
The Pairwise Piecewise-Linear Embedding for

Efficient Non-Linear Classification

Ofir Pele, Ben Taskar ofirpele,taskar@cis.upenn.edu

University of Pennsylvania, Department of Computer and Information Science, Philadelphia, PA 19104 USA

Amir Globerson, Michael Werman gamir,werman@cs.huji.ac.il

The Hebrew University of Jerusalem, School of Computer Science, Jerusalem 91904 Israel

Abstract

Linear classifiers are much faster to learn
and test than non-linear ones. On the other
hand, non-linear kernels offer improved per-
formance, albeit at the increased cost of
training kernel classifiers. To use non-linear
mappings with efficient linear learning al-
gorithms, explicit embeddings that approxi-
mate popular kernels have recently been pro-
posed. However, the embedding process is of-
ten costly and the results are usually less ac-
curate than kernel methods. In this work we
propose a non-linear feature map that is both
very efficient, but at the same time highly ex-
pressive. The method is based on discretiza-
tion and interpolation of individual features
values and feature pairs. The discretization
allows us to model different regions of the
feature space separately, while the interpo-
lation preserves the original continuous val-
ues. Using this embedding is strictly more
general than a linear model and as efficient
as the second-order polynomial explicit fea-
ture map. An extensive empirical evaluation
shows that our method consistently outper-
forms other methods, including a wide range
of kernels. This is in contrast to other pro-
posed embeddings that were faster than ker-
nel methods, but with lower accuracy.

1. Introduction

Several recent works have proposed algorithms
for learning linear classifiers in nearly linear
time (Joachims, 2006; Shalev-Shwartz et al., 2011;

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Tsang et al., 2005). These have allowed learning to
scale to very large training sets. However, when using
kernels such efficient implementations are no longer
possible. One approach which can be used to over-
come this is to “linearize” kernels, by representing
them explicitly in their feature space. Although in
some cases (e.g. RBF kernels) the feature space is
infinite dimensional, approximations are possible. In-
deed, in recent works several embeddings that ap-
proximate known kernels or give their exact form
have been proposed (Chang et al., 2010; Maji et al.,
2012; Perronnin et al., 2010; Rahimi & Recht, 2007;
Vedaldi & Zisserman, 2012). Most of these meth-
ods approximate specific kernels such as the RBF.
Maji et al. (2012) is an exception where an approxima-
tion of any additive kernel is proposed using single fea-
ture discretization and linear interpolation (although
the motivation was to approximate the histogram in-
tersection kernel). This enables learning an approxi-
mation of any additive model with a time complexity
that is linear in the dimension of the input.

Following Maji et al. (2012), we suggest an embed-
ding of an input vector ~x into a high dimensional but
sparse vector ~α(~x) and then learning a linear classifier
in this representation. We suggest a simple and effec-
tive improvement over Maji et al. (2012), namely the
addition of second order terms that approximate cross-
feature relationships. The resulting linear classifier is
the sum of piecewise linear functions in the individual
~x[n] and in pairs ~x[n], ~x[l] (thus highly non-linear in
the original representation). Our main contribution is
an extensive experimental study that shows that this
simple method achieves excellent performance.

2. Problem Setup

For simplicity we focus on a binary classification task.
The generalization to multi-class or regression tasks is
straightforward. Let {~xi, yi}

M
i=1 denote a set of M ex-



The Pairwise Piecewise-Linear Embedding

amples with inputs ~xi ∈ R
N and labels yi ∈ {−1, +1}.

We also use ~xi[j] to denote the value of the jth feature
of the ith input.

In standard linear classification, prediction is per-
formed by taking the sign of a linear function of the
input ~x. A much more general approach, which we
follow here, is to use a piecewise linear dependence.
Specifically, we assume that the prediction is given by
sign(F (~x; ~w)) where ~w are parameters (to be learned)
and:

F (~x; ~w) =

N
∑

n=1

fn(~x[n]; ~w)+

N
∑

n=1

N
∑

l=n+1

fn,l(~x[n], ~x[l]; ~w)

(1)

where fn(~x[n]; ~w) are piecewise linear functions in the
feature ~x[n] and fn,l(~x[n], ~x[l]; ~w) are piecewise linear
functions in the pairs of features ~x[n], ~x[l].

The piecewise linear functions are constructed as fol-
lows. We begin by describing the single variable case.
For each variable ~x[n], we define a mapping ~αn : R →
R

D (see Section 3) and the function fn(~x[n]; ~w) that
is linear in ~αn, namely:

fn(~x[n]; ~w) = ~wn · ~αn(~x[n]) (2)

where ~wn ∈ R
D is a sub vector of ~w.

Similarly, for the pairwise functions we define a map-
ping ~αn,l : R

2 → R
D2

and the function:

fn,l(~x[n], ~x[l]; ~w) = ~wn,l · ~αn,l(~x[n], ~x[l]) (3)

where ~wn,l ∈ R
D2

is a sub vector of ~w.

Thus, overall we have: F (~x, ~w) = ~w · ~α(~x), where
~w and ~α are the concatenation of all ~wn, ~wn,l and
~αn(~x[n]), ~αn,l(~x[n], ~x[l]) vectors respectively. In other
words, F is a linear function in the non-linear func-
tions ~α. Thus, to learn ~w we can use standard train-
ing methods used for linear SVMs, only with input
features ~α (see Section 3.2).

In the next section we explain the construction of the
~α functions and the structure of the resulting piecewise
linear functions. As we shall see, the functions fn and
fn,l separate the single and pairwise feature space into
a set of discrete bins. Their value at the edges of the
bins can be determined arbitrarily, and between the
bins linear interpolation is used. This allows us to
learn highly non-linear models.

Our method can exactly model a linear function of the
features. Additionally, we can exactly model similar-
ity or dissimilarity of feature pairs (corresponding to

symmetries and anti-symmetries in the data). The re-
sulting learned model is continuous in feature space
but highly expressive due to its different treatment of
different feature value regions.

The project homepage including code is at: http://

www.seas.upenn.edu/~ofirpele/PL2/.

3. The Pairwise Piecewise-Linear

Embedding

As mentioned earlier, our method works by embedding
single features and pairs of features into a vector space
using functions ~αn(~x[n]) and ~αn,l(~x[n], ~x[l]). In what
follows, we explain how this embedding is constructed,
and what is the resulting structure of the fn and fn,l

functions.

We begin by explaining the construction for single fea-
ture functions fn(~x[n]; ~w). The key idea is to partition
the value of the feature ~x[n] into D bins, and then
model fn(x; ~w) as a linear function in each bin, with
a continuous interpolation between the bins. Thus,
we begin by finding D representative values of the
features ~x[n], and denote their values by ~vn ∈ R

D. In
practice, we set ~vn[1] to the minimum value of ~x[n] (ob-
served in the data), ~vn[D] to the maximum,1 and the
other values to the k-means centers (with k = D − 2)
of the observed values of ~x[n]. We assume ~vn is sorted.

Our goal is to construct ~αn such the value of
fn(~x[n]; ~w) at one of the discrete points in ~vn can
be arbitrarily determined using ~wn, and the values at
other ~x[n] are linear interpolation. Thus, we would like
fn(~vn[i]; ~w) = ~wn[i] and linear interpolation otherwise.
It is easy to construct an embedding ~αn(~x[n]) that sat-
isfies this. We call this embedding function PL1, and
describe it in Alg. 1. Note that ~αn(~x[n]) will have at
most two non-zero values (out of D possible values),
and it is thus sparse.

We now turn to the pairwise case, and the construc-
tion of ~αn,l. We use the ~vn and ~vl discretization above,
to discretize the pair of features into a 2D grid, with
D2 points. Accordingly, the vectors ~αn,l and ~wn,l are

in R
D2

. As before, we would like the points on the
lattice to be mapped to arbitrary values, such that
fn,l(~vn[i], ~vl[j]; ~w) = ~wn,l[k] where k is the appropri-
ate index in the weight vector (i.e., k = (i − 1)D + j).
The values at other points ~x[n], ~x[l] should be an in-
terpolation of the discrete points.

1At test time, values of ~x[n] that are larger than the
maximum or smaller than the minimum are clipped to the
maximum or minimum respectively. Other schemes are
possible, but we found this to work well in practice

http://www.seas.upenn.edu/~ofirpele/PL2/
http://www.seas.upenn.edu/~ofirpele/PL2/


The Pairwise Piecewise-Linear Embedding

.35

.70

0 1
0

1

.35

.70

.80.57

.57 .80

0

1

.33 .43 .57 .80 10

(.66,.58)

.35

.70

(a)

(b1)

(b2)

(c)

(d)

~α1

~α2

~α1,2

Figure 1. A flow diagram of the method for a two-dimensional vector. In (a) we see the grid which is the result of the
discretization. We also see a new vector to be embedded: (.66,.58) symbolized by a circle. In (b1) and (b2) we see the PL1
embedding which assigns weights to the two bounding discretization points in inverse linear proportion to the distance
from them. The resulting embedding are the sparse vectors ~α1,~α2 in (d) (x symbolizes a non-zero entry). In (c) we see
the illustration of the pairwise embedding. We see the rectangle that bounds the features pair where it is bisected with a
diagonal line from bottom left to top right. The barycentric coordinates are the normalized triangle areas. Each triangle
corresponds to a features values pair symbolized by a colored circle, where corresponding triangles and circle have the
same color. As the normalized triangle areas are invariant to the aspect ratio of the rectangle, we can linearly map the
rectangle to a unit rectangle in (c) and get that the normalized triangle areas are equal to the heights of the triangles in
(c). The resulting embedding is the sparse vector ~α1,2 in (d).

To achieve this, we use an interpolation scheme using
three coefficients, given by the PL2 algorithm in Alg. 2
below. The coefficients are barycentric coordinates on
triangles. Using this interpolation results in a contin-
uous embedding, which is also differentiable except at
the discretization points. This means, for example,
that the PL2 embedding is not very sensitive to the
number of discretization points chosen. The resulting
embedding vector is high dimensional but sparse.

A flow diagram of the approach for a two-dimensional
vector is given in Fig. 1 and the algorithm is described
in Algs. 1, 2. Alg. 1 starts with trimming the feature
value x to be in the range [~v[1], ~v[length(~v)]. Next
it finds the interval [~vd̂, ~vd̂+1] that contains the feature
value x. Finally, it linearly maps the value x to the two
“buckets” ~α[d̂] and ~α[d̂+1] of the found interval. Alg.
2 starts by applying Alg. 1 on the two features. Then
it linearly maps the pairwise value to the four discrete
points surrounding it in the 2D grid (Fig. 1(a),(c)).

As we use linear interpolation, we are able to exactly

model any linear model of the original feature val-
ues. Lines 3, 6 and 10 in Alg. 2 show that we can
also model exactly dissimilarity or similarity of fea-
tures pairs, allowing us to catch symmetries or anti-
symmetries in data (see Fig. 2). Other cross-feature
relationships that can modeled exactly are the max-
imum (lines 3,4,8) and minimum (lines 3,5,9). But
most importantly, using the discretization we can ap-
proximate any single and cross-feature Lipschitz con-
tinuous relationships to a desired accuracy using a suf-

Algorithm 1 [d̂, x̂, ~α] = PL1(x,~v)

1: x̂ = min(max(x,~v[1]), ~v[length(~v)])

2: d̂ = maxd∈[1...(length(~v)−1)] s.t: x̂ ≥ ~v[d]

3: x̂ = x̂−~v[d̂]

~v[d̂+1]−~v[d̂]

4: ~α[d̂] = 1 − x̂

5: ~α[d̂ + 1] = x̂



The Pairwise Piecewise-Linear Embedding

Algorithm 2 [~α] = PL2(x1, x2, ~v1, ~v2)

Define: I(i,j) = (i-1)D+j

1: [d̂1, x̂1, ~α1] = PL1(x1, ~v1)

2: [d̂2, x̂2, ~α2] = PL1(x2, ~v2)

3: if x̂1 < x̂2 then

4: ~α1,2[I(d̂1, d̂2)] = 1 − x̂2

5: ~α1,2[I(d̂1 + 1, d̂2 + 1)] = x̂1

6: ~α1,2[I(d̂1, d̂2 + 1)] = x̂2 − x̂1

7: else

8: ~α1,2[I(d̂1, d̂2)] = 1 − x̂1

9: ~α1,2[I(d̂1 + 1, d̂2 + 1)] = x̂2

10: ~α1,2[I(d̂1 + 1, d̂2)] = x̂1 − x̂2

11: end if

12: ~α = [~α1, ~α2, ~α1,2]

ficient number of bins.

The N -dimensional algorithm applies Alg. 1 on each of
the dimensions and cache the results. Then it applies
lines 3-11 in Alg. 2 for all pairs of features and finally
concatenates all the ~αn and ~αn,l vectors.2

3.1. Time Complexity

We now describe the time complexity for calculating
the ~α embeddings. The PL1 embedding has time com-
plexity O(N log D), where the log is due to the search
for upper bounds in line 1 of Alg. 1. The PL2 embed-
ding has time time complexity O(N2), since we can
cache the results of the PL1 part.

In total, the time complexity of the embedding is
O(N log D + N2). That is, although we increase the
number of learned parameters by a factor of O(DN)
the time complexity of the embedding compared to
using a linear kernel increases by only a factor of
O(N + log D). Since typically log D ≪ N , it follows
that the PL2 embedding is as efficient as explicitly cal-
culating a second degree polynomial embedding. Fi-
nally, we note that in some cases we can decrease the
time complexity to O(N log D +NK) by modeling re-
lationships only between neighboring features, where
K is the average number of features neighbors.

If we have prior knowledge that zero values should
not contribute to the decision function we can easily

2The maximum number of ~αn,l vectors is
`

N

2

´

, but as
mentioned in Section 3.1 this may be reduced to NK in
some cases.

-2

-1

0

0 0

1

1

1

2

~w1,2 · ~α1,2

~x[1] ~x[2]

Figure 2. Visualization of a function f1,2(~x[1], ~x[2]); ~w) for
the D = 2 case, and discretization ~v1, ~v2 = {0, 1}. Here
~w1,2 ∈ R

4 has a value 2 for the grid points [0, 0] and [1, 1]
and −2 for [0, 1] and [1, 0].

change the algorithm to be sparsity preserving. Then,
the time complexity will depend only on the average
number of non-zero entries in the vectors. This is an
interesting direction for future work.

3.2. Learning

For learning we use the binary or multi-class
(Crammer & Singer, 2002) support vector machine
(SVM) with l2 regularization. We note that our
embedding is high dimensional but very sparse.
Stochastic subgradient methods such as Pegasos
(Shalev-Shwartz et al., 2011) are a natural choice for
efficient sparse embedding as the embedding can be
done on the fly and the time complexity depends on
the number of non-zeros entries and not on the di-
mension. Embedding on the fly also means that our
memory usage is extremely small as only one embed-
ded example is held in memory for each subgradient
step. An extensive discussion on memory consumption
of embeddings that contains pairwise terms is given in
Chang et al. (2010). In order to isolate the effect of
the kernel / embedding used, when we compared to
kernels methods such as RBF we used the LIBSVM
solver (Chang & Lin, 2011).

4. Related Work

In this section we describe other works that have sug-
gested embedding input vectors into a higher dimen-
sion and then learning a linear classifier in this repre-
sentation. Additionally, we discuss a new metric learn-
ing method that uses the interpolation described here.

The γ-homogeneous χ2 embedding was proposed by



The Pairwise Piecewise-Linear Embedding

Vedaldi & Zisserman (2012). The χ2 kernel between
two scalars x, y ∈ R is: K(x, y) = 2 xy

x+y
. A ker-

nel is γ-homogeneous for two scalars if: ∀c ≥ 0 :
k(cx, cy) = cγk(x, y). The χ2 kernel is 1-homogeneous.
It is possible to generalize it to γ-homogeneous us-
ing a scalar function that fully characterizes the ker-
nel (Vedaldi & Zisserman, 2012). For vectors, these
kernels are the sum of scalar kernels of each of the
dimensions.

An example of second order terms modeling is the sec-
ond order polynomial kernel. Chang et al. (2010) con-
ducted an extensive study on the usage of the second
order polynomial explicit feature map. Their study
shows that for some dataset, training and testing us-
ing the second order polynomial explicit feature map is
much faster than using the kernel trick. However, ac-
curacy is slightly lower than RBF. Our method not
only significantly outperformed state-of-the-art em-
beddings but also the RBF kernel on several datasets
while being much faster in training and testing. A ma-
jor problem with RBF is that it is not robust to irrele-
vant features. Additive kernels are robust to irrelevant
or noisy features but cannot capture feature dependen-
cies which might be important for classification. Our
method can approximate some feature dependencies
while being robust to irrelevant features.

Another work concurrent with ours that approximates
second order features relationships was done indepen-
dently by Bernal et al. (2012). They use second order
terms in a Conditional Random Field (CRF) model
(with a somewhat different interpolation scheme) and
show excellent results for a bioinformatics task.

Finally, the interpolation scheme described here was
used for a non-linear, non-Mahalanobis metric learn-
ing method in Pele (2011, chap. 5). However, for
classification the approach described in this paper out-
performed metric learning.

5. Results

We present results on datasets of various sizes and
types, comparing our proposed pairwise piecewise-
linear (PL2) embedding to state-of-the-art kernels and
embeddings. The properties of all the datasets used in
this paper are summarized in Table 1.

In the experiments the following algorithms are
compared: our approach (PL2), our approach
with only single feature embedding (PL1), Vedaldi
and Zisserman’s γ-homogeneous χ2 embedding
(Vedaldi & Zisserman, 2012) (CHI-H), second
order kernel with explicit mapping (POLY-
2ND), a d degree polynomial which uses the

following non-linear single variable features:
[~x[1]1, . . . , ~x[1]d, . . . , ~x[N ]1, . . . , ~x[N ]d] (POLY-BTB),
a polynomial kernel classifier (POLY), and an RBF
kernel classifier (RBF).

5.1. Large Datasets

We evaluated our approach on three large datasets
downloaded from UCI (A. Asuncion, 2007). For Cov-
type and Miniboo, experimental results are averaged
over 8 runs of randomly generated stratified 70/30
splits of the data. The Protein data set has a pre-
defined training/testing split.

Training was performed as described in Section
3.2. We implemented our own version of the
Pegasos stochastic sub-gradient descent algorithm
(Shalev-Shwartz et al., 2011). The code is available at:
http://www.seas.upenn.edu/~ofirpele/PL2/. It is
worth noting that using multi-class SVM and embed-
dings on the fly is very efficient as embedding times
are amortized on the number of classes, and memory
consumption is very low. For a further discussion on
whether to use embedding offline or online we refer the
reader to Chang et al. (2010).

For all methods, features were scaled between zero and
one at training and the same scaling factors were used
for the test set. Parameters of all methods were set
using 30 percent of the training data as a validation
set and then retraining on the whole training data
with the best parameters. The regularization param-
eter of all SVMs, C, was cross-validated over the set
{2−5, 2−3, . . . , 215}. For PL1 (similar to Maji et al.
(2012)) and our PL2 embedding methods, the max-
imum number of discrete points for each feature, D

was cross validated over the set {2, 4, . . . , 20}. For
CHI-H, the homogeneous degree γ was cross validated
over the set {0.1, 0.2, . . . , 1}. We also compared to sec-
ond degree polynomial as it can be linearly embedded
(Chang et al., 2010). Finally, for POLY-BTB, d was
cross-validated over {1, 2, . . . , 10}.

The results are presented in Fig. 3 (a). Our PL2
method outperformed all other methods on the Cov-
type and Miniboo datasets. It also outperformed all
other methods on Protein, but with a small differ-
ence. PL2 consistently outperformed both the one-
dimensional PL1 (similar to Maji et al. (2012)) which
shows the importance of second order modeling. Fi-
nally, PL2 also consistently outperformed the second
order polynomial (Chang et al., 2010) which shows
that multiplicative modeling of second order features
relationships is not a sufficiently accurate model for
real world data. A visualization of learned parameters
for the Covtype dataset is given in Fig. 4.

http://www.seas.upenn.edu/~ofirpele/PL2/


The Pairwise Piecewise-Linear Embedding

Covtype Miniboo Protein Corel Iris Wine Ion Libras Sonar

#dims 12 50 357 384 4 13 34 90 60

#examples 581012 130064 24387 773 150 178 351 360 208

#classes 7 2 2 10 3 3 2 15 2

Cardio3 Cardio10 Transf Breast Steel Glass Spectf Landsat Segment

#dims 21 21 4 9 27 9 44 36 19

#examples 2126 2126 748 106 1941 214 267 6435 2310

#classes 3 10 2 6 7 6 2 6 7

Table 1. Properties of the datasets.

 

 

Covtype Miniboo Protein

PL2(ours)
PL1
CHI-H
LIN
POLY-2ND
POLY-BTB

100

95

90

85

80

75

70

65

60

55

50
Corel

80

79

78

77

76

75

74

PL2(ours)
PL2-K (ours)
PL1
CHI-H
LIN
POLY-2ND
POLY-2ND-K
POLY-BTB
POLY
RBF

(a) (b)

Figure 3. Accuracy of SVM classification using several embeddings and kernels on large datasets in (a) and the Corel
image retrieval dataset in (b). Our proposed PL2 embedding outperformed all other methods on all of the datasets. We
also conducted one sided tailed t-test with p-value of 0.01 of the accuracy difference vector between the PL2 method and
all other methods for each of the datasets, except Protein that has a predefined training/testing split. On all datasets
our PL2 is statistically significantly different from all other methods except our PL2-K (i.e, PL2 with only feature pairs
that are neighbors) in the Corel dataset. See Table 2 for a description of the statistical test.

5.2. Image Retrieval

We employed a database that contained 773 land-
scape images from the COREL database that were
also used in Wang et al. (2001). The dataset has
10 classes: People in Africa, Beaches, Outdoor,
Buildings, Buses, Dinosaurs, Elephants, Flowers,
Horses, Mountains and Food. The number of im-
ages in each class ranges from 50 to 100. As fea-
tures we used SIFT-like descriptors computed on a
color edge map (Ruzon & Tomasi, 2001). The de-
scriptors were downloaded from: www.cs.huji.ac.

il/~ofirpele/FastEMD/corel_data_and_utils.zip. See
Pele & Werman (2009) for more details.

The experimental setup was similar to Section 5.1,
with the following differences. First, we repeated each
experiment 40 times with random shuffles, to evalu-
ate statistical significance. Second, we evaluated the
RBF and POLY baselines. For POLY, the polyno-

mial degree was 5 fold cross-validated over the set
{1, . . . , 10}. For RBF, the gamma parameter was 5
fold cross-validated over the set {2−15, 2−13, . . . , 23}.
The regularization parameter was cross validation as in
Section 5.1. Finally, we used LIBSVM (Chang & Lin,
2011) to train the SVMs.

As mentioned earlier, we may consider a variant of
PL2 where only K feature pairs are used (out of all
possible

(

N
2

)

). Here we tried this variant, where we
only consider features that are in neighboring SIFT
bins (see Pele & Werman (2009; 2010)). The same can
be done for the POLY-2ND method. We denote the
resulting methods by PL2-K and POLY-2ND-K.

The results are presented in Fig. 3 (b). Our PL2
and PL2-K methods statistically significantly outper-
formed all other methods. PL2-K is much more effi-
cient than PL2 (on average, PL2 embedding had 73920
non-zero entries, while PL2-K had only 1989).

www.cs.huji.ac.il/~ofirpele/FastEMD/corel_data_and_utils.zip
www.cs.huji.ac.il/~ofirpele/FastEMD/corel_data_and_utils.zip


The Pairwise Piecewise-Linear Embedding

-3

-2

-1

0

0

1

1

2

3

.29 .5 .83

~w1 · ~α1

-3

-2

-1

0

0

1

1

2

3

.13 .51 .76

~w2 · ~α2

-4
-3
-2
-1
0

0

0

1

1

1

2
3

.29.5
.83 .13

.51.76

~w1 · ~α1 + ~w2 · ~α2

-3

-2

-1

0

0

0

1

1

1

2

3

.29.5
.83 .13

.51.76

~w1,2 · ~α1,2

-6

-4

4

-2

0

0

0
1

1

2

.29.5
.83 .13

.51.76

~w1 · ~α1 + ~w2 · ~α2+
~w1,2 · ~α1,2

~x[1] ~x[2] ~x[1] ~x[2] ~x[1] ~x[2] ~x[1] ~x[2]

(a) (b) (c) (d) (e)

Figure 4. Visualization of learned parameters for the Covtype dataset for the first class. ~w1, ~w2 are the learned coefficients
of single features 1, 2 and ~w1,2 are the learned coefficients of features 1 and 2 pairwise combination. (a),(b) show the
functions f1, f2 learned for the first and second features. In (c) we see the two-dimensional function f1 + f2 resulting from
adding the two one-dimensional functions. In (d) we see the learned function f1,2. In (e) we see the sum of all terms
containing ~x[1] and ~x[2]. We can see that the two-dimensional part in (d) enables learning highly non-linear functions.

 

 

Iris
Wine

Ion
Libras

Sonar
Cardio3

Cardio10
Transf

Breast
Steel

Glass
Spectf

Landsat
Segment

PL2(ours)

PL1(similar to Maji et al. (2012))

CHI-H (Vedaldi & Zisserman, 2012)

LIN

POLY-2ND

POLY-BTB

POLY

RBF

100

95

90

85

80

75

70

65

60

Figure 5. Accuracy of SVM classification using several embeddings and kernels. Our PL2 method is a strong competitor
on all datasets and outperformed other methods on most of the datasets. See Table 2 for statistical significance analysis.

5.3. Small to Medium Datasets

We also evaluated our approach on fourteen small to
medium data sets downloaded from UCI (A. Asuncion,
2007). Except for Spectf, Landsat and Segment all ex-
perimental results are averaged over 100 runs of ran-

domly generated stratified 70/30 splits of the data.
Spectf, Landset and Segment data sets have a prede-
fined training/testing split. Other experimental de-
tails are exactly like in Section 5.2.

The results are presented in Fig. 5. There are sev-



The Pairwise Piecewise-Linear Embedding

Iris Wine Ion Libras Sonar Cardio3 Cardio10 Transf Breast Steel Glass

Most accurate POLY-BTB CHI-H RBF PL2 RBF PL2 PL2 RBF PL2 PL2 PL2

Statistically POLY,LIN PL2 PL2 CHI-H,LIN

indistinguishable RBF,PL2 POLY,RBF

Table 2. Statistical analysis for the results in Figure 5. For each dataset, we used a one sided tailed t-test with p-value
of 0.01, to test if the best method is significantly better than the others. Spectf, Landsat and Segment datasets are not
shown, since they used a fixed test set.

 

 

80

82

84

86

88

90

92

96

94

0 10 20 30 40 50

Number of irrelevant features added

A
c
c
u
ra

c
y

Iris

PL2(ours)
RBF

 

 

96

93

94

95

97

98

99

0 10 20 30 40 50

Number of irrelevant features added

A
c
c
u
ra

c
y

Wine

PL2(ours)
RBF

 

 

90

92

93

94

95

89

91

0 10 20 30 40 50

Number of irrelevant features added

A
c
c
u
ra

c
y

Ion

PL2(ours)
RBF

Figure 6. Accuracy vs. number of artificial irrelevant features added

eral observations. First, for almost all the databases
our method outperformed all other methods or is at
least comparable to the best method. Second, our
embedding consistently outperformed both the one-
dimensional PL1 (similar to Maji et al. (2012)) which
shows the importance of second order relationships.
Third, our method also consistently outperformed the
second order polynomial (Chang et al., 2010) which
shows that multiplicative modeling of second order fea-
tures relationships is not a good model for real world
data. Our method also outperformed general poly-
nomial kernels on all but the Spectf dataset in which
our performance is comparable. This again shows that
multiplicative modeling of features relationships, even
using higher order terms, is not a good model for real
world data.

Finally, PL2 usually outperformed RBF, sometimes
considerably (Libras, Cardio3, Cardio10, Steel, Glass,
Spectf and Segment). PL2 is also much faster to
train and test on these datasets. Test time in RBF
scales with the number of support vectors (which of-
ten grows linearly with the dataset) multiplied by the
dimension. In contrast, the time complexity of PL2 is
quadratic in the dimension of the data, and indepen-
dent of the training data size. In the datasets used
here our method is much more efficient.

5.4. Irrelevant Dimensions

One possible reason that our method often outper-
forms RBF is that it is more robust to irrelevant fea-

tures, while RBF is quite sensitive. Linear or addi-
tive models (such PL1) are also robust to irrelevant
features, but they are not rich enough to capture fea-
ture dependencies. Similarly, feature selection meth-
ods can often detect irrelevant feature but are likely
to miss non-linear cross feature interactions. In this
section we did experiments where we gradually added
irrelevant features to several datasets (features drawn
uniformly from [0, 1]) and compared our PL2 method
to RBF. Results are presented in Fig. 6.

6. Conclusions and Future Work

As data sets are becoming larger, non-parametric mod-
els that can be efficiently learned will probably outper-
form parametric methods. Here we proposed a non-
parametric model that only imposes a factorization-
like assumption (with respect to features) on the pre-
diction function, and is very efficient. Extensive exper-
iments show that the method outperforms state-of-the-
art explicit feature embeddings and various kernels.
This is in contrast to previous approximate embed-
ding methods that had smaller accuracy compared to
kernels methods.

Interesting future work includes applying the PL2 em-
bedding to sparse datasets, modeling more complex
features relationships than pairwise and using the em-
bedding as a feature for segmentation.

Acknowledgments: This research is partially sup-
ported by the ISF Centers of Excellence grant 1789/11.



The Pairwise Piecewise-Linear Embedding

References

A. Asuncion, D.J. Newman. UCI machine learning
repository, 2007.

Bernal, A., Crammer, K., and Pereira, F. Auto-
mated gene-model curation using global discrimina-
tive learning. Bioinformatics, 2012.

Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM: A
library for support vector machines. IST, 2011.

Chang, Y.W., Hsieh, C.J., Chang, K.W., Ringgaard,
M., and Lin, C.J. Training and testing low-degree
polynomial data mappings via linear SVM. JMLR,
2010.

Crammer, K. and Singer, Y. On the algorithmic im-
plementation of multiclass kernel-based vector ma-
chines. JMLR, 2002.

Joachims, T. Training linear SVMs in linear time. In
KDD, 2006.

Maji, S., Berg, A.C., and J., Malik. Efficient classifi-
cation for additive kernel SVMs. PAMI, 2012.

Pele, O. Distance Functions: Theory, Algorithms and

Applications. PhD thesis, The Hebrew University of
Jerusalem, 2011.

Pele, O. and Werman, M. Fast and robust earth
mover’s distances. In ICCV, 2009.

Pele, O. and Werman, M. The quadratic-chi histogram
distance family. In ECCV, 2010.

Perronnin, F., Senchez, J., et al. Large-scale image cat-
egorization with explicit data embedding. In CVPR,
2010.

Rahimi, A. and Recht, B. Random features for large-
scale kernel machines. NIPS, 2007.

Ruzon, M.A. and Tomasi, C. Edge, Junction, and
Corner Detection Using Color Distributions. PAMI,
2001.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter,
A. Pegasos: primal estimated sub-gradient solver for
SVM. MP, 2011.

Tsang, I.W., Kwok, J.T., and Cheung, P.M. Very large
svm training using core vector machines. In Proc.

AISTATS, pp. 349–356, 2005.

Vedaldi, A. and Zisserman, A. Efficient additive ker-
nels via explicit feature maps. PAMI, 2012.

Wang, J.Z., Li, J., and Wiederhold, G. SIMPLIcity:
Semantics-Sensitive Integrated Matching for Picture
LIbraries. PAMI, 2001.


