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Abstract

Bayesian inference is often hampered by large
computational expense. As a generalization
of belief propagation (BP), expectation prop-
agation (EP) approximates exact Bayesian
computation with efficient message passing
updates. However, when an approximation
family used by EP is far from exact posterior
distributions, message passing may lead to
poor approximation quality and suffer from
divergence. To address this issue, we propose
an approximate inference method, relaxed
expectation propagation (REP), based on a
new divergence with a l1 penalty. Minimizing
this penalized divergence adaptively relaxes
EP’s moment matching requirement for mes-
sage passing. We apply REP to Gaussian
process classification and experimental re-
sults demonstrate significant improvement of
REP over EP and α-divergence based power
EP—in terms of algorithmic stability, esti-
mation accuracy and predictive performance.
Furthermore, we develop relaxed belief prop-
agation (RBP), a special case of REP, to con-
duct inference on discrete Markov random
fields (MRFs). Our results show improved es-
timation accuracy of RBP over BP and frac-
tional BP when interactions between MRF
nodes are strong.

1. Introduction

Bayesian learning provides a principled framework for
modeling complex systems and making predictions. A
critical component of Bayesian learning is the compu-
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tation of posterior distributions that represent estima-
tion uncertainty. However, the exact computation is
often so expensive that it has become a bottleneck for
practical applications of Bayesian learning. To reduce
the computational cost, we can use message passing
methods to efficiently approximate the exact poste-
riors. Two exemplary message passing methods are
belief propagation (i.e., the sum-product algorithm)
(Kschischang et al., 1998; Pearl, 1982) and expectation
propagation (Minka, 2001), a generalization of BP.

Despite their wide success in various applications, BP
and EP may degrade their approximation quality and
diverge when the exact target distribution is far from
the approximating family used by them—for example,
when many samples are mislabeled for classification or
variables are strongly coupled in a MRF. We can force
BP and EP to converge using the CCCP algorithm
(Heskes et al., 2005; Yuille, 2002). But not only are
the CCCP updates slower than the message passing
updates, but also the forced convergence might not
be desirable—according to Minka (2001), EP diverges
for a good reason, indicating a poor approximating
family (or a poor energy function) used by EP. For
the difficult cases, it may be too rigid to use moment
matching, a natural consequence of KL minimization
in BP and EP (see Section 2).

To improve both approximation quality and algorith-
mic stability of message passing, we propose a new
approximate inference method, relaxed expectation
propagation (REP). Specifically, we introduce a relax-
ation factor in the KL minimization and penalize it
by a l1 penalty (See Section 3). The penalized KL
minimization is adaptive in moment matching: the l1
penalty completely prunes the relaxation factor and
gives the same moment matching update as in BP or
EP, if the original and approximate distributions are
similar; if they differ significantly (i.e., when EP strug-
gles), the relaxation factor survives the l1 penalty and
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renders the original and projected distributions with
different moments. To better understand REP, we also
present its primal energy function in Section 3 and its
dual energy function in Appendix. The primal energy
function of REP has a larger feasible set than that of
EP and the Bethe energy of BP, providing a higher
chance for finding a better approximation.

In Section 4, we present REP inference on two im-
portant models: Gaussian process (GP) classification
models and discrete MRFs. GP classification models
are powerful predictive tools and have been trained
by EP (Kuss & Rasmussen, 2005); MRFs are ubiq-
uitous in scientific and engineering applications and
BP is a popular choice for estimating marginal distri-
butions in MRFs. For MRF inference, REP reduces
to relaxed belief propagation (RBP). Note that we
can easily adopt RBP to inference on Bayesian net-
works because both MRFs and Bayesian networks can
be morphed into factor graph representations (Kschis-
chang et al., 1998). In Section 5, we discuss differences
between REP, power EP, and damped EP.

In Section 6, we report experimental results on syn-
thetic and UCI benchmark datasets for GP classifi-
cation. REP consistently outperforms EP, damped
EP, and power EP (Minka, 2004)—in terms of algo-
rithmic stability, estimation accuracy, and predictive
performance. The MRF inference results show greatly
improved estimation accuracy of RBP over BP and
fractional BP (Wiegerinck & Heskes, 2003) when in-
teractions between MRF nodes are strong.

2. Background: EP and BP

Given observations D, the posterior distribution of a
probabilistic model with factors {ti(w)}i=1,...,N is

p(w|D) =
1

Z

∏
i
ti(wi). (1)

where Z is the normalization constant and wi is a
subvector of w that is associated with the i-th factor
ti. Factors ti are linked to the observations D. EP
approximates each factor in (1):

q(w) ∝
∏

i
t̃i(wi) (2)

where q(w) and t̃i(wi) approximate p(w|D) and
ti(wi), respectively, and have the form of the expo-
nential family—such as Gaussian or factorized discrete
distributions. The approximation factor t̃i(w) is a
message from the ith factor ti to variables wi in a
factor graph representation (Kschischang et al., 1998).

To obtain q(w), EP refines the messages by repeat-
ing the following three steps: message deletion, belief
projection, and message update on each factor. In the

message deletion step, we compute the partial poste-
rior q\i(w) by removing a message t̃i from the approx-
imate posterior qold(w): q\i(w) ∝ qold(w)/t̃i(wi). In
the projection step, we minimize the KL divergence
between p̂i(w) ∝ ti(wi)q

\i(w) and the new approxi-
mate posterior q(w),

KL(p̂i||q) (3)

such that the information from each factor is incorpo-
rated into q(w). Finally, the message t̃i is updated via
t̃i(wi) ∝ q(w)/q\i(w). On discrete Bayesian networks
or Markov random fields (MRFs), we can use a fac-
torized approximation q(w) =

∏
j q(wj) where j is the

node index. Then the EP updates reduce to classical
BP or sum-product updates (Minka, 2001).

Since q(w) is in the exponential family, it has the fol-
lowing form

q(w) ∝ exp(νTφ(w))

where φ(w) are the features of the exponential fam-
ily. Given this representation, minimizing the KL (3)
amounts to the following moment matching constraint
between p̂i(w) and q(w):∫

φ(w)p̂i(w)dw =

∫
φ(w)q(w)dw. (4)

For BP, moment matching means q(wj) and the
marginal of p̂i(w) are matched, q(wj) =

∑
w\j

p̂i(w).

Based on moment matching, EP and BP message pass-
ing updates capture critical statistics we care about.
However, when the approximating family is far from
the true distribution, message passing can be too rigid,
causing EP and BP to deteriorate their performance.

3. Relaxed Expectation Propagation

In this section, we present a new Bregman distance
with l1 penalty, describe the REP algorithm based on
this distance, discuss choices of relaxation factors, and
provide the energy function of REP.

3.1. A new divergence

To relax moment matching between p̂i(w) and q(w),
we introduce a relaxation factor ri(w) ∝ exp(ηT

i φ(w))
into the KL divergence and put l1 penalty on the pa-
rameters of ri. Specifically, we propose the following
penalized divergence between p̂i and q

KLr(p̂iri||qri) + c|ηi|1 (5)

where |ηi|1 is the l1 norm of ηi, the weight c controls
how much the penalty we give to the relaxation, and
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the KLr divergence is defined for unnormalized distri-
butions. It is easy to show, given ri, KLr is a valid
Bregman distance between p̂i and q. Minimizing (5)
relaxes moment matching between p̂i and q. This re-
laxation is adaptive: when the approximating family
is significantly different from p̂i, the relaxation factor
yields different moments for p̂i and q; when p̂i and q
are similar, the l1 penalty will set ηi = 0 so that we
obtain exact moment matching as in EP or BP.

3.2. Algorithm

By iteratively minimizing the penalized divergence (5),
we obtain the following REP algorithm:

1. Initialize q(w) = 1 and all the messages t̃i(w) = 1.
2. Repeat until all t̃i(w) converge: Pick a factor i.

• Message deletion: Based on the current
factor t̃i and qold, calculate the partial belief
q\i ∝ qold(w)/t̃i(w).

• Belief projection: Minimize (5) over q(w)
and ri(w) to incorporate information from
the factor ti into the new belief q.

• Message update: Update the mes-
sage based on the new belief: t̃i(w) ∝
q(w)/q\i(w).

For simplicity, we drop the subscript of w in the i-th
factor. Note that when some factors are in the expo-
nential family and have the same feature form φ(w)
as q(w), we can absorb them directly into q(w) in ini-
tialization without iterative updates.

3.3. Choice of relaxation factors

For the relaxation factor ri(w) = exp(ηT
i φ(w)), we

want to parameterize ηi to make the minimization of
(5) easy. Clearly there are many choices available. A
convenient one is to set ηi to be a scaled version of the
parameters of the old message t̃i. It does not cause
double-counting of factors, because ri appears in both
sides of the penalized divergence (5) and the new pos-
terior q does not include ri. With this choice, we can
compute (5) analytically, making it easy for joint min-
imization over q and ri.

3.4. Energy function

To gain further insight into REP, we derive its energy
functions. The primal energy function is

min
ηi,p̂i

max
q

∑
i

1

Ẑi

∫
w

p̂i(w)ri(w) log
p̂i(w)

Ẑiti(w)p(w)

−(n− 1)
1

Zq

∫
w

q(w)ri(w) log
q(w)

Zqp(w)
+ c

∑
i

|ηi|
(6)

subject to

1

Ẑi

∫
w

φ(w)p̂i(w)ri(w)dw =
1

Zq

∫
w

φ(w)q(w)ri(w)dw

(7)

where
∫
w
p̂i(w)dw = 1,

∫
w
q(w)dw = 1, Ẑi =∫

w
p̂i(w)ri(w)dw, and Zq =

∫
w
q(w)ri(w)dw.

Based on a KL duality bound, we obtain the dual form
of the energy function (See Appendix for details). Set-
ting the gradient of the dual function to zero gives the
fixed-point updates. If we set the relaxation factor as
a scaled version of the old messages as disccused in
Section 3.3, we only need to slightly modify (6) (See
Appendix for details). The fixed-point updates do not
guarantee convergence like the classical EP updates.
However, by relaxing the moment matching require-
ment between p̂i(w) and q(w), the new updates are
much more robust than classical EP updates. In our
experiments, while EP diverged many times on diffi-
cult datasets, the new algorithm did not diverge once.

From the energy function perspective, we enlarge the
feasible set for the energy function of EP. The min-
max cost function (6) reduces to that of EP as a spe-
cial case if we set ri(w) = 1. As shown by (Heskes
et al., 2005), the cost function of EP corresponds to the
Bethe energy (Yedidia et al., 2003) that approximates
the system entropy with the exact moment matching
constraint. With the larger feasible set, we can poten-
tially obtain better entropy approximation.

4. REP for GP and MRF inference

In this section, we apply the new algorithm to train
binary Gaussian process classification models and to
perform inference on discrete Markov random fields.

4.1. REP for Gaussian process classification

First, let us denote N independent and identically dis-
tributed samples by D = {(xi, yi)}Ni=1, where xi is a
d dimensional input and yi is a scalar output. We as-
sume there is a latent function f that we are modeling
and a noisy realization of f at xi is yi.

We use a GP prior with zero mean over f . Its pro-
jection at the samples {xi} defines a joint Gaussian
distribution: p(f) = N (f |0,K) where Kij = k(xi,xj)
is the covariance function encoding the prior notation
of smoothness. For classification, the data likelihood
has the following form

p(yi|f) = (1− ε)Θ(f(xi)yi) + εΘ(−f(xi)yi) (8)

where ε models the labeling error, Θ(·) is a step func-
tion (Θ(a) = 1 if a ≥ 0, and Θ(a) = 0 otherwise).
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Given the GP prior and the data likelihood, the pos-
terior process of f is

p(f |D) ∝ GP (f |0,K)

N∏
i=1

p(yi|f(xi)). (9)

Due to the nonlinearity in p(yi|f), p(f |D) is not a
Gaussian process and we cannot compute the param-
eters in the posterior process analytically. To ob-
tain an approximation to p(f |D), we approximate each
non-Gaussian factor p(yi|f(xi)) by a Gaussian factor
t̃i(fi) = N (fi|mi, vi). Then we obtain a Gaussian pro-
cess approximation q(f) to p(f |D):

q(f) ∝ GP (f |0,K)

N∏
i=1

N (fi|mi, vi). (10)

For REP, we parameterize the relaxation factor ri as

ri(fi) ∝ N (fi|mi, b
−1
i ), (11)

so that ri shares the mean as t̃i and bi is the only free
parameter in ri. To simplify the notation in the follow-
ing presentation, we define t̃i,b(fi) ≡ N (fi|mi,b, vi,b) ∝
ri(fi)t̃i(fi). Then we have the following REP training
algorithm for GP classification.

1. Initialize all mi = 0, vi = ∞, and bi = 0. Also,
initialize hi = 0, A = K, and λi = Kii.

2. Until all (mi, vi, bi) converge: Pick a sample i.

(a) Remove t̃i from the approximated posterior:

λ
\i
i = (

1

Aii
− 1

vi
)−1 (12)

h
\i
i = hi + λ

\i
i v
−1
i (hi −mi) (13)

(b) Jointly minimize the penalized divergence
over q and bi by line search on bi (See Ap-
pendix for details). With the optimized b,
we compute the new message t̃i:

• Multiple q\i with ri:

λ̃i
\i

= 1/(1/λ
\i
i + bi) (14)

h̃i
\i

= h
\i
i − λ̃i

\i
bi(h

\i
i −mi) (15)

• Minimize the penalized divergence to ob-
tain t̃i,b:

α =
1√
λ̃i
\i

(1− 2ε)N (z|0, 1)

ε+ (1− 2ε)ψ(z)
(16)

h̃i = h̃i
\i

+ λ̃i
\i
α (17)

vi,b = λ̃i
\i

(
1

αih̃i
− 1) (18)

mi,b = h̃i + vi,bα (19)

where z = h̃i
\i
/

√
λ̃i
\i

and ψ(·) is the
standard normal cdf.

• Remove ri from t̃i,b to obtain t̃i:

vi = 1/(1/vi,b + bi) (20)

mi = vi(mi,b/vi,b +mold
i bi) (21)

(c) Given the new message t̃i, update A and hi:

A = A− aia
T
i

δ + Ai,i
hi =

∑
j

Aij
mj

vj
(22)

where δ = 1/(1/vi−1/voldi ) and ai is the i-th
column of A.

4.2. Relaxed belief propagation (RBP)

Just as EP reduces to belief propagation on Bayesian
networks or MRFs, REP becomes a relaxed version of
belief propagation on these models. In particular, let
us consider the joint distribution of N discrete vari-
ables x = (x1, . . . , xN ) in a MRF:

p(x) =
1

Z

∏
i

ψi(xi)
∏

(i,j)∈E

ψij(xi, xj)

where Z is the normalization constant, ψi(xi) and
ψi,j(xi, xj) are unitary and pairwise potential func-
tions, and E represents the set of edges.

We obtain classical BP updates by adopting a factor-
ized EP approximation (Minka, 2001):

q(x) =
∏
i

q(xi) ∝
∏
i

ψi(xi)
∏

(i,j)∈E

ψ̃ij(xi)ψ̃ij(xj)

where ψ̃ij(xi) and ψ̃ij(xj) are factorized approxima-
tion to the factor ψij(xi, xj); they are messages from
the factor tψij to the nodes xi and xj .

It is well known that if the MRF contains cycles and
the variables are strongly coupled, BP can suffer from
low approximation quality and divergence. To address
this issue, we use the following relaxation factor

rij(xi, xj) = rij(xi)rij(xj) = ψ̃ij(xi)
bij ψ̃ij(xj)

bij

where bij ∈ [0, 1]. We present the RBP updates below:

1. Initialize q(xi) = ψi(xi) and ψ̃ij(xi) = 1.

2. Until all ψ̃ij converge: Pick an edge (i, j) ∈ E .

(a) Remove ψ̃ij(xi) from q(xi):

q\ij(xi) ∝ q(xi)/ψ̃ij(xi).

Similarly, remove ψ̃ij(xj) from q(xj).
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(b) Jointly minimize the penalized divergence
over q and bij . To this end, we first compute
q̂r(xi, xj), q

r(xi), and qr(xj):

q̂r(xi, xj) =
1

Zij
ψij(xi, xj)

(
ψ̃ij(xi)ψ̃ij(xj)

)bij
· q\ij(xi)q\ij(xj) (23)

qr(xi) =
∑
xj

q̂r(xi, xj) (24)

qr(xj) =
∑
xi

q̂r(xi, xj) (25)

where Zij is a normalization constant. Then
we conduct line search over bij to minimize
the KL divergence between q̂r(xi, xj) and
qr(xi)q

r(xj) with the penalty over bij . After
obtaining bij and the corresponding qr(xi),
we calculate the new belief q(xi):

q(xi) = qr(xi)/ψ̃ij(xi)
bij . (26)

Similarly we compute q(xj).

(c) Update the message ψ̃ij(xi) (and ψ̃ij(xj)):

ψ̃ij(xj) ∝ q(xi)/q\ij(xi).

5. Related works

Various message passing algorithms, such as power EP
(Minka, 2004), can be interpreted as iterative mini-
mization of a general α-divergence with different α val-
ues (Minka, 2005; Zhu & Rohwer, 1995). On MRFs,
power EP reduces to fractional BP (Wiegerinck & Hes-
kes, 2003). When α = 1, power EP and fractional BP
become EP and BP; when α 6= 1, minimizing the α-
divergence does not require EP’s moment matching in
message passing updates. However, moment match-
ing may contribute to great empirical performance of
BP and EP, and is desirable for many tasks such as
classification—where moment matching can help pre-
serve the posterior probability in critical regions. Un-
like power EP and fractional BP, REP and RBP not
only stabilize message updates but also maintain mo-
ment matching whenever possible in an adaptive way.

We can damp the step size for message updates to help
convergence (Minka, 2005). The damping method re-
cursively minimizes the KL divergence just as EP with
the same same energy function. For cases where EP
diverges, the damping method can be very slow with
a small step size needed for convergence and provide
poor approximations after convergence. By contrast,
using the (penalized) divergence different from the KL
divergence, REP can improve both algorithmic stabil-
ity and approximation accuracy over EP.

6. Experiments

6.1. Results on GP classification

For GP classification, we compared REP with EP,
power EP (PEP), and damped EP (DEP) on approxi-
mation quality, convergence speed, and prediction ac-
curacy. We chose GP classification as a testbed be-
cause EP has been shown to be an excellent choice for
training GP classification models (Kuss & Rasmussen,
2005). Since there is no previous reported work that
uses PEP for GP training, we derived the updates and
presented them in Appendix.

Toy example. First, we considered linear classifica-
tion of five data points shown in Figure 1. The red
‘x’ and blue ‘o’ data points belong two classes. The
red point on the right is mislabeled. To reflect the
true labeling error rate in the data, we set ε = 0.2 in
(8). To obtain linear classifiers, we used the linear ker-
nel k(xi,xj) = xT

i xj for the GP training algorithms.
After each algorithm converged, we recovered the pos-
terior mean and covariance of the linear classifier w in
the 2-dimensional input space.

−1 −0.5 0 0.5 1 1.5 2 2.5

0.5

1

1.5

x1

x
2

 

 

EP PEP DEP DEP* REP IS

Figure 1. Decision boundaries of EP, power EP, damped
EP with step-size 0.5 and with an adaptive step-size, and
REP. The red data point on the right is mislabeled.

To measure the approximation quality, we used im-
portance sampling (IS) with 108 samples to obtain the
exact posterior distribution of the classifier w. We
treated the (approximate) posterior means as the esti-
mated classifiers and used them to generate their de-
cision boundaries (see Figure 1). For PEP, we set the
power u to 0.8; for REP, we set c = 20; for DEP, we
used both a fixed step-size 0.5 and an adaptive step-
size that is based on a local prediction confidence level
(based on (12) and (13)). We denote DEP with the
adaptive step-size as DEP∗ in Figure 1.

The EP decision boundary differs from the exact
Bayesian decision boundary significantly. DEP and
DEP∗ give the same wrong decision boundary as EP.
The PEP decision boundary is slightly closer to the
exact one. The REP decision boundary perfectly over-
laps with the exact one. Note that the relaxation pa-
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Figure 2. Estimation accuracies of EP, power EP, and REP. The estimation accuracies of damped EP are not visualized
above since they are identical to those of EP. (a) and (c): EP vs power EP with different values for the power u; (c) and
(d): EP vs REP with different values for the penalty weight c. While REP reduces to EP when c is big, for a wide range
of c values, the REP’s approximation accuracy is significantly higher than those of EP and power EP.

rameter bi was automatically pruned to be zero for all
the points except the red point on the right (the corre-
sponding bi = 0.01), demonstrating REP’s adaptive-
ness in relaxation.

We also varied the power for PEP, the step size of DEP,
and the penalty weight c in (5) for REP to examine
their impact on approximate quality. We measured
the mean square distance between the estimated and
the exact mean vectors, as well as the mean square
distances between the estimated and the exact covari-
ance matrices. The results of PEP and REP are sum-
marized in Figure 2. We did not show the estimation
accuracies of DEP since they are identical to those of
EP. Figures 2.(a)-(b) show that the estimated poste-
rior means of PEP are always worse than what EP
achieves. In contrast, when c is big for REP, the l1
penalty forces the relaxation factor bi = 0. Accord-
ingly, REP reduces to EP and gives the same results.
When c is small—for a wide range of values—REP
greatly improves the posterior approximation quality.

Finally, for the classification models with various ε val-
ues (e.g., 0.1 and 0.25) in (8), our further experiments
showed that REP consistently provided more accurate
posterior estimation than EP and PEP.

Synthetic data. We then compared these algorithms
on a nonlinear classification task. We sampled 200
data points for each class: for class 1 the points were
sampled from a single Gaussian distribution and, for
class 2, the points from a mixture of two Gaussian com-
ponents. The data points from these two classes are
represented by red circles and blue ”x”, respectively
in Figure 3. We randomly flipped the labels of some
data points to introduce labeling errors and varied the
error rates from 10% to 20%. For each case, we let ε
match the error rate. We used a Gaussian kernel for all
these training algorithms and applied cross-validation
on the training data to tune the kernel width. We set
the power u = 0.8 for power EP, the step-size 0.5 for
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(a) EP: 80 iterations
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(b) PEP: 30 iterations
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(c) DEP: 45 iterations
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(d) REP: 15 iterations

Figure 3. Decision boundaries of EP, power EP, damp EP,
and REP. 20% of the data points are mislabeled.

damped EP, and c = 10 for REP.

In Figure 3, we visualized the decision boundaries of
EP, PEP, DEP, and REP on one of the datasets with
20% labeling errors. Clearly, EP diverged and led to a
chaotic decision boundary. PEP and DEP converged
in 30 and 45 iterations and their decision boundaries
are better than that of EP but still do not match the
underlying generative distributions of the data (one
Gaussian vs two Gaussians). Using an adaptive step-
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Figure 4. Change in GP parameters along iterations.
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Figure 5. Comparison on two datasets with different labeling noise levels. REP always converges. Furthermore, with
fewer iterations, REP achieves higher prediction accuracies than EP, damped EP, and power EP.

size, DEP∗ actually diverged all the time. So we did
not show its decision boundaries. By contrast, REP
converged in only 15 iterations and provides a much
more reasonable decision boundary than all the other
algorithms.

To illustrate the convergence of PEP, DEP, and REP,
we visualized in Figure 4 the change of the GP
message parameter m along iterations: R(iter) ≡
‖miter −miter−1‖2. Clearly, EP is less stable than the
other algorithms.

To conduct a systematic comparison between EP,
PEP, DEP, and REP on algorithmic robustness, con-
vergence speed and estimation accuracy, we repeated
the experiments 10 times; each time we sampled 400
training and 39,600 test points. Figure 5.(a) shows
the number of iterations until convergence. To reach
the convergence, we required R < 10−3. Clearly, REP
converged faster than PEP, DEP, and EP. Figure 5.(b)
shows that while EP, DEP, and PEP diverged some-
times, REP never did.

Figure 5.(c) shows that, with 10% labeling errors in
the training set, REP gave significantly higher predic-
tion accuracies than EP and PEP. The test errors of
EP, DEP, and PEP were averaged only over the con-
verged cases out of the 10 runs; their average accura-
cies would degrade if we include their divergent cases
here. Note that we did not introduce labeling errors
in the test data and the prediction error rates can be
lower than the labeling error rates in the training sets.
With 10% labeling errors, the prediction accuracy of
REP is slightly higher than that of DEP with no signif-
icance, but REP converges three time faster (see Fig-
ure 5.(a)). With 20% labeling errors in the training
set, with much fewer number of iterations, REP sig-
nificantly outperforms all the alternative algorithms in
terms of prediction accuracy.

Real data. Finally we tested these algorithms on
five UCI benchmark datasets: Heart, Pima, Diabetes,
Haberman, and Spam. For PEP and REP, we tuned

the power and penalty weight based on a small valida-
tion set. For DEP, we used a step-size 0.5; a smaller
step size would make DEP really slow for convergence.

For the Heart dataset, the task is to detect heart dis-
eases with 13 features per sample. We randomly split
the dataset into 81 training and 189 test samples 100
times. For the Pima dataset, we randomly split it into
319 training and 213 test samples, again 100 times.
For the Diabetes dataset, medical measurements and
personal history are used to predict whether a patient
is diabetic. Rätsch et al. (2001) split the UCI Dia-
betes dataset into two groups (468 training and 300
test samples) for 100 times. We used the same parti-
tions in our experiments. For the Haberman’s survival
dataset, the task is to estimate whether a patient sur-
vives more than five years (including 5 years) after a
surgery for breast cancer. The whole dataset contains
information from 306 patient samples and 3 attributes
per sample. We randomly split the dataset into 183
training and 123 test samples 100 times. Note that we
did not add any labeling errors to these four datasets.
Figure 6 summarizes the averaged results. REP out-
performs the competing algorithms significantly.

For the Spam dataset, the task is to detect spam
emails. We partitioned the dataset to have 276 train-
ing and 4325 test samples, and flipped the labels of
multiple data points randomly from both the train-
ing and test sets. The experiment was repeated for
100 times. Figure 7 demonstrated that, with various
additional labeling errors, REP achieves significantly
higher prediction accuracies than EP, DEP, and PEP.

6.2. Results on MRF inference

Now we test RBP, BP, damped BP, and fractional BP
for inference on a binary MRF model xi ∈ {−1, 1}
with weak or strong suppressive interactions:

p(x) =
1

Z
exp(

∑
i

Jixi −
∑
ij

Jijxixj).
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Figure 6. Test error rates of EP, DEP, PEP and REP on
four UCI benchmark datasets without additional labeling
noise.
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Figure 7. Test error rates on the Spam dataset with addi-
tional labeling noise.

Figure 8. 3-D MRF.

The MRF has 60 nodes
and its structure is
a Buckminster Fuller
geodesic dome as shown
in Figure 8. In all cases,
we chose the single node
parameter randomly as
Ji ∼ N (0, 1). For the
weak interaction condi-
tion, we sampled each
edge weight indepen-
dently Jij ∼ |(N (1, 1)|.
For the strong interac-

tion condition, we chose edge weights Jij ∼ |(N (5, 5)|
independently for each edge. We repeated experiments
50 times for each condition. To obtain the exact single-
node marginal distributions, p(xi), we used the junc-
tion tree algorithm. We set the power 0.8 for frac-
tional BP, the step-size 0.8 for damped BP, and c = 0.1
for REP. To measure the estimation accuracy, we cal-
culated the averaged absolute difference between the
exact and approximate single-node marginal distribu-
tions. We did not report the number of divergent cases
for each algorithm, but the divergence is reflected in
the averaged absolute difference.

The results are summarized in Figure 9.(a)-(b). On the
weak interaction case, BP, damped BP, and RBP all
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(a) Weak interactions
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Figure 9. Approximate inference on discrete MRF.

achieved comparable results, while factional BP per-
formed worse than all the others. This is not surprising
because BP works well on MRFs with weak interac-
tions. RBP shrinked its relaxation and almost all the
estimated bij were exactly zeros. Thus RBP behaved
like BP. Fractional BP did worse because it did not
use the KL minimization to capture important mo-
ment statistics. For the strong interaction case, RBP
relaxed the moment matching constraint (more bij are
estimated to be nonzero) and achieved significantly
higher accuracy than all the other methods.

7. Conclusions

In the paper we have presented the new REP inference
method based on the l1-penalized divergence. Unlike
the α-divergence minimization in power EP, the l1-
penalized divergence minimization adaptively relaxes
the moment matching constraint in EP and BP. Ex-
perimental results demonstrate that the new inference
algorithm avoids divergence and improves approxima-
tion quality performance over the previous message
passing methods.
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