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Natural gradient of the A-ELBO. We can com-
pute the natural gradient in Eq. 7 at A by first
finding the corresponding optimal local parameters
¢ = arg maxg L£(A,¢) and then computing the gradi-
ent of L(A,$*), i.e., the ELBO where we fix ¢ = ¢*.
These are equivalent because

VALA) = VaLA, ¢*) + (Vaph) TV LA, ¢*)
= ViL(L, ¢™).

The notation Vj¢* is the Jacobian of ¢* as a function
of A, and we use that Vg L(A, ¢) is zero at ¢ = .

Derivation of the adaptive learning rate. To
compute the adaptive learning rate we minimize
E,[J(ps)|A¢] at each time t. Expanding E,[J(ps)|A¢],
we get
En[J (o) 2] =Enl(rr + pr(Ar = A0) = 2)T
A + pe(Ar — it) — A

We can compute this expectation in terms of the mo-
ments of the sample optimum in Eq. 15

ExlJ (o) Ad] =(1 = p )2 (AF = A0) T(AF = Ay)
+ p?tr(X).

Setting the derivative of E,[J(p;)|A;] with respect to
pr equal to 0 yields the optimal learning in Eq. 16.

Convergence of the idealized learning rate. We
show convergence of A; to a local optima with our

idealized learning rate through martingale convergence.
Let M;4+1 = Q(a}), then M, is a super-martingale with
respect to the natural filtration of the sequence A;,

E[M;41]A] = E[Q(a7)|A:] < E[Q(0)|As] = M.

Since M; is a non-negative supermartingale by the
martingale convergence theorem, we know that a finite
My exists and M; — My, almost surely. Since the
M, converge, the sequence of expected values E[M;]
converge to E[My]. This means that the sequence
of expected values form a Cauchy sequence, so the
difference between elements of the sequence goes to
Zero,

D £ E[M;11] - E[M,]
= E[E[M;+1]|A:] — E[M/|A,]] - 0.

Substituting the idealized optimal learning rate into
this expression gives

Dy =E[—((AF —A)TAF =20 + AF =2 T(A* = 11))?
(A=A T =) +tr(Z)7'. (1)

Since the D;’s are a sequence of nonpositive random
variables whose expectation goes to zero and that the
variances are bounded (by assumption), the square
portion of Eq. 1 must go to zero almost surely. This
quantity going to zero implies that either A, — A*
or Ay = Af. If ; = A}, then A; is a local optima
under the assumption that the two parameter (¢ and
A for the ELBO) function we are optimizing can be
optimized via coordinate ascent. Putting everything
together gives us that A; goes to a local optima almost
surely.



