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Supplementary Material

A. Proofs

Below are proofs for the regret bounds from Sections 5
and 6.

A.1. Proof of Theorem 2

First, we bound E[‖wT+1‖2]:

E[w>T+1wT+1] = E[w>T wT + 2w>T φ(xT , ȳT )

− 2w>T φ(xT ,yT ) + ‖φ(xT , ȳT )− φ(xT ,yT )‖2]

≤ w>1w1+2

T∑

t=1

E[w>t φ(xt, ȳt)−w>t φ(xt,yt)] + 4R2T

≤ (4R2 + 2∆)T

The first line utilizes the update rule from algorithm
2. The second line follows from ‖φ(x,y)‖ ≤ R and
repeating the inequality for t = T − 1, · · · , 1. The last
inequality uses the premise on affirmativeness.

Using the update rule again, we get:

E[w>T+1w∗] = E[w>T w∗+(φ(xT , ȳT )−φ(xT ,yT ))>w∗]

=
T∑

t=1

E[(U(xt, ȳt)− U(xt,yt) )]

≥ α
T∑

t=1

(U(xt,y
∗
t )−E[U(xt,yt)])−

T∑

t=1

ξt

where the last line uses Eq. (4). Using the Cauchy-
Schwarz inequality and concavity of

√
x, we get

E[w>T+1w∗] ≤ ‖w∗‖E[‖wT+1‖] ≤ ‖w∗‖
√

E[‖wT+1‖2]
from which the claimed result follows.

A.2. Proof of Corollary 3

Note that:

ŷt = argmaxyw>t φ(xt,y)

Therefore:

∀t, ȳt : w>t φ(xt, ȳt) ≤ w>t φ(xt, ŷt)

Hence:

∀t : E
[
w>t φ(xt, ȳt)

]
−E

[
w>t φ(xt,yt)

]

≤ w>t φ(xt, ŷt)−E
[
w>t φ(xt,yt)

]
(10)

Given the condition of the corollary, and the above
Equation 10, we get that:

1

T

T∑

t=1

E
[
w>t φ(xt, ȳt)

]
−E

[
w>t φ(xt,yt)

]
≤ Ω

which using Theorem 2 gives us the corresponding
regret bound.

A.3. Proof of Theorem 4

This proof is very similar to the one in (Raman et al.,
2012), though it solves a different problem. In particu-
lar since:

∀t : E
[
w>t φ(xt,yt)

]
≥ (1− β)w>t φ(xt, ŷt)

we have that:

E[w>t (φ(xt, ȳt)− φ(xt,yt))] ≤ βw>t φ(xt, ŷt)

From here on, the proof from (Raman et al., 2012)
can be used, to prove the corresponding regret bound.
Thus in other words, the perturbation can be thought
of as a way to produce an (1− β)-approximate solution
to the argmax problem.

A.4. Proof of Proposition 5

Consider the case when documents in positions i and
i+ 1 (call them di and di+1) are swapped2:

w>t (γi − γi+1)(φ(xt, di)− φ(xt, di+1))

≤
(

1− γi+1

γi

)
w>t (γiφ(xt, di) + γi+1φ(xt, di+1))

Note that this factor 1− γi+1

γi
is largest for i = 1. Thus

we can state for every swapped pair:

w>t (γi − γi+1)(φ(xt, di)− φ(xt, di+1))

≤
(

1− γ2

γ1

)
w>t (γiφ(xt, di) + γi+1φ(xt, di+1))

Summing this over all swapped pairs, and using the fact
that each pair has some probability p to be swapped:

w>t (φ(xt, ŷt)−E[φ(xt,yt)])

≤ p
(

1− γ2

γ1

)
w>t φ(xt, ŷt)

A.5. Proof of Proposition 6

We prove a more general proposition here:

Proposition 7 For ∆ ≥ 0, dynamically setting the
swap prob. of 3PR to be

pt ≤ max
(

0,min
(

1, c(∆ · t−Rt)
))

, (11)

2This holds assuming the inner products with docu-
ments are non-negative. Thus algorithmically this can be
implemented by only ranking documents with non-negative
scores.
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for some positive constant c, has regret

≤ 1

αT

T∑

t=1

ξt+
‖w∗‖
α
√
T

√

4R2 + 2∆+(γ1−γ2)R

√
4R2+2∆

T
.

Proof We prove this by using Theorem 2. In particu-
lar, we show:

1

T

T∑

t=1

w>t (φ(xt, ȳt)−φ(xt,yt))<∆+Γ

√
4R2+2∆

T
(12)

where Γ = (γ1 − γ2)R. We will show this holds by
induction on T . Note that this condition trivially holds
for T = 0 (base case). Now assume it holds for T =
k − 1. We will show it is true for T = k. Consider the
cumulative affirmativeness Rk =

∑k−1
i=1 w>i φ(xi, ȳi)−

w>i φ(xi,yi). There are 2 cases to consider:

• Rk ≥ k∆: If this is the case pk = 0 i.e., no
perturbation is performed for iteration k and
hence yk = ŷk = argmaxyw>k φ(xk,y). Therefore

w>k (φ(xk, ȳk)−φ(xk,yk)) ≤ 0; thus Rk+1 ≤ Rk
and hence the induction hypothesis is satisfied.

• Rk < k∆: We have ‖wk‖ ≤
√
k(4R2+2∆) as

shown in the proof of Thm 2. As per the
perturbation, for all yk we have ‖φ(xk, ŷk)−
φ(xk,yk)‖ ≤ Γ3. Next by Cauchy-Schwarz we
get w>k (φ(xk, ŷk)−φ(xk,yk)) ≤ ‖wk‖Γ. Thus

Rk+1≤ Rk+Γ
√
k(4R2+2∆); hence satisfying the

induction hypothesis.

Thus the induction holds for T = k. Since equation
(12) holds for all yt, ȳt, this condition is also satisfied
under expectation (over yt, ȳt). Hence the condition
for Theorem 2 is satisfied, thus giving us the bound.
Note that the second term on the RHS of Eq. (12)
asymptotically disappears.

B. Additional Details of User Study

The ranking function in the ArXiv search engine used
1000 features which can be categorized into the follow-
ing three groups.

• Features the corresponded to rank as per query
similarity with different components of the docu-
ment (authors, abstract, article etc..). We used
different similarity measures. For each of these
document-components and similarity measures, we

3This assumes that the document feature vectors are
component-wise non-negative. If this is not true, then the
bound still holds but with Γ = 2R

had multiple features of the form rank ≤ a, where
a was a value we varied to create multiple features
(we used 2, 5, 10, 15, 25, 30, 50, 100, 200).

• Second-order features the represented pairwise
combinations of rank (for the default similarity
measure) for 2 different document-components.

• Query-independent features representing the doc-
ument age and the document category (e.g. AI,
NLP, ML, Statistics etc..).

Our baseline, was a hand-coded solution using 35 fea-
tures considered the most important by us.


