On the difficulty of training Recurrent Neural
Networks
Additional material

1 Analytical analysis of the exploding and van-
ishing gradients problem

1.1 Linear model
Xt = W7'eca(xt—1) +W,;,u; +b (1)
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Let us consider the term g} = ng(f g:; 9 50~ for the linear version of the parametriza-

tion in equation (1) (i.e. set o to the identity function) and assume ¢ goes to
infinity and [ =t — k. We have that:
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By employing a generic power iteration method based proof we can show that,

. . - l .
given certain conditions, g—i: (WZ;C) grows exponentially.

Proof Let W .. have the eigenvalues Ay, .., A, with |A1| > |A2] > .. > |A\,| and
the corresponding eigenvectors qi, qo, .., 4, which form a vector basis. We can
now write the row vector g—iz into this basis:
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If j is such that ¢; # 0 and any j° < j,¢;; = 0, using the fact that

ql (Wg;c)l = Aq! we have that
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We used the fact that Ai/,\j | < 1fori > j, which means that lim; Ai/Aj |l =
0. If |A;] > 1, it follows that g;‘; grows exponentially fast with [, and it does so
along the direction q;. O

The proof assumes W ... is diagonalizable for simplicity, though using the Jor-
dan normal form of W,.. one can extend this proof by considering not just



the eigenvector of largest eigenvalue but the whole subspace spanned by the
eigenvectors sharing the same (largest) eigenvalue.

This result provides a necessary condition for gradients to grow, namely that
the spectral radius (the absolute value of the largest eigenvalue) of W,... must
be larger than 1.

If q; is not in the null space of ag;"“ the entire temporal component grows
exponentially with [. This approach extends easily to the entire gradient. If we
re-write it in terms of the eigen-decomposition of W, we get:
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We can now pick j and k£ such that chjT 85"9"“ does not have 0 norm, while

maximizing |A;|. If for the chosen j it holds that [A;| > 1 then /\;—kch;; ag;"“

will dominate the sum and because this term grows exponentially fast to infinity
with ¢, the same will happen to the sum.

2 Clipping threshold and regularization term
2.1 Clipping threshold

In Fig 1 we can see the overall norm during training as well as a zoom in on
a portion. These plots show the exploding gradient problem at work on the
temporal order task, when is learned by varying the length of the sequence
between 50 to 200 steps (see section below).
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Figure 1: z-axis shows update index, while y-axis shows the norm of the gradi-
ents for a learning run on the temporal order task, where the cutoff threshold
for clipping was set to 6. On the left we have the plot for the entire run, while
on the right we have zoomed on a portion of the learning process

Setting the threshold for clipping should be done by examining plots as the
one in Fig. 1. The average norm of the gradient can depend greatly on the



architecture and task you run. For example if the cost is computed as a sum
versus a mean (over the minibatch or sequence length), it can make a big impact.
Square error versus negative log likelihood also affects the average norm. It is
crucial to protect the model against large steps (like the one of size 1€9 on the
left plot). Doing this is quite trivial. However if we look on the zoomed version
of the plot is not clear if smaller peaks are harmful. Is a step of norm 4 too
large? Or 6 ?

Our intuition tells us that we should look at the average norm of the gradient,
which in the plot above seems to be just below 1. If we set the value close to
1, the we are ensured that we will not take any large step, though with higher
probability we will end up clipping gradients (the smaller peaks like the ones
at 4 or 6.) and affecting the trajectory taken by MSGD. Note that while any
clipped gradient still points in a descent direction for the current minibatch, the
expected value of the clipped gradients is not pointing in the same direction as
the gradient on the training set (i.e. by clipping we are artificially giving more
weight to certain training examples). In some sense we would like clipping to
happen as rarely as possible in order to not affect convergence. Further more a
step of 4, while being somewhat large, might not even be harmful.

If we set the value further away from 1, we will allow larger steps, that, with a
high probability (depending on how high the threshold is), might locally disrupt
learning. Our intuition is that while these steps will not take as too far away
from the valley we are in, they can slow down convergence, as MSGD might
have to find the valley again. This effect is also attenuated by the learning rate
(that scales the norm of the step). With lower learning rates we can allow the
threshold to be larger, and hence interfere less with the true descent direction
of MSGD, while with higher learning rate we might need smaller thresholds for
stability.

It is not clear which is a better options. While clipping seems to inter-
fere with learning the empirical distribution (by reweighing examples) we had
not seen this effect playing a large role in practice. On the other hand large
thresholds also lead to convergence, only making convergence slower at times.

We make another point, namely that of numerical stability. While clipping
the gradient should always work, when dealing with only 32 bits, gradients
can quickly grow enough for one not to be able to get an accurate norm (i.e.
we have seen NaN creeping in our computations, albeit very rarely). For this
reason whenever we get not numeric values in the gradients (or larger than a
set threshold, which we fixed to 1el0 in our later experiments) we replace the
gradient of the recurrent weights by .02« W,... and any other gradient by 0. This
ensures that the largest singular value of W,... decreases at this step, hopefully
taking the model in a more reliable regime. In practice this events are extremely
rare.

2.2 Regularization term

The regularization term is given by the following equation:
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Given that we consider thek“immediate” gglrxezative, this term is not expen-
sive to compute, as it does not need to be computed sequentially for each €.
Each value is independent from the others and each derivative can be com-
puted in parallel. More specifically, computing this regularization term for all
Q can be express in a matrix form. It only involves a matrix multiply and a
few element-wise operations. To get the gradient we only need to traverse this
graph in reverse, i.e. the gradient itself only involves two matrix multiplications
and some element-wise operations for all 2.
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Special care should be taken for the term ’ H which can shrink to very

small numbers resulting in a division by 0 or instability. For this reason we only
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that we set and keep fixed to 1le-20.

In practice we have noticed that for complex task (like the polyphonic music
prediction), the regularization term can hurt learning. It is possible that by
regularizing the model we force it to pay less attention to short term components,
which can harm the quality of the local minima one can find. We believe that
an effective way of using this term should involve some kind of schedule that
gradually decreases the weight of the regularization term in the total cost. We’ve
found that a % schedule works, though more investigation is needed.

3 Experimental setup

3.1 The pathological synthetic tasks

For all pathological tasks we look at the percent of correctly classified sequences.
For regression tasks (like the addition task) we consider a sequence is correctly
classified when the square error is smaller than 0.04. A run (i.e. training a
model starting from randomly sampled weights) is considered successful if it
makes less than 1% errors in classifying 10000 sequences (similar to Martens
and Sutskever (2011)). For both training and testing we always generate data
on the fly, i.e. every time we compute the test error we generate a new set of
10000 sequences (the same when we need to do a MSGD step).

3.1.1 Temporal order

For the temporal order the length of the sequence is given by T. We have a fixed
set of two symbols {A, B} and 4 distractor symbols {¢,d, e, f}. The sequence
entries are uniformly sampled from the distractor symbols everywhere except at

two random positions, the first position sampled from [1%, %], while the second



from [%, %] The task is to predict the order in which the non-distractor

symbols were provided, i.e. either {AA, AB, BA, BB}.
We used a gridsearch, where we tried the following values:

e number of hidden units N in 50,100

e learning rate Ir in .01,.001

threshold for gradient clipping p in 6., 1., 4.
e regularization weight o in 4., 2., 1., .5

e maximal number of updates 100k, 5M

We did not explore any decreasing scheme for the learning rate or regular-
ization weight. No momentum was used here or in any other experiments. The
hyperparameters where set based on a few initial jobs with sequences of length
100 (i.e. we did not explore every combination for all possible lengths and all
seeds). 100k updates where not sufficient for the models to converge on all pos-
sible lengths, and hence we increased this up to 5M. For 5M steps, in worse case
scenario, the code had to run close to 48h. In the first experiments we used a
larger minibatch of 100 and 1000 examples, which we decrease to 20 to reduce
running times. We did not notice any significant instability due to the reduced
minibatch size.

The final hyper-parameters used were:

e N =50 (number hidden units)

o [r =0.01 (learning rate)

e 1 = 1. (threshold for gradient clipping)
e «a = 4. (regularization term)

e maximal number of updates 5M

Note that other combinations also lead to convergence (for e.g. u of 6.
and smaller learning rate of .001), though we find this combination to converge
faster, and work better in the regime of sequences of length 250 steps.

For generating the subplots of figure 7., we explored the following lengths T'
(i.e. we trained 5 models for each of this value, the 5 models using the same
random seeds):

e for sigmoid initialization, considered T values are: 16, 20, 22, 50, 100, 150,
200 ,250

e for basic tanh initialization, considered T values are : 16, 20, 35, 45, 50,
55, 65, 75, 100, 150, 200, 250

e for smart tanh initialization, considered T values are : 16, 20, 50, 100,
150, 200, 250



The number of updates required for convergence greatly depends on the
length of the sequence. Using both clipping and the regularization term, on
average, for T' = 200, the sigmoid initialization takes 685k updates, the basic
tanh takes 476k updates, and smart tanh 434k updates. In comparison, if we
fix T'= 20 and the initialization to smart tanh, we have for MSGD 21k updates,
for MSGD-C 11k updates and for MSGD-CR 2k updates.

For figure 7 we stopped an running experiment and consider it a success as
soon as the number of misclassified sequences was less than 100 out of 10000.

When training a single model for random lengths from 50 to 200 steps,
we decreased the regularization weight « to 2. All values of p seem to work,
though convergence seems faster with p4 = 1. All 20 sequences in a training
minibatch had the same length T uniformly sampled from [50,200]. The test
set was split into 500 minibatches, each of a different length uniformly sampled
from [50,100]. Each test evaluation implied generating a new set of such 500
minibatches. For all tasks where we considered varying length sequences, we
stopped learning and consider a sequence successful when no sequence was mis-
classified out of 10000 sequences of varying length. We then evaluate the model
on 10000 sequences of length 50, 10000 sequences of length 100, 10000 sequences
of length 150 and 10000 sequences of length 200. Additionally we explored T in
{250, 500, 1000, 2000, 3000, 5000}. For the temporal order problem in all cases 0
sequences were misclassified.

3.1.2 Addition problem

The input consists of a sequence of random numbers, where two random posi-
tions (one in the beginning and one in the middle of the sequence) are marked.
The model needs to predict the sum of the two random numbers after the entire
sequence was seen. For each generated sequence we sample the length 7" from

[T, % ], though for clarity we refer to T as the length of the sequence in the

paper. The first position is sampled from [1, %], while the second position is
sampled from [%, T?/] These positions i, j are marked in a different input chan-

nel that is 0 everywhere except for the two sampled positions when it is 1. The
model needs to predict the sum of the random numbers found at the sampled
positions 4, 5 divided by 2.

To address this problem we use a 50 hidden units model, using the basic tanh
initialization. We explored the learning rates {.01,.001} and o € {.5,1.,2.}. We
have tried p € {6.,1.}. The final choice of hyper-parameters are Ir = .01, a = .5.
We did not notice any significant difference in picking 4 = 6 or p = 1, though
clipping was required (i.e. u = oo fails). u = 1. seems to result in slightly faster
convergence (on average 1.226M versus 1.299M updates).

We directly explored training the model on sequences of varying length T
between 50 and 200, following the same procedure as for the temporal order
task.

A single model manages to handle (within the permitted 1% error) lengths
of 50,100, 150, 200, 250, 300, 400 and even 600. All the 5 seeds we’ve explored



T 50 100 150 | 200 | 250 | 300 350 400 600
error || .08% | .01% | .01% | 0% | 0% | .02% | .01% | .04% | .52%

Table 1: Addition task. Error as percentage of misclassified sequences out of
10000 for different values of T for the same trained model.

T 50 100 150 200 250 300 350 400 600
error || .5b5% | .04% | .04% | .04% | .08% | .26% | .28% | .73% | 2.11%

Table 2: Multiplication task. Error as percentage of misclassified sequences out
of 10000 for different values of T' for the same trained model.

ended up in successfully trained model, which outperforms the results presented
in Martens and Sutskever (2011) (using Hessian Free), where we see a decline
in success rate as the length of the sequence gets closer to 200 steps. Hochreiter
and Schmidhuber (1997) only considers sequences up to 100 steps. Jaeger (2012)
also addresses this task with 100% success rate, though the solution does not
seem to generalize well as it relies on very large output weights. In the table
3.1.2 you can see how the misclassification error behaves for different lengths
for a trained model.

3.1.3 Multiplication problem

This task is similar to the problem above, just that the predicted value is the
product of the random numbers instead of the sum. We used the same hyper-
parameters as for the previous case (without validating them through a grid
search), and obtained very similar results (table 3.1.3). We only explored the
value of p which seemed to reduce more the number of updates required than
before (1.728M updates for p = 1 versus 3.418M updates for p = 6).

3.1.4 3-bit temporal order problem

Similar to the temporal order problem, except that we have 3 random positions,
first sampled from [, 2], second from [3T, 4T and last from [ST, 7],

As before, we explored directly training the model on sequences of varying
length. We explored the number of hidden units in {50,100}, learning rate in
{.01,.001} and p € {1.,6.}. We explored a € {2.,1.}. Best combination (with
regard to convergence speed) was Ir = .01, u = 1., a = 2. We chose 100 hidden
units. Average number of updates to train was 569k. Table 3.1.4 describes a

single trained model.

T 50 100 | 150 | 200 250 | 300 350 400 600

error || .0% | .01% | .0% | .06% | .01% | 0% | 2.75% | 14.13% | 24.81%

Table 3: 3-bit temporal order task. Error as percentage of misclassified se-
quences out of 10000 for different values of T" for the same trained model.



T 50 100 150 200 250 | 300 | 350 400 600
error || .04% | .01% | .02% | .03% | .02% | 0% | .03% | .02% | .04%

Table 4: Random permutation task. Error as percentage of misclassified se-
quences out of 10000 for different values of T" for the same trained model.

’ Task \ 50 steps \ 100 steps \ 150 steps \ 200 steps ‘

Original task 0% 0% 0% 0%
Extended task | 0.844% | 0.724 % 0.75% 0.77%

Table 5: Noiseless memorization problem. Average (over the 5 seeds) percentage
of misclassified sequences out of 10000 for the different lengths considered and
the two variations of the task

3.1.5 Random permutation problem

In this case we have a dictionary of 100 symbols. Except the first and last
position which have the same value sampled from {1,2} the other entries are
randomly picked from [3,100]. The task is to do next symbol prediction, though
the only predictable symbol is the last one.

We explored 50 and 100 hidden units, with a learning rate of either .01 and
.001. a € {2.,1.,.5} and uu € {6.,1.}. We run experiments only on varying length
sequences. The task proved harder to train. 2 out of 5 runs were successful for
the final chosen hyper-parameters: 100 hidden units, with a learning rate of
.001 and o = 1. and g = 6. The error for different lengths are listed in table
3.1.5 for one of the two successful run.

3.1.6 Noiseless memorization problem

For the noiseless memorization we are presented with a binary pattern of length
5, followed by T steps of constant value. After these T' steps the model needs
to generate the pattern seen initially. We also consider the extension of this
problem from Martens and Sutskever (2011), where the pattern has length 10,
and the symbol set has cardinality 5 instead of 2.

All runs on varying length sequences failed, so we trained a different model
for the considered lengths (50, 100, 150, 200).

We explored « € {1,2}, learning rate in {.01,.001}, number of hidden units
in {50,100} and u € {1.,6.}. We explored hyper-parameters on the original
task (where the symbol set had cardinality 2). We chose to use a = 1, learning
rate 0.01, 100 hidden units and u = 1 for faster convergence.

We manage a 100% success rate (i.e. all 5 runs had under 1% misclassified
sequences out of 10000) on these tasks for 5 different random seeds, though we
train 5 models for each of the 4 possible lengths (50, 100, 150, 200).



3.2 Natural Tasks

We use smart tanh initialization in all our latest results, though preliminary
experiments with basic tanh seem to perform equally well.

3.2.1 Polyphonic music prediction

We train our model, a sigmoid units RNN, on sequences of 200 steps. The
cut-off coefficient threshold is the same in all cases, namely 8 1.

In case of the Piano-midi.de dataset we use 300 hidden units and an initial
learning rate of 1.0. For all natural tasks we halved the learning rate every time
the error over an epoch increased instead of decreasing. For the regularized
model we used a initial value for regularization coefficient o of 0.5, where «

follows a = schedule, i.e. a; = i (where ¢ measures the number of epochs).

We found 2‘L‘tha‘c keeping alpha constant as before results in worse performance
for « € {0.5,1.,2.}. Further more we speculate that for tasks where short
term information is important one needs to use a decreasing schedule for the
regularization weight.

For the Nottingham dataset we used 400 hidden units, with an initial o = 5.
that started decreasing with 1/max(1,t710) after the first 10 epochs. p was set
to 8. The learning rate was set to 1. 100 of the 400 hidden units where leaky
integration units (Bengio et al., 2012) with their leaky factor randomly sampled
from [0.02,0.2].

For MuseData we used 400 units. The learning rate was also decreased to
0.5. For the regularized model, the initial value for a was 0.1, and oy = % 100
of the 400 hidden units where leaky integration units, as used in Bengio et al.
(2012). Their leaky-integration factor was randomly sampled in [0.02,0.2].

We have explored number of hidden units in the range {200, 300,400}, learn-
ing rates of {2.,1.,.5}, p € {4,8,12} and o € {1,5,.5}. We tried keeping «
constant, or start decreasing from epoch 0, epoch 10 or epoch 20. We use either
1 1

# or 5 schedule. Not all hyper-parameters where explored on all tasks. Most

of the hyper-parameter selection was done on the Piano-midi.de task.

3.2.2 Language modelling

For the language modelling task we used a 500 sigmoidal hidden units model
with no biases (Mikolov et al., 2012). We use the normal distribution A(0,0.1)
to sample the weights. The model is trained over sequences of 200 steps, where
the hidden state is carried over from one step to the next one.

We use a cut-off threshold of 45 (though we take the sum of the cost over the
sequence length) in this case. For next character prediction we have a learning
rate of 0.01 when using clipping with no regularization term, 0.05 when we
add the regularization term and 0.001 when we do not use clipping. When

INote this value changes considerably if one takes the sum over the sequence length versus
the mean. We used the mean



predicting the 5th character in the future we use a learning rate of 0.05 with
the regularization term and 0.1 without it.

Interestingly enough, the strategy for the regularization factor o when solv-
ing the next character prediction that performed best was to keep it constant to
the value .01. For the modified task a % schedule again seerr; to perform better,

and we used an initial value for « of 0.05 with a; = O, where t is the
2800

update index.
We have explored constant « € {6,1,0.5,0.01,0.001} and % sched-

maz(0,t—tg)
B

ule with 5 € {2800,500} and tp in {0,28108}. The number of hidden units was
kept constant to 500.
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