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Natural gradient of the �-ELBO. We can com-
pute the natural gradient in Eq. 7 at � by first
finding the corresponding optimal local parameters
�� D arg max� L.�; �/ and then computing the gradi-
ent of L.�; ��/, i.e., the ELBO where we fix � D ��.
These are equivalent because

r�L.�/ D r�L.�; ��/C .r���/>r�L.�; ��/

D r�L.�; ��/:

The notation r��
� is the Jacobian of �� as a function

of �, and we use that r�L.�; �/ is zero at � D ��.

Derivation of the adaptive learning rate. To
compute the adaptive learning rate we minimize
EnŒJ.�t /j�t � at each time t. Expanding EnŒJ.�t /j�t �,
we get

EnŒJ.�t /j�t � DEnŒ.�t C �t .�t � O�t / � ��t /
>

.�t C �t .�t � O�t / � �
�
t /�:

We can compute this expectation in terms of the mo-
ments of the sample optimum in Eq. 15

EnŒJ.�t /j�t � D.1 � �t /2.��t � �t /
>.��t � �t /

C �2t t r.˙/:

Setting the derivative of EnŒJ.�t /j�t � with respect to
�t equal to 0 yields the optimal learning in Eq. 16.

Convergence of the idealized learning rate. We
show convergence of �t to a local optima with our

idealized learning rate through martingale convergence.
Let MtC1 D Q.a

�
t /, then Mt is a super-martingale with

respect to the natural filtration of the sequence �t ,

EŒMtC1j�t � D EŒQ.a�t /j�t � � EŒQ.0/j�t � DMt :

Since Mt is a non-negative supermartingale by the
martingale convergence theorem, we know that a finite
M1 exists and Mt ! M1 almost surely. Since the
Mt converge, the sequence of expected values EŒMt �

converge to EŒM1�. This means that the sequence
of expected values form a Cauchy sequence, so the
difference between elements of the sequence goes to
zero,

Dt , EŒMtC1� � EŒMt �

D EŒEŒMtC1j�t � � EŒMt j�t ��! 0:

Substituting the idealized optimal learning rate into
this expression gives

Dt DEŒ�..��t � �t /
>.��t � �t /C .�

�
t � �t /

>.�� � ��t //
2

..��t � �t /
>.��t � �t /C t r.˙//

�1�: (1)

Since the Dt ’s are a sequence of nonpositive random
variables whose expectation goes to zero and that the
variances are bounded (by assumption), the square
portion of Eq. 1 must go to zero almost surely. This
quantity going to zero implies that either �t ! ��

or �t ! ��t . If �t D ��t , then �t is a local optima
under the assumption that the two parameter (� and
� for the ELBO) function we are optimizing can be
optimized via coordinate ascent. Putting everything
together gives us that �t goes to a local optima almost
surely.


