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Abstract

Although discriminative learning in graphical
models generally improves classification re-
sults, the generative semantics of the model
are compromised. In this paper, we intro-
duce a novel approach of hybrid generative-
discriminative learning for Bayesian net-
works. We use an SVM-type large margin
formulation for discriminative training, in-
troducing a likelihood-weighted ℓ1-norm for
the SVM-norm-penalization. This simultane-
ously optimizes the data likelihood and there-
fore partly maintains the generative charac-
ter of the model. For many network struc-
tures, our method can be formulated as a con-
vex problem, guaranteeing a globally optimal
solution. In terms of classification, the result-
ing models outperform state-of-the art gen-
erative and discriminative learning methods
for Bayesian networks, and are comparable
with linear and kernelized SVMs. Further-
more, the models achieve likelihoods close to
the maximum likelihood solution and show
robust behavior in classification experiments
with missing features.

1. Introduction

In machine learning, there are two primary ap-
proaches: generative and discriminative learning. In
generative learning, the aim is to estimate an underly-
ing and unknown probability distribution from data.
Therefore, generative models represent probability dis-
tributions and the objective is some form of likelihood.
In discriminative learning, the aim is to find a repre-
sentation of a function for mapping features to targets.
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Here, the objectives are more versatile than in the gen-
erative case; dependent on the scenario, one aims to
minimize some form of error, or maximize the condi-
tional likelihood, some form of margin or the classifi-
cation rate. When generative models do not capture
the true distribution well, discriminative approaches
tend to outperform their generative counterparts.

Bayesian networks (BNs) represent distributions and
are therefore well-suited for generative learning. On
the other hand, they also represent conditional dis-
tributions and classification functions, and can be
trained also discriminatively (Friedman et al., 1997;
Ng & Jordan, 2001; Wettig et al., 2003; Greiner et al.,
2005; Guo et al., 2005; Sha, 2007; Pernkopf et al.,
2012). When a BN is trained discriminatively, its gen-
erative semantics is abandoned, i.e. its interpretation
as joint distribution. The BN is optimized to infer
the class value from the features, while other inference
tasks are implausible and yield poor results. How-
ever, a discriminative BN still represents some spuri-
ous marginal feature distribution, which does not ful-
fill any modeling purpose. Why should we then use
a BN, when we are actually interested in the condi-
tional distribution only? One reasonable ramification
is to use models which explicitly model conditional
distributions, but not the marginal feature distribu-
tion, such as conditional random fields (Lafferty et al.,
2001). The motivation in this paper is different: Even
when the conditional distribution obtained by discrim-
inative training is unique, the representation as a BN
might be not unique. A natural approach is to use this
degree of freedom to improve the generative aspect of
the model, i.e. to select the representation with high-
est likelihood. This describes a domain of likelihood-
aware discriminative models, justifying a generative
usage, such as sampling new examples, versatile in-
ference scenarios, and consistent treatment of missing
features during test time. A similar philosophy can
be found in maximum entropy discrimination (MED)
(Jebara, 2001) which combines discriminative estima-
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tion with generative models in a principled way.

In this work, we consider a SVM-type maximum
margin approach for BNs (Cortes & Vapnik, 1995;
Guo et al., 2005; Pernkopf et al., 2012). We intro-
duce a weighted ℓ1-norm in the objective, where the
weights correspond to the likelihood counts obtained
from training data. The motivation for the weighted
ℓ1-norm is not that a better classifier is learned; lit-
erature provides several alternatives to the classical
ℓ2-norm SVMs (Zhu et al., 2004; Zou & Yuan, 2008)
and no general preference can be assessed for any
norm. We merely assume that the weighted ℓ1-norm
does typically not perform worse than any other norm
regularizer. However, we show that for specific net-
work structures the resulting network parameters are
automatically normalized, which gives the weighted
ℓ1-norm the additional interpretation as likelihood-
term. Therefore, we can interpret our model as a
likelihood-aware SVM. When the SVM-trade-off pa-
rameter is zero, the solution of our formulation coin-
cides with maximum likelihood parameters. When the
parameter tends towards infinity, the sample-margins
are emphasized. Our model is related to hybrid
generative-discriminative models (Raina et al., 2003;
Bouchard & Triggs, 2004; Bishop & Lasserre, 2007),
but there is a substantial difference: Although the
objective of our formulation is a trade-off between
a likelihood term and a margin term, the objective
is not a blend of a “generative” and a “discrimina-
tive” term. The margin term alone is not a discrim-
inative objective, just as a standard SVM without
norm-penalization has little discriminative meaning.
Rather, the likelihood-term has to be viewed as norm-
penalization, while the generative semantics are a de-
sired side-effect.

We introduce our notation in Section 2. In Section
3, we present our formulation as convex optimization
problem and state Theorems 1 and 2 which guarantee
correctly normalized BN parameters, permitting the
additional likelihood-interpretation. In Section 4, we
propose a projected gradient method which is scalable
to large datasets. In Section 5 we report results on
benchmark datasets. Section 6 concludes the paper.

2. Background and Notation

Throughout the paper, we assume discrete random
variables (RVs), where plain capital letters denote sin-
gle RVs and capital boldface letters represent sets of
RVs. Lower-case plain letters represent states of RVs
and lower-case boldface letter represent joint states of
variable sets. When y is a state ofY, andX ⊆ Y, then
y(X) denotes the corresponding state of X. Further-

more, when X and Y are disjoint, then [x,y] denotes
a state of set X ∪Y. The set of states which can be
assumed by RV X is denoted as val(X), and similarly
we use val(X) for a set X. For notational ease, we
represent (unconditional) distributions as conditional
distributions of the form P(X) := P(X|∅).
A Bayesian network (BN) is defined as a tuple
B = (G,P), containing an acyclic directed graph
G and a set of conditional probability distributions
P. The nodes of G correspond to RVs X =
{X0, . . . , XN} and the edges describe direct depen-
dencies among these RVs. For each node in G, the
set P = {P(X0|Pa0), . . . ,P(XN |PaN )} contains con-
ditional distributions, where Pai denotes the set of
parents of Xi according to G. Similarly, we define
Chi as the set of children of Xi. A BN repre-
sents the joint distribution PB(X) =

∏N

i=0 P(Xi|Pai).
For discrete data, a general representation of P is
a collection of conditional probability tables (CPTs)
Θ = {θ0, . . . , θN}, with θi = {θij|h|j ∈ val(Xi),h ∈
val(Pai)}, where θi

j|h := PB(Xi = j|Pai = h). The
BN distribution can then be written as

PB(X = x) =

N
∏

i=0

∏

j∈val(Xi)

∏

h∈val(Pai)

θij|h
νi
j|h , (1)

where νi
j|h is the indicator function

1(xi = j ∧ x(Pai) = h). We represent the BN param-
eters in the log domain, defined as ωi

j|h := log θij|h,

ωi := {ωi
j|h}, and ω := {ωi}. Often, we will interpret

ω as a vector, whose elements are addressed as ωi
j|h.

We say that ω is sub-normalized, iff

log
∑

j∈val(Xi)

exp(ωi
j|h) ≤ 0, ∀Xi, ∀h ∈ val(Pai), (2)

and ω is normalized, iff (2) holds with equality.
A vector ω is strictly sub-normalized, iff it is sub-
normalized, but not normalized. In order to represent
valid BN parameters, ω has to be normalized. We de-
fine a vector-valued function φ(x) of the same length
as ω, collecting νi

j|h, corresponding to the entries ωi
j|h

in ω. In that way, we can express the log of (1) as
log PB(X = x) = φ(x)T ω.

Assume that we have M i.i.d. samples {x1, . . . ,xM},
drawn from an unknown distribution P∗(X). For a
fixed BN structure G, the (smoothed) maximum like-
lihood (ML) parameters are given as

ω̂i
j|h = log

(

ni
j|h
ni
h

)

, (3)
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where

ni
j|h =

(

M
∑

m=1

ν
i,m

j|h

)

+
α

|val(Xi)| |val(Pai)|
, (4)

ni
h
=

∑

j∈val(Xi)

ni
j|h, and (5)

ν
i,m

j|h = 1(xm
i = j ∧ xm(Pai) = h). (6)

Here, α ≥ 0 is a smoothing parameter with the in-
terpretation of a virtual sample count, which biases
the ML estimates towards a uniform distribution. The
normalization by |val(Xi)| |val(Pai)| achieves that the
“virtual samples” are distributed consistently among
the CPTs. We say that the likelihood-counts are con-
sistent, when for all Xk, j ∈ val(Xk), Xi ∈ Chk, and
h ∈ val(Pak ∩Pai) it holds that

∑

h′∈val(A)

nk
j|[h,h′] =

∑

h′′∈val(B)

∑

j′∈val(Xi)

ni
j′|[h,j,h′′] (7)

where A = Pak \ Pai and B = Pai \ (Pak ∪ {Xk}).
For α > 0, Equation (3) is also the MAP solution
using Dirichlet priors according to (Buntine, 1991;
Heckerman et al., 1995).

In this paper, we consider classification problems,
where w.l.o.g. we assume that the class variable C =
X0 and the features are Z = {X1, . . . , XN}. Our
discussion will concentrate on structures satisfying
the following condition, as identified in (Wettig et al.,
2003):

Condition 1. Each child of the class-node has a cov-
ering parent.

We call node Y a covering parent of node X iff Y is a
parent of X and Pa(X) ⊆ Pa(Y ) ∪ {Y }. Structures
satisfying Condition 1 are denoted as C1-structures.
The class of these structures is quite rich, containing,
amongst others, the naive Bayes (NB) structure, the
tree-augmented naive Bayes (TAN) (Friedman et al.,
1997), and diagnostic networks (Wettig et al., 2003).
C1-structures facilitate discriminative learning, since
for each unnormalized parameter vector there exists
also a normalized parameter vector, specifying the
same conditional distribution PB(C|Z). Wettig et
al. (2003) provided a constructive proof, by proposing
Algorithm 1 (shown in the Appendix) for normaliz-
ing a set of unnormalized BN parameters, while leav-
ing PB(C|Z) unchanged. Condition 1 allows a convex
relaxation of our optimization problem, presented in
Section 3, i.e. a globally optimal solution can be ob-
tained. However, in principle our methods can also be
applied to arbitrary structures, by applying a normal-
ization maintaining parameter transformation such as
in (Pernkopf et al., 2012).

3. A “Generative“ Maximum Margin

Formulation

The probabilistic margin δm of the mth sample is de-
fined as (Guo et al., 2005; Pernkopf et al., 2012)

δm =
PB(cm|zm)

max
c 6=cm

PB(c|zm)
=

PB(cm, zm)

max
c 6=cm

PB(c, zm)
. (8)

Clearly, when δm > 1, then the mth sam-
ple is correctly classified, and when δm < 1,
it is wrongly classified. By defining φc(x) :=
φ([c,x(Z)]), we can express the log of (8) as
log δm = min

c 6=cm

[

(φcm(xm)− φc(x
m))T ω

]

. When we

interpret φc(x
m) as (class-dependent) feature trans-

formation, we can formulate the following multiclass
SVM-type training for BNs (Cortes & Vapnik, 1995;
Crammer & Singer, 2001; Guo et al., 2005):

min.
ω,ξ

‖ω‖+ λ

M
∑

m=1

ξm (9)

s.t. (φcm(xm)− φc(x
m))T ω + ξm ≥ 1 ∀m, c 6= cm

Here, ‖ω‖ denotes some norm, ξ = (ξ1, . . . , ξM ) is
a vector of margin slacks, and λ is a trade-off pa-
rameter, set by cross validation. We call formu-
lation (9) the BN-SVM. In general, a solution of
the BN-SVM will not be normalized, i.e. typically
log
∑

j′ exp(ω
i
j′|h) 6= 0, for some i, h. However, since

we consider C1-structures, we can simply apply Al-
gorithm 1 (see Appendix), and obtain valid BN pa-
rameters, with the same class conditional distribution
(i.e. the same classifier) as the unnormalized, optimal
solution.

Although this approach allows to marry SVM-type
training with BNs, the following questions naturally
rise: Why should we even care about renormalized
parameters, corresponding to the same classifier as
the solution of (9)? Why should we use a BN at
all, when, by training it like an SVM, we abandon
any probabilistic interpretation? The answer we give
here, is that discriminative training in BNs can be
meaningful, when we (partly) maintain a generative
interpretation. To this end, we modify (9) and use
the following weighted ℓ1-norm for the BN-SVM norm
term: nLn(ω) =

∑

i,j,h |ni
j|h ωi

j|h|. Here, the weights

ni
j|h are the likelihood-counts according to (4), col-

lected in a vector n. Furthermore, we subject the vec-
tor ω to sub-normalization constraints (2). These con-
straints restrict the parameters to a smooth approxi-
mation of the negative orthant, but do not severely
restrict the solution space, since an arbitrary con-
stant can be added to a solution vector ω, yielding
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the same classifier. However, for the BN-SVM ac-
cording to (9), we are allowed to arbitrarily assume
a function margin of 1, since an optimal solution vec-
tor simply scales with this value. By introducing the
sub-normalization constraints, this does not hold true
any more. Therefore, we introduce a model parame-
ter γ for the function margin, which is set by cross-
validation. Since constraints (2) imply ωi

j|h ≤ 0,

we can re-write nLn(ω) = −∑i,j,h ni
j|h ωi

j|h = −nT ω.
Finally, we get the modified convex problem:

min.
ω,ξ

− nTω + λ

M
∑

m=1

ξm (10)

s.t. (φcm(xm)− φc(x
m))T ω + ξm ≥ γ ∀m, c 6= cm

log
∑

j′

exp
(

ωi
j′|h

)

≤ 0
∀ 0 ≤ i ≤ N

∀ h ∈ val(Pai)

ξm ≥ 0 ∀m
Our first interpretation of (10) is that of a special in-
stance of an BN-SVM, with (exotic) weighted ℓ1-norm
term nLn(ω) and an arbitrary (but not limiting) sub-
normalization constraint on the solution vector. On
the other hand, nLn(ω) = −nTω is formally the neg-
ative log-likelihood of ω. Therefore, although (10) is a
discriminative formulation, we see that as a side effect,
it aims tomaximize the data likelihood. However, there
is still a major problem about this generative inter-
pretation: the solution vector ω might be strictly sub-
normalized. In this case, ω does not represent valid
BN parameters, and strictly speaking, nLn(ω) can not
be interpreted as negative log-likelihood. When Algo-
rithm 1 is applied to obtain normalized parameters,
the discriminative character is left unchanged. But
how does the generative character change under Algo-
rithm 1? Fortunately, as shown in Lemma 1, for C1-
structures the log-likelihood can only increase when
Algorithm 1 is applied to sub-normalized parameters.
The proofs for Lemma 1 and Theorems 1 and 2 can be
found in the Appendix.

Lemma 1. Let G be a C1-structure, ω̃ be a sub-
normalized parameter-vector for G, and n be a non-
negative vector of consistent likelihood-counts. Then
the likelihood is non-decreasing under Algorithm 1,
i.e. when ω is the output of Algorithm 1 for input G,
ω̃, then nLn(ω) ≤ nLn(ω̃).

Using Lemma 1, it is easy to show that (10) always
has a normalized solution, as stated in Theorem 1.

Theorem 1. Let G be a C1-structure, {x1, . . . ,xM} be
an arbitrary data set, and n be an element-wise non-
negative vector of consistent likelihood-counts. Then
problem (10) (for λ ≥ 0) always has an optimal solu-
tion ω, ξ, such that ω is normalized.

Furthermore, for positive likelihood-counts (e.g. when
α > 0 in (4)), the solution is unique and normalized.

Theorem 2. Assume the same conditions as in The-
orem 1, but where n is element-wise positive. Then
problem (10) has a unique, normalized solution.

Lemma 1 and Theorems 1 and 2 show that for C1-
structures, we can always interpret nLn(ω) as nega-
tive log-likelihood. Due to this generative interpreta-
tion, we call formulation (10) the maximum-likelihood
BN-SVM (ML-BN-SVM). Problem (10) is convex and
can be addressed by standard solvers. However, this
restricts learning to medium sized data sets. In the
following section we describe an optimization method
which scales better to large datasets.

4. Optimization for Large-Scale Data

The main limitation in (10) is that we have
M (|val(C)| − 1) linear constraints, which restricts
application currently to some thousand samples.
Therefore, we slightly modify the problem and pro-
pose a scalable gradient-based optimization method.
First, we eliminate the margin constraints, and substi-
tute the slack variables via the parameters ω, by using
a hinge function. In order to obtain a differentiable
objective we use the soft-hinge hR(·), defined as

hR(ζ) =











0 ζ < µ

ζ ζ > µ+ R√
2

R−
√

R2 − (ζ − µ)2 otherwise

, where

R is the radius of a fitted circle-segment, smoothing
the discontinuity of the hinge, and µ = R (1−

√
2).

In our experiments we set R = min(1, γ). Now,
the slack variables are (approximately) expressed as

ξm = hR

(

smax
c 6=cm

[

γ − (φcm(xm)− φc(x
m))T ω

]

)

,

where smax is the soft-max, defined as
smax
ζ1,...,ζL

= 1
η
log
∑L

i=1 exp(η ζi). When the parameter η

tends towards infinity, the soft-max converges to the
max. In our experiments we set η = 10. We obtain
the following modified problem

min.
ω

− nTω + (11)

λ

M
∑

m=1

hR

(

smax
c 6=cm

[

γ − (φcm(xm)− φc(x
m))T ω

]

)

s.t. log
∑

j′

exp
(

ωi
j′|h

)

≤ 0
∀ 0 ≤ i ≤ N

∀ h ∈ val(Pai)

Problem (11) is convex, with continuous differen-
tiable objective. We use a projected gradient descent
method, i.e. ω is projected onto the set of subnor-
malized vectors after each gradient step. This can
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be done independently for each CPT, i.e. for each
combination of i ∈ {0, . . . , N} and h ∈ val(Pai).
Projecting an arbitrary vector ζ∗ = (ζ∗1 , . . . , ζ

∗
L)

T

onto the set of subnormalized vectors is formulated as
min.

ζ
||ζ − ζ∗||2, s.t. log

∑L
l=1 exp (ζl) ≤ 0. This prob-

lem has no closed form solution, but can be addressed
by the iterative algorithm proposed in (Lin, 2003).
This algorithm neatly meets our requirements, since
we can use the solution of the previous projected gradi-
ent step as initialization, and then perform only some
few iterations of the projection algorithm, without
needing to iterate until convergence. The proposed
projected gradient method scales nicely to large data
sets; the evaluation of the objective and its gradient is
linear in (|val(C)|− 1)M N . It is also straightforward
to implement parallel and stochastic versions of this
method. Further details can be found in the supple-
mentary material.

5. Experiments

In this section we present experiments for illustrative
purposes (Sections 5.1 and 5.2) and a comparison on
real-world datasets (Section 5.3). We considered 30
datasets from the UCI repository (Frank & Asuncion,
2010), TIMIT (Pernkopf et al., 2012) and USPS data
(Hastie et al., 2003). Datasets containing more than
5000 samples were split into training and test set;
Otherwise 5-fold cross-validation was used for test-
ing. More details on the datasets can be found in
the supplementary material. For discretizing contin-
uous attributes, we used the algorithm described in
(Fayyad & Irani, 2003). The smoothing parameter α

in (4) was constantly set to 1. Although α can have a
great impact on classification (Friedman et al., 1997;
Silander et al., 2007), its evaluation is out of the scope
of this paper.

5.1. Generative-Discriminative Trade-off

The parameter λ in problem (10) allows to control
the trade-off between the generative and discrimina-
tive character of the model. Choosing λ = 0, the ML-
BN-SVM parameters coincide with the ML solution.
When λ tends towards infinity, a large margin separa-
tion of training samples is emphasized. Intermediate
choices of λ correspond to a generative/discriminative
crossover. To illustrate the effect of parameter λ,
we learned ML-BN-SVMs with varying λ, assuming
NB structure, using the car dataset. The results are
shown in Figure 1. With increasing λ, the negative
log-likelihood increases, while the sum of slacks de-
creases. Qualitatively, the classification rate increases
correspondingly. Similar behavior can be observed on

other datasets.
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Figure 1. Influence of parameter λ using the car dataset.
(top) Negative log-likelihood (nL) and sum of slacks (SoS),
normalized by M . (bottom) Classification rate (CR).

5.2. Classification with Missing Features

Although the ML-BN-SVM is primarily trained for
classification, its generative character justifies other
inference tasks, e.g. marginalizing out missing fea-
tures. The assumption is that the more generative
the model is, the more robust the classifier is against
missing data. To this end, we conducted an experi-
ment with missing features in test data, using the ve-
hicle dataset. We trained ML-BN-SVMs for different
values of λ, cross-validating γ. In the test set, we var-
ied the number of missing features, selected uniformly
at random. For classification, missing features were
marginalized out using junction-tree message passing.
Classification results are shown in Figure 2, where re-
sults are averaged over 100 independent runs. While
the purely generative model has the worst performance
when no features are missing, its classification rate is
almost constant until about 40% of missing features,
and degrades slowly over the whole range of missing
features. In contrast, models that are more discrimi-
native (i.e. larger λ) show a better performance when
all features are used, but their classification rates de-
grade rapidly with increasing percentage of missing
features. This effect can be controlled; for λ = 1 and
using all available features, the classification rate is
almost as good as for classifiers trained with larger
values of λ. Furthermore, the results are better than
for the purely generative classifier for almost the whole
range of missing features.
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Figure 2. Classification rates (CR) for the vehicle dataset
for varying numbers of missing features and varying λ.

5.3. Benchmark Classification Results

We compared ML-BN-SVMs with ML, maximum
conditional likelihood (MCL) and maximum margin
(MM) parameters using the algorithm proposed in
(Pernkopf et al., 2012). In order to enable a fair com-
parison, MM was executed without early stopping.
Experiments with early stopping are provided in the
supplementary material. Furthermore, we compared
with linear SVMs and SVMs equipped with Gaus-
sian kernels (Chang & Lin, 2011). For ML-BN-SVMs
we validated the ranges γ ∈ {0.1, 1, 5, 10, 15, 20}, and
λ ∈ {0, 2−2, 2−1, . . . 210}. For MM, we used 10 values
for κ and λ, uniformly spaced in the intervals [0.01, 0.5]
and [0.01, 1], respectively (see (Pernkopf et al., 2012)
for details). For SVMs we validated the trade-off
parameter λ ∈ {2−2, 2−1, . . . 210} and, for kernel-
ized SVMs, the kernel width σ ∈ {2−5, 2−4, . . . , 25}.
For the classifiers based on BNs, we used NB and
maximum-likelihood TAN structures (Friedman et al.,
1997). Classification results for the compared meth-
ods are shown in Table 1. Due to limited space, we
omit the results for NB, averaged results for TIMIT,
and show only a subset of the datasets. Further re-
sults are provided in the supplementary material. We
see that ML-BN-SVM parameters clearly outperform
both ML and MCL parameters. Furthermore, ML-
BN-SVM performs better than MM in 17 out of 27
datasets. ML-BN-SVM also compares well to linear
SVMs. We observe a slight preference for kernelized
SVMs, which can be attributed to the kernel trick, and
its implicit high dimensional feature transform. How-
ever, generally we see that the ML-BN-SVM delivers
satisfying classification results.

To demonstrate the generative character of the ML-

BN-SVM, we compare the likelihoods of the trained
BN models. In Figure 3 we plot the likelihood (nor-
malized by the sample size) of ML parameters against
the likelihood of MCL, MM, and ML-BN-SVM pa-
rameters, respectively. The results for NB and TAN
are combined. For cross-validated results, each fold is
used as individual dataset, i.e. one dot in the scatter
plot. Since ML parameters maximize the likelihood,
no points on the left hand side of the 45◦-line are possi-
ble. We observe that the scatter plot for ML-BN-SVM
is clearly more concentrated in the vicinity of the 45◦-
line than for MCL and MM parameters, constituting
the generative character of the ML-BN-SVM. A simi-
lar result is achieved for the likelihood on the test sets.
Averaged over all datasets, the ML-BN-SVM achieved
a likelihood of 91.09% relative to maximum likelihood
(89.84% on the test sets); on the other hand, MCL
training achieved on average a likelihood of 67.23%
(61.47% on the test sets) and MM 39.99% (39.10% on
the test set), relative to ML.

Furthermore, we performed missing feature experi-
ments on the UCI datasets. We randomly removed
features from the test sets, were we varied the percent-
age of missing features between 0 and 90%. Classifiers
based on BNs treated missing features by marginal-
ization. For the SVM (here we only considered the
Gaussian kernel), K-nearest-neighbor (K-NN) impu-
tation (with K = 5) was used to replace missing val-
ues. For all BN-classifiers, TAN structures were used.
We also provide results for logistic regression (LR),
using K-NN imputation. The result, averaged over all
UCI datasets, are shown in Figure 4. As expected, the
ML solution shows the most robust behavior against
missing features, and for a percentage larger 60%, it
performs best of all compared methods. However,
ML-BN-SVMs perform better than ML in the case
of no or little missing features, and are almost as ro-
bust against missing features as the ML solution. The
purely discriminative BN parameters, MCL and MM,
show a quick drop-off in performance when the per-
centage of missing features is increased. For large por-
tions of missing features (> 60%) also SVMs perform
poorly compared to ML and ML-BN-SVM. This ex-
periments indicates that ML-BN-SVMs are favorable
in conditions where many features might be missing,
and where the percentage of missing features varies
strongly.

6. Conclusion

A BN distribution is a log-linear model, en-
abling SVM-type training for BNs (Guo et al., 2005;
Pernkopf et al., 2012), which we call BN-SVM. For a
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Table 1. Mean classification rates with 95% confidence intervals for UCI datasets, TIMIT and USPS data.

dataset ML MCL MM ML-BN-SVM Linear SVM SVM

abalone 57.70 ± 1.58 57.92 ± 1.65 57.78 ± 0.96 58.69 ± 1.86 58.42 ± 1.77 59.29 ± 1.40

adult 85.70 ± 0.66 86.65 ± 0.64 86.54 ± 0.65 86.76 ± 0.64 86.86 ± 0.64 86.87 ± 0.64

australian 81.67 ± 2.66 81.97 ± 3.70 85.49 ± 3.40 84.76 ± 3.78 85.78 ± 1.69 86.80 ± 2.34

breast 95.56 ± 2.06 95.56 ± 1.45 96.59 ± 0.50 96.00 ± 2.31 96.15 ± 1.51 97.19 ± 0.41

car 94.24 ± 1.50 98.08 ± 0.75 97.79 ± 0.79 98.08 ± 1.07 93.84 ± 0.65 99.65 ± 0.30

chess 92.19 ± 1.62 97.65 ± 0.81 97.43 ± 0.79 97.99 ± 0.92 97.02 ± 0.82 99.50 ± 0.25

cleve 79.43 ± 6.34 77.74 ± 7.53 79.09 ± 7.56 80.79 ± 7.58 83.57 ± 5.29 82.19 ± 6.37

crx 84.04 ± 4.64 80.32 ± 5.20 83.89 ± 5.89 84.20 ± 4.56 85.75 ± 3.20 85.75 ± 2.65

diabetes 74.35 ± 4.23 74.22 ± 5.50 73.31 ± 5.71 74.35 ± 5.42 73.96 ± 4.46 74.48 ± 4.65

flare 81.57 ± 1.27 81.48 ± 1.91 84.45 ± 0.28 83.30 ± 1.06 84.45 ± 0.28 84.45 ± 0.28

german 71.90 ± 1.83 69.50 ± 3.54 73.20 ± 4.01 72.60 ± 2.89 76.10 ± 1.11 75.80 ± 2.80

glass 72.68 ± 5.29 68.55 ± 4.03 71.71 ± 10.88 72.61 ± 6.35 71.61 ± 5.50 73.24 ± 5.33

heart 80.74 ± 10.36 77.04 ± 10.61 77.41 ± 9.81 81.48 ± 9.34 84.81 ± 4.11 81.85 ± 9.40

hepatitis 86.17 ± 10.00 86.08 ± 11.48 86.08 ± 3.38 86.17 ± 6.31 87.42 ± 10.89 88.67 ± 6.37

letter 86.21 ± 0.84 87.65 ± 0.80 89.58 ± 0.74 88.57 ± 0.77 90.07 ± 0.73 94.07 ± 0.58

lymphography 80.77 ± 7.36 75.38 ± 10.86 80.66 ± 11.11 76.92 ± 10.54 83.57 ± 10.44 86.48 ± 9.99

nursery 92.96 ± 0.77 98.31 ± 0.40 98.84 ± 0.33 98.68 ± 0.35 93.31 ± 0.76 100.00 ± 0.04

satimage 85.79 ± 1.92 81.52 ± 0.95 86.82 ± 2.66 86.98 ± 1.30 88.36 ± 1.58 90.59 ± 1.59

segment 94.89 ± 1.02 94.37 ± 1.57 96.02 ± 1.21 95.76 ± 0.62 96.19 ± 0.73 96.84 ± 1.17

shuttle 99.88 ± 0.05 99.84 ± 0.06 99.91 ± 0.05 99.92 ± 0.04 99.96 ± 0.03 99.96 ± 0.03

soybean-large 91.88 ± 1.28 82.66 ± 4.59 90.77 ± 2.16 91.87 ± 2.26 91.15 ± 3.72 93.54 ± 1.19

spambase 92.97 ± 0.85 92.99 ± 1.10 93.62 ± 0.80 94.03 ± 0.84 94.27 ± 0.72 95.04 ± 0.37

TIMIT 86.85 ± 6.86 84.43 ± 6.45 86.76 ± 5.33 88.74 ± 6.21 89.29 ± 5.90 89.46 ± 6.13

USPS 91.20 ± 0.93 90.46 ± 0.97 95.98 ± 0.65 95.98 ± 0.65 95.82 ± 0.66 91.80 ± 0.90

vehicle 70.60 ± 2.00 69.64 ± 3.69 69.04 ± 4.30 69.88 ± 2.41 70.12 ± 1.26 69.76 ± 2.43

vote 94.37 ± 2.62 94.15 ± 2.04 96.01 ± 2.45 95.31 ± 2.74 94.85 ± 2.20 95.54 ± 3.18

waveform-21 82.36 ± 0.71 80.55 ± 1.00 82.86 ± 0.51 83.48 ± 0.56 84.78 ± 1.77 85.16 ± 1.29
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Figure 3. Likelihood scatter plot over all data sets. The
train likelihoods (normalized by the sample size) of ML
parameters are plotted against the train likelihoods of MCL
(top), MM (center), and ML-BN-SVM (bottom).

large class of network structures (Wettig et al., 2003),
one can always obtain correctly normalized parame-
ters, i.e. a formally valid BN. In this paper, we pro-
posed themaximum-likelihood BN-SVM, where during
discriminative training the log-likelihood of the model
is maximized as a desired side-effect, partly maintain-
ing a generative interpretation. In experiments we
showed that in terms of classification our models out-
perform standard generative and discriminative learn-
ing methods for BNs (i.e. ML, MCL and MM), com-
pete with linear SVMs, and are in range with kernel-
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Figure 4. Classification results, averaged over UCI
datasets, with varying percentage of missing features.

ized SVMs. Furthermore, our models achieve likeli-
hoods close to the ML solutions. We demonstrated
the benefit of the generative character in missing fea-
ture experiments. In future work, we will extend the
ML-BN-SVM to treat missing data during learning.
In the BN framework, this naturally includes learning
with missing features and semi-supervised learning.
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Algorithm 1 (Wettig et al., 2003)

Input: G, unnormalized parameters ω̃
Output: Normalized parameters ω, with

PB(C|X;ω) = PB(C|X; ω̃)
1: ω ← ω̃

2: Find a topological order (π0, . . . , πN ), i.e. any edge
Xπi
→ Xπj

is not contained in G, ∀ 0 ≤ i < j ≤ N .
3: for i = 0 . . .N do

4: for h ∈ val(Paπi
) do

5: β ← log
∑

j′ exp
(

ωπi

j′|h

)

6: ∀j ∈ val(Xπi
): ωπi

j|h ← ωπi

j|h − β

7: if Xπi
is a class-child then

8: Let Xki
be a covering parent of Xπi

9: I← Paki
∩Paπi

10: A← Paki
\Paπi

11: for a ∈ val(A) do
12: ωki

h(Xki
)|[h(I),a] ← ωki

h(Xki
)|[h(I),a] + β

13: end for

14: end if

15: end for

16: end for

Appendix

Proof of Lemma 1. First note that in Algorithm 1,
ω always remains sub-normalized: If ω is sub-
normalized, then β ≤ 0 in step 5. In step 6 a CPT
becomes normalized, and in step 12, β is added to some
CPT entry, which again yields a sub-normalized CPT.
By induction, ω remains sub-normalized and β ≤ 0.

Algorithm 1 iterates over all Xπi
and all h ∈

val(Paπi
), modifying ω. Let ω′ be the vector be-

fore some modification, and ω′′ the vector afterwards.
We show, that nLn(ω

′′) ≤ nLn(ω
′), and therefore

nLn(ω) ≤ nLn(ω̃).
First, ω is modified in step 6, where ω′′πi

j|h = ω′πi

j|h−β,

∀j ∈ val(Xπi
). By nonnegativity of n and β ≤ 0 we

have

nLn(ω
′′)− nLn(ω

′) = −nT ω′′ + nT ω′ = β
∑

j

nπi

j|h ≤ 0

(12)
Therefore, when Xπi

is not a class-child, nLn(ω
′′) ≤

nLn(ω
′). When Xπi

is a class-child, we additionally
have in step 12

ω′′ki

h(Xki
)|[h(I),a] = ω′ki

h(Xki
)|[h(I),a] + β ∀a ∈ val(A),

(13)
where Xki

is a covering parent of Xπi
, I are their

common parents, and A are the extra parents of
Xki

. Since G is a C1-structure, it holds that
Paπi

\ (Paki
∪ {Xki

}) = ∅. Therefore, since n are
consistent likelihood-counts (cf. (7)), we have that

∑

a∈val(A) n
ki

h(Xki
)|[h(I),a] =

∑

j′∈val(Xπi
) n

πi

j′|h, and

thus

nLn(ω
′′)− nLn(ω

′) = −nT ω′′ + nT ω′

= β
∑

j′

nπi

j′|h − β
∑

a

nki

h(Xki
)|[h(I),a] = 0. (14)

We see that nLn(ω
′′) ≤ nLn(ω

′), and by induction
nLn(ω) ≤ nLn(ω̃).

Proof of Theorem 1. Let ω∗, ξ∗ be an optimal
solution of (10). When we apply Algorithm 1 to ω∗,
obtaining the normalized ω as output, we see that ω,
ξ, with ξ = ξ∗, is feasible, since the class-conditional
distribution is invariant under Algorithm 1. Fur-
thermore, since ω∗ is sub-normalized, we have by
Lemma 1 that nLn(ω) ≤ nLn(ω

∗). Therefore,
nLn(ω) + C

∑

m ξm ≤ nLn(ω
∗) + C

∑

m ξ∗m, which
implies that ω, ξ is optimal.

Proof of Theorem 2. We first prove by contradic-
tion, that under the conditions of Theorem 2, all solu-
tions are normalized. Assume that ω∗, ξ∗ are optimal
for (10), where for some Xπi

and h ∈ val(Paπi
), the

corresponding CPT in ω∗ is strictly sub-normalized.
Let ω be the output of Algorithm 1 for input G, ω∗.
Let ω′ be the vector before the strictly sub-normalized
CPT is processed, and ω′′ be the vector afterwards.
When Xπi

is not a class child, then the nega-
tive log-likelihood is strictly decreased in step 6,
i.e. nLn(ω

′′) < nLn(ω
′). Since the negative log-

likelihood is never increased afterwards, ω∗, ξ∗ can
not be optimal.
WhenXπi

is a class child, this decrease of negative log-
likelihood is compensated in step 12 (cf. (14)). How-
ever, at the same time, some entries of some CPTs
of the covering parent are strictly decreased, i.e. they
become strictly sub-normalized. Due to the topologi-
cal ordering, these CPTs are processed at a later step.
By induction, some CPTs of the class node become
strictly sub-normalized, since the class node has to be
the covering parent for some class child. Finally, when
the CPTs of the class node are normalized, the nega-
tive log-likelihood is strictly decreased, which contra-
dicts that ω∗, ξ∗ are optimal.
Now we show that the solution is unique. Assume
two optimal solutions ω∗, ξ∗ and ω∗′, ξ∗′, ω∗ 6= ω∗′.
Since (10) is a convex problem, the convex combi-
nation ω = 0.5ω∗ + 0.5ω∗′, ξ = 0.5 ξ∗ + 0.5 ξ∗′

is also optimal. Since all solutions are normalized,

log
∑

j exp(ω
∗i
j|h) = log

∑

j exp(ω
∗′i

j|h) = 0, ∀i,h.
However, since log

∑

exp is a strictly convex function,
ω is strictly sub-normalized, which contradicts that ω,
ξ is optimal.
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