work on are
characterized by the following property.

Definition 1 (Proper clustering). We say that a clus-
tering C, of a given dataset X, with K ≥ 2 clusters is
proper if it has K different centroids µ1, . . . , µK .

(a) (b)

Figure 2. Examples of datasets admitting non-proper clus-
terings. Each class is marked with a different symbol. In
both cases the origin of the axes is the centroid common
to the different classes.

Strictly speaking, a clustering which is not proper has
less than K clusters because at least two of them have
the same centroid and can be considered the same clus-
ter. Clustering which are not proper may arise in sit-
uations where data present symmetries, like in figure
2(a), where a clustering which pairs each point with its
opposite w.r.t. the center, is non-proper. In general,
also data without symmetries may admit non-proper
clusterings, as in figure 2(b). On the other side, we
have different arguments for considering a non-proper
clustering unstable and with a marginal impact on
practical applications. Firstly, a non-proper clustering
can be made proper by slightly perturbing the data,
whereas the opposite is unlikely. Secondly, since points
are distinct, it just suffices to change the cluster of one
of them to break the equality of two means and even-
tually obtaining, with few changes, a proper clustering
out of a non-proper one.

In studying strict monotonicity for Sum of Squares
Error we have to consider different cases for the di-
mensionality of the input set.

Definition 2 (Dimensionality). We define the dimen-
sionality dim(X) of a dataset, with X ∈ Rn,d, as
the number of singular values, counted with multiplici-
ties, which are different from zero. Clearly, dim(X) ≤
min({n, d}).

If dim(X) = n we can state strict monotonicity with-
out any further conditions. If dim(X) < n we give a
necessary and sufficient condition to have strict mono-
tonicity. Since a non-proper dataset contains linear
dependencies among points, it is easy to observe the
following.

Observation 5. Every clustering of a full dimen-
sional dataset is proper.
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3.1. Full dimensional dataset

A necessary condition for having a full dimensional
dataset X is d ≥ n. Perhaps, the most frequent
practical cases where this condition holds are high-
dimensional datasets, characterised by very large d.
In these cases it is likely that σn(X) > 0.

Theorem 6 (Strict Monotonicity of Sum of Squares
Error on (C,⊆), dim(X) = n). Let X ∈ Rn,d be a d-
dimensional dataset of n points with dim(X) = n. Let
C be a clustering with K < n clusters and C′ a strict
refinement with K ′ > K clusters. Then

SSE(C′) ≤ SSE(C)−
K′−K∑
i=1

σ2
n+1−i(X)

≤

SSE(C)−
K′−K∑
i=1

σ2
i (X),

in particular SSE(C′) < SSE(C).

Proof of Theorem 6.

SSE(C′)− SSE(C)

=

K∑
j=1

λj(HCXXtHC)−
K′∑
i=1

λi(HC′XXtHC′)

=

K∑
j=1

(
λj(HCXXtHC)− λj(HC′XXtHC′)

)
−

K′∑
j=K+1

λi(HC′XXtHC′)

≤ −
K′−K∑
i=1

σ2
n+1−i(X) < 0.

In the last step we used the fact, entailed by theorem
3, that the eigenvalues of HCHC′XXtHC′HC interlace
those of HC′XXtHC′ , but since lemma 4 implies

HCHC′XXtHC′HC = HCXXtHC

the first sum is maximized by zero. The second sum,
again because of interlacing, cannot be greater than
the negative of the sum of the K ′ −K smallest eigen-
values of λ(XXt). Similarly we get the other inequal-
ity.

By using theorem 6 we obtain two different ways for
lower bounding, and upper bounding, the quantity
SSE(D)− SSE(C) between any two clusterings C,D.

Theorem 7. Let X ∈ Rn,d be a d-dimensional dataset
of n points with dim(X) = n. Let C be a clustering
with K1 clusters and D a clustering with K2 clusters.
Let n1 = K1 − |C ∧ D| and n2 = K2 − |C ∧ D|. Then

SSE(D)− SSE(C) ≤
n1∑
i=1

σ2
i (X)−

n2∑
i=1

σ2
n+1−i(X)

≤

n1∑
i=1

σ2
n+1−i(X)−

n2∑
i=1

σ2
i (X).

(4)

Proof. Using theorem 6 we get

SSE(D) ≤ SSE(C ∧ D)−
n2∑
i=1

σ2
n+1−i(X)

≤
SSE(C ∧ D)−

n2∑
i=1

σ2
i (X),

(5)

and

−SSE(C) ≤ −SSE(C ∧ D) +

n1∑
i=1

σ2
i (X)

≤

−SSE(C ∧ D) +

n1∑
i=1

σ2
n+1−i(X),

(6)

by adding (5) and (6) we get (4).

Theorem 8. Let X ∈ Rn,d be a d-dimensional dataset
of n points with dim(X) = n. Let C be a clustering
with K1 clusters and D a clustering with K2 clusters.
Let m1 = |C ∨ D| −K1 and m2 = |C ∨ D| −K2. Then

SSE(D)− SSE(C) ≤
m2∑
i=1

σ2
i (X)−

m1∑
i=1

σ2
n+1−i(X)

≤

m2∑
i=1

σ2
n+1−i(X)−

m1∑
i=1

σ2
i (X).

(7)
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Proof. From theorem 6 we have

SSE(C ∨ D) ≤ SSE(C)−
m1∑
i=1

σ2
n+1−i(X)

≤

SSE(C)−
m1∑
i=1

σ2
i (X)

and the same with D instead of C. Thus we get

SSE(C)−
m1∑
i=1

σ2
n+1−i(X)

≤

SSE(D)−
m2∑
i=1

σ2
i (X),

and

SSE(D)−
m2∑
i=1

σ2
n+1−i(X)

≤

SSE(C)−
m1∑
i=1

σ2
i (X),

from which we obtain the two sides of inequality (7).

3.2. Non full dimensional dataset

We treat separately the low dimensional case because
if σdim(X)+1 = · · · = σn = 0 then theorem 6 does not
necessarily imply strict monotonicity.

Theorem 9 (Strict Monotonicity of Sum of Squares
Error, d < n). Let C be a clustering into K < n
clusters and C′ one of its refinements with K + 1
clusters. If C′ is proper, as in definition 1, then
SSE(C′) < SSE(C).

Proof of Theorem 9. Since |C′| = K + 1 and C′ ⊂ C
there exists a cluster Cr such that |Cr| ≥ 2 and a pair
C ′j ∈ C′, C ′k ∈ C′ with C ′j ∪ C ′k = Cr.

Let Xr = XCr . By using lemma 3 we have
SSE(C) − SSE(C′) = Tr(HC′

j]C
′
k
XrXr

tHC′
j]C

′
k
) −

Tr(HrXrXr
tHr), λ(HrXrXr

tHr) = τ1 ≥ τ2 = 0 and
λ(HC′

j]C
′
k
XrXr

tHC′
j]C

′
k
) = λ1 ≥ λ2 ≥ λ3 = 0.

Since

HrHC′
j]C

′
k
XrXr

tHC′
j]C

′
k
Hr = HrXrXr

tHr

The eigenvalues interlace and we have λ1 ≥ τ1 ≥
λ2 · · · ≥ 0. If τ1 = 0 then the set Xr has mean zero,
but since C′ is proper at least one mean of Xj and Xk is
different from zero, giving λ1 > 0, and the conclusion
follows.

Suppose τ1 > 0. Then, unless λ1 = τ1 and λ2 = 0,
λ1 + λ2 > τ1. Suppose, by contradiction, that λ1 = τ1
and λ2 = 0, we have by lemma 3 and theorem 1

1

|Cr|2
EXrXr

tE = HC′
j]C

′
k
XrXr

tHC′
j]C

′
k

so that µC′
j

= µr = µC′
k

which cannot happen since C′

is proper. By lemma 3 we have SSE(C′) < SSE(C).

Finally we have the following corollary.

Corollary 10. Any optimal K clusters solution to the
minimization of Sum of Squares Error is proper.

4. Normalized Cut and Ratio Cut

Let G = (V,E) be an undirected, weighted
and connected graph. Given a clustering CK =
{C1, C2, . . . , CK} let

cut(Ci, Cj) =
∑
r∈Ci

∑
s∈Cj

wr,s.

The degree dr of a vertex r is cut(r, V ) and the volume
vol(Ci) = cut(Ci, V ). The Normalized Cut (Chung,
1997; Shi & Malik, 2000) is defined as

NCUT(C) =

K−1∑
i=1

K∑
j=i+1

cut(Ci, Cj)

vol(Cj)

As for the Sum of Squares Error choosing the right
K is a difficult problem. Indeed, in (Nagai, 2007) the
following lemma was proved.

Lemma (Nagai, 2007). Let G = (V,E) be an undi-
rected, weighted and connected graph. Let C be a clus-
tering with K < n clusters and C′ a strict refinement
with K ′ > K clusters. Then

NCUT(C′) ≥ NCUT(C).

Here we first prove strict anti-monotonicity on the
clustering lattice, so if C′ ⊂ C we obtain NCUT(C′) >
NCUT(C). This result turns out to imply strict anti-
monotonicity also for the lemma of (Nagai, 2007), im-
proving it. Then we obtain data-dependent bounds
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for the difference of the Normalized Cut of any two
clusterings.

Let di = di, W be the adjacency matrix of the graph
and D = diag(d). The normalized laplacian is the ma-
trix L = I−D−1/2WD−1/2. If the graph is connected
then λn(L) = 0 and λn−1(L) > 0 (Chung, 1997). The
vector d/vol(G) is the eigenvector of λn(L).

The following matrix is an indicator matrix of parti-
tions:

GC(i, j) =


√
didj

vol(Cr)
if i ∈ Cr ∧ j ∈ Cr

0 otherwise

(7)

The following lemma summarizes the relation between
the Normalized Cut and indicator matrices.

Lemma 11. Let G = (V,E) be an undirected,
weighted and connected graph and L its normalized
laplacian. Let C = {C1, . . . , CK} be a clustering. Then

i) NCUT(C) = Tr(GCLGC)

ii) Matrix GCLGC has K−1, or less, strictly positive
eigenvalues and these eigenvalues interlace those
of L.

Proof of Lemma 11. i) See (von Luxburg, 2007).

ii) As in lemma 3 ii), but with the following indicator
matrix

PC(i, r) =


√

di
vol(Cr)

if i ∈ Cr

0 otherwise.
(8)

and by observing that for every C, the null eigenvector
d/vol(G) is in the span of the columns of PC .

Lemma 12 (Lemma). Let C be a clustering with K ≤
n−1 clusters and C′ a refinement of C. Then GCGC′ =
GC = GC′GC.

Proof of Lemma 12. Suppose object i ∈ Cs and j ∈
C ′r.

GCGC′(i, j) =
∑
k

GC(i, k)GC′(j, k)

=
1

vol(Cs)

∑
k∈Cs

√
dkdiGC(j, k)

=

√
didj

vol(Cs)vol(C ′r)

∑
k∈Cs

dk1[k∈C′
r]

So if i ∈ Cr then Cs ⊆ C ′r and the last term is equal
to
√
didj/vol(Cs) and it is zero otherwise. Since GC

is symmetric we get GC = GC′GC .

In section 3 we proved strict monotonicity for the Sum
of Squares Error in two different conditions, whether
the input dataset X was full dimensional or not. Here
we obtain strict anti-monotonicity using basically the
same techniques. However the graph is connected and
we know λn−1(L) > 0. So we work with dimensionality
n− 1. We have the following.

Theorem 13 (Strict Anti-Monotonicity of Normal-
ized Cut on (C,⊆)). Let G = (V,E) be an undirected,
weighted and connected graph and L its normalized
laplacian. Let C be a clustering with 2 ≤ K < n clus-
ters and C′ a strict refinement with K ′ > K clusters.
Then

NCUT(C′) ≥ NCUT(C) +

K′−K+1∑
i=2

λn+1−i(L)

≥

NCUT(C) +

K′−K∑
i=1

λi(L),

(9)

in particular NCUT(C′) > NCUT(C).

Proof of Theorem 13. The proof is similar to that of
theorem 6. The only difference being that matrix
GCLGC has at maximum K − 1 eigenvalues greater
than zero, instead of K. Similarly as before we have,
by lemma 11, that the eigenvalues of GCGC′LGC′GC
interlace those of GC′LGC′ , and lemma 12 implies
GCGC′LGC′GC = GCLGC .

Now

NCUT(C′)−NCUT(C)

=

K′−1∑
i=1

λi(GC′LGC′)−
K−1∑
j=1

λj(GCLGC)

=

K−1∑
j=1

(λj(GC′LGC′)− λj(GCLGC))

+

K′−1∑
j=K

λi(HC′XXtHC′)

≥
K′−K+1∑

i=2

λn+1−i(L) > 0.

In the last step we used the fact that the first sum is
greater or equal than zero. The second sum, again be-
cause of interlacing, cannot be greater than the sum of
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the K ′−K+1 smallest eigenvalues of λ(L), excluding
the last one which is zero. Similarly we get the other
inequality.

Using theorem 13 we get the following corollary which
improves the result of (Nagai, 2007) with strict mono-
tonicity.

Corollary 14 (Strict Anti-Monotonicity of Normal-
ized Cut). Let G = (V,E) be an undirected, weighted
and connected graph and L its normalized laplacian.
We have

min
{C||C|<K}

NCUT(C) < min
{C||C|=K}

NCUT(C). (10)

Proof of theorem 14. Let C∗ be the minimizer with K
clusters. By theorem 13 a coarsening C′ will have
NCUT(C′) < NCUT(C∗) and the conclusion fol-
lows.

Similarly as in the Sum of Squares Error, theorems
7 and 8, we can bound the difference NCUT(D) −
NCUT(C) between two clusterings C and D in two
different ways. The proofs are omitted here, but can
be easily derived by the proofs of theorems 7 and 8
using the indicator matrix GC instead of HC , L instead
of XXt and invoking theorem 13 instead of theorem
6.

Theorem 15. Let G = (V,E) be an undirected,
weighted and connected graph and L its normalized
laplacian. Without loss of generality, let C be a clus-
tering with K1 < n clusters and D a clustering with
K2 ≤ K1 clusters. Let n1 = K1 − |C ∧ D| and
n2 = K2 − |C ∧ D|. Then

NCUT(D)-NCUT(C) ≥
n1∑
i=1

λi(L)-

n2+1∑
i=2

λn+1−i(L)

≥

n1+1∑
i=2

λn+1−i(L)-

n2∑
i=1

λi(L).

(11)

Theorem 16. Let G = (V,E) be an undirected,
weighted and connected graph and L its normalized
laplacian.Without loss of generality, let C be a clus-
tering with K1 < n clusters and D a clustering with
K2 ≤ K1 clusters. Let m1 = |C ∨ D| − K1 and

m2 = |C ∨ D| −K2. Then

NCUT(D)-NCUT(C) ≥
m2∑
i=1

λi(L)-

m1+1∑
i=2

λn+1−i(L)

≥

m2+1∑
i=2

λn+1−i(L)-

m1∑
i=1

λi(L).

(12)

As a final observation, the results provided for the Nor-
malized Cut holds also for the Ratio Cut

RCUT(C) =

K−1∑
i=1

K∑
j=i+1

cut(Ci, Cj)

|Cj |

but using the unnormalized laplacian Lu = D−W and
using the representation matrix defined for the Sum of
Squares Error in section 3.

5. Discussion

In this paper we proved strict monotonicity for two
clustering functionals, Sum of Squares Error and Nor-
malized Cut, with respect to the refinement relation
of the lattice of clusterings. As a consequence of these
results we could get data-dependent bounds on the dif-
ference between any two clusterings and, for the min-
imizers of the Normalized Cut, we could improve the
result of (Nagai, 2007) with strict monotonicity.

These results are interesting for model validation, i.e.
choosing the right number of classes. From one side
they confirm that we cannot rely only on the functional
value even if we constraint our solutions to form a
chain of clusterings. From the other side they give
quantitative ways to estimate how much a dataset is
clusterable. For example, for the Normalized Cut we
see that if a graph G has a small gap between λ1(L)−
λn−1(L), like in expander graphs, all clusterings of G,
with the same number of classes K, will have similar
values implying that G consists of just one cluster.
This direction of work deserves attention for future
developments.
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