An Adaptive Learning Rate for Stochastic Variational Inference (Supplementary Information)

Rajesh Ranganath

Princeton University, 35 Olden St., Princeton, NJ 08540

Chong Wang

Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213

David M. Blei

Princeton University, 35 Olden St., Princeton, NJ 08540

Eric P. Xing

Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213

Natural gradient of the λ -ELBO. We can compute the natural gradient in Eq. 7 at λ by first finding the corresponding optimal local parameters $\phi^{\lambda} = \arg \max_{\phi} \mathcal{L}(\lambda, \phi)$ and then computing the gradient of $\mathcal{L}(\lambda, \phi^{\lambda})$, i.e., the ELBO where we fix $\phi = \phi^{\lambda}$. These are equivalent because

$$\nabla_{\lambda} \mathcal{L}(\lambda) = \nabla_{\lambda} \mathcal{L}(\lambda, \phi^{\lambda}) + (\nabla_{\lambda} \phi^{\lambda})^{\top} \nabla_{\phi} \mathcal{L}(\lambda, \phi^{\lambda})$$
$$= \nabla_{\lambda} \mathcal{L}(\lambda, \phi^{\lambda}).$$

The notation $\nabla_{\lambda} \phi^{\lambda}$ is the Jacobian of ϕ^{λ} as a function of λ , and we use that $\nabla_{\phi} \mathcal{L}(\lambda, \phi)$ is zero at $\phi = \phi^{\lambda}$.

Derivation of the adaptive learning rate. To compute the adaptive learning rate we minimize $\mathbb{E}_n[J(\rho_t)|\lambda_t]$ at each time t. Expanding $\mathbb{E}_n[J(\rho_t)|\lambda_t]$, we get

$$\mathbb{E}_n[J(\rho_t)|\lambda_t] = \mathbb{E}_n[(\lambda_t + \rho_t(\lambda_t - \hat{\lambda}_t) - \lambda_t^*)^\top \\ (\lambda_t + \rho_t(\lambda_t - \hat{\lambda}_t) - \lambda_t^*)].$$

We can compute this expectation in terms of the moments of the sample optimum in Eq. 15

$$\mathbb{E}_n[J(\rho_t)|\lambda_t] = (1 - \rho_t)^2 (\lambda_t^* - \lambda_t)^\top (\lambda_t^* - \lambda_t) + \rho_t^2 tr(\Sigma).$$

Setting the derivative of $\mathbb{E}_n[J(\rho_t)|\lambda_t]$ with respect to ρ_t equal to 0 yields the optimal learning in Eq. 16.

Convergence of the idealized learning rate. We show convergence of λ_t to a local optima with our

RAJESHR@CS.PRINCETON.EDU

CHONGW@CS.CMU.EDU

BLEI@CS.PRINCETON.EDU

EPXING@CS.CMU.EDU

idealized learning rate through martingale convergence. Let $M_{t+1} = Q(a_t^*)$, then M_t is a super-martingale with respect to the natural filtration of the sequence λ_t ,

$$\mathbb{E}[M_{t+1}|\lambda_t] = \mathbb{E}[Q(a_t^*)|\lambda_t] \le \mathbb{E}[Q(0)|\lambda_t] = M_t.$$

Since M_t is a non-negative supermartingale by the martingale convergence theorem, we know that a finite M_{∞} exists and $M_t \to M_{\infty}$ almost surely. Since the M_t converge, the sequence of expected values $\mathbb{E}[M_t]$ converge to $\mathbb{E}[M_{\infty}]$. This means that the sequence of expected values form a Cauchy sequence, so the difference between elements of the sequence goes to zero,

$$D_t \triangleq \mathbb{E}[M_{t+1}] - \mathbb{E}[M_t]$$

= $\mathbb{E}[\mathbb{E}[M_{t+1}|\lambda_t] - \mathbb{E}[M_t|\lambda_t]] \to 0.$

Substituting the idealized optimal learning rate into this expression gives

$$D_t = \mathbb{E}[-((\lambda_t^* - \lambda_t)^\top (\lambda_t^* - \lambda_t) + (\lambda_t^* - \lambda_t)^\top (\lambda^* - \lambda_t^*))^2 ((\lambda_t^* - \lambda_t)^\top (\lambda_t^* - \lambda_t) + tr(\Sigma))^{-1}].$$
(1)

Since the D_t 's are a sequence of nonpositive random variables whose expectation goes to zero and that the variances are bounded (by assumption), the square portion of Eq. 1 must go to zero almost surely. This quantity going to zero implies that either $\lambda_t \rightarrow \lambda^*$ or $\lambda_t \rightarrow \lambda_t^*$. If $\lambda_t = \lambda_t^*$, then λ_t is a local optima under the assumption that the two parameter (ϕ and λ for the ELBO) function we are optimizing can be optimized via coordinate ascent. Putting everything together gives us that λ_t goes to a local optima almost surely.