
Human Boosting

Harsh Pareek harshp@cs.utexas.edu
Pradeep Ravikumar pradeepr@cs.utexas.edu

Department of Computer Science, The University of Texas, Austin, TX 78712, USA

Abstract

Humans may be exceptional learners but
they have biological limitations and more-
over, inductive biases similar to machine
learning algorithms. This puts limits on
human learning ability and on the kinds
of learning tasks humans can easily han-
dle. In this paper, we consider the prob-
lem of “boosting” human learners to extend
the learning ability of human learners and
achieve improved performance on tasks which
individual humans find difficult. We consider
classification (category learning) tasks, pro-
pose a boosting algorithm for human learn-
ers and give theoretical justifications. We
conduct experiments using Amazon’s Me-
chanical Turk on two synthetic datasets –
a crosshair task with a nonlinear decision
boundary and a gabor patch task with a lin-
ear boundary but which is inaccessible to hu-
man learners – and one real world dataset –
the Opinion Spam detection task introduced
in (Ott et al., 2011). Our results show that
boosting human learners produces gains in
accuracy and can overcome some fundamen-
tal limitations of human learners.

1. What does it mean to boost humans?

Human learning ability is indeed a piece of work, but
man is certainly not infinite in faculties. There has
been a long line of work on human learning in the psy-
chology and cognitive science literature. The study
of human category learning in particular — study-
ing how humans classify objects into different cat-
egories — has seen considerable advances in recent
years (Ashby & Maddox, 2005). Humans have been
shown to have differing learning abilities depending
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on the nature of the task at hand. An important
distinction for instance can be made between “rule-
based” and “information-integration” category learn-
ing tasks, depending on the type of decision boundary.
Rule-based tasks have easily verbalizable classification
rules, and typically depend on a single semantic dimen-
sion (e.g. “the width of the lines is small”), or simple
logical operations on a few such dimensions (e.g. “the
width of the lines is small, and the color is red”). In
information-integration tasks on the other hand, dif-
ferent semantic dimensions are combined at a predeci-
sional stage and the learner is unable to precisely de-
scribe the classification rule they are using. An exam-
ple of an information-integration task is object recog-
nition, which humans can perform quickly using little
to no working memory and attention, but the strat-
egy for which is hard to describe in words. Research
over the last two decades has led to the understand-
ing(Ashby & Maddox, 2011) that learning in humans is
mediated by multiple systems, each governed by sepa-
rate specialized biological processes. Deficits in any of
these processes could lead to deficits in the correspond-
ing aspects of human learning. Another interesting
limit to human category learning arises from the mis-
match between the discriminative dimensions in the
data and those dimensions that humans find natural.
It has been observed that some pairs of perceptual di-
mensions are “separable” for humans, so that they are
able to reason about one dimension without involving
the other; for instance, humans can separately reason
about the shape and the color of an object. On the
other hand, there are dimension pairs that are “in-
tegral”, which humans interpret holistically and they
find it difficult to reason about any of the individ-
ual dimensions separately. For example, for describ-
ing a color, red, green and blue are separable dimen-
sions while hue and saturation are integral dimensions.
These fundamental limitations, and practical consid-
erations we discuss in Section 2 limit human learning
ability.

In the face of seemingly intrinsic limits of human cat-
egory learning, here we ask whether it is possible to
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“boost” the learning ability of humans? This question
might seem ill-posed, but precisely such a question was
posed in the context of computational learning theory
by Kearns & Valiant (1989), where they asked whether
a “weak learner”, specifically a learning algorithm
which can learn a classifier that is only slightly better
than random guessing, could be “boosted” into an ar-
bitrarily accurate strong learning algorithm?. Interest-
ingly, Schapire (1990) was able to answer this question
in the affirmative. This technique, called boosting,
has been the subject of considerable research over the
last two decades, and its performance is now reason-
ably well-understood (Friedman et al., 2000; Collins
et al., 2002; Meir & Rätsch, 2003). Boosting constructs
an ensemble of learners by providing a weak learning
algorithm with iteratively modified training datasets,
putting increasingly greater weights on the examples
deemed more difficult as iterations proceed. We review
boosting in Section 2.

In this paper, we investigate the possibility of using hu-
mans as weak learners and boosting them to strongly
learn complex concepts better than any single human.
Our principal contributions are as follows. (a) The
standard boosting algorithms are not amenable to hu-
man learners (weighted examples may not be appropri-
ately interpreted by humans for instance). We describe
the modifications that need to be made, along with
theoretical justifications, that extend the state of the
art in the analysis of boosting. (b) We design suitable
experiments for boosting on humans: we consider two
synthetic tasks, which we call the crosshair and gabor
tasks, and one real world task, detecting fake reviews
in the Opinion Spam dataset of (Ott et al., 2011). (c)
We run category learning experiments on the crowd-
sourcing platform, Amazon’s Mechanical Turk. Our
experimental results show that boosting can overcome
some intrinsic limitations of human learners and pro-
duce gains in accuracy.

Related work: Our work is in the vein of interesting
recent work by (Zhu et al., 2011) which has focused
on combining human classifiers using co-training. It
will be useful to position our work against the frame-
works of Human Computation and Crowdsourcing.
Human Computation (Quinn & Bederson, 2011) has
been termed “a paradigm for utilizing human process-
ing power to solve problems that computers cannot yet
solve”. Thus, it uses humans as “subroutines” for solv-
ing sub-tasks, particularly those that computers find
difficult. Crowdsourcing on the other hand, has been
termed “the outsourcing of a job typically performed
by an expert to a crowd that typically have lower-
expertise but are large in number”. The key idea in
crowdsourcing is to suitably aggregate the outputs of

the members of the crowd and this can at times rival
the performance of an expert. A key contrast of our
work with human computation and crowdsourcing, is
that the goal in human boosting is to use humans not
as fixed classifiers and subroutines, but as changing
and learning algorithms. Moreover, as we detail in the
main section of the paper, the protocol of using hu-
mans in our human boosting method, is complicated
and even asynchronous, unlike typical tasks in crowd-
sourcing. Nonetheless, the work here is very related
to these frameworks. As such, our research raises the
question of whether a richer use of humans (e.g. as
learning algorithms) would allow them to be embed-
ded in non-trivial ways within other larger machine
learning frameworks? Our work can also be positioned
as the converse of active learning. In active learning,
eg.(Settles, 2010), the human acts as an oracle and
the algorithm asks the human to label what it believes
are the “most informative” examples: a machine per-
forms classification and is guided by a human. In our
work, the human performs the classification task and
the machine guides humans.

Applications: The question of whether human learn-
ers can be boosted is certainly interesting from a cog-
nitive science point of view. But as we detail, it has a
number of practical applications as well.

The first is the use of humans as “supervised” feature
extractors. For many natural tasks such as those in
vision and text, humans have access to evolutionar-
ily evolved implicit feature spaces, which we find diffi-
cult to even capture with a computer. If each human
learner is asked to learn a “decision stump” involv-
ing a single or a few features of their choosing within
our boosting framework, then we can use these to ex-
tract task-driven implicit human features. It is useful
to compare this to manifold learning. For instance,
in the high dimensional space of images represented
as a vector of their pixels, images of a given face lie
on a manifold, and face recognition essentially requires
a learner to identify this manifold. However, for any
manifold, there is an appropriate mapping into lower-
dimensional Euclidean spaces where classification be-
comes easy. Manifold learning techniques aim to ex-
tract these embedding using large amounts of data.
Extracting implicit features from humans could po-
tentially allow us to achieve similar performance using
much smaller amounts of training data.

A human boosting framework can also be used to boot-
strap labeled data for difficult learning problems. Us-
ing a small number of labeled examples, we could have
humans “strongly learn” complex concepts and cre-
ate larger datasets for consumption by machine algo-
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rithms. Indeed, ground truth labels for typical ma-
chine learning datasets are either provided by or val-
idated by humans. Thus, the problems selected are
typically those in which humans excel. Boosting hu-
man learners allows us to solve problems which even
humans find difficult, and expands the frontier of ma-
chine learning research. These methods could be used
to replace a domain expert or a complexly engineered
solution with a number of non-expert humans. While
it is true that it is very expensive to use humans, the
success of crowdsourcing has shown that for several
problems, it is cheaper on the whole to use humans
than to employ engineering solutions.

2. Boosting Human Learners

We start the section by discussing the characteristics of
humans as “learners,” in the context of machine learn-
ing. We then discuss boosting, and Adaboost, and
why modifications to the Adaboost are essential to be
amenable to the characteristics of human learners. We
then detail our “HumanBoost” algorithm. Finally, we
provide a convergence analysis for an idealized version
of our HumanBoost algorithm.

Human Learners: Humans as learners differ from
machine learning algorithms in several ways. First, hu-
man learners are a black box, in the sense that we do
not have access to their inner workings. Second, ma-
chine learners use high dimensional feature vectors as
input, which humans cannot interpret or visualize. On
the other hand, humans do understand images, video,
audio and text, and to an extent that even state of
the art machine learning algorithms cannot capture.
In this paper in particular, we will represent input
vectors via intuitive visual stimuli for use with hu-
man learners. Third, machine learning algorithms take
large numbers of training examples as input. Human
learners can only be given a small number of train-
ing examples. Finally, it is not clear whether humans
can handle classification noise and how they would re-
spond to differing distributions in the data. There is
some evidence (Fried & Holyoak, 1984) that humans
can learn distributions and can learn both discrimina-
tive and generative models (Hsu et al., 2010).

Boosting and Adaboost: The framework of boost-
ing is now understood(Friedman et al., 2000) to
greedily fit an additive model of the form H(x) =∑
t αtht(x) to a classification-surrogate loss such as

the exponential function; and where the functions
{ht(·)} are the classifiers learnt by a “weak” learn-
ing algorithm, and {αt} are the weights assigned to
these classifiers. With a careful selection of weights
and modified training sets for the intermediate steps,

it can be shown that the output classifier H(x) is a
“strong” classifier that might well have been learnt by
a “strong” learning algorithm.

We first describe the popular boosting algorithm of
Adaboost (Schapire, 2003) as it is closely related to
our proposed algorithm. In each round, Adaboost
maintains a weighted distribution over the training ex-
amples, with weights corresponding to the difficulty
of that example. Initially, all examples are weighted
equally. Each iteration of Adaboost has three steps:
(a) train the weak-learning algorithm on this weighted
data distribution, (b) compute its classification error
given the new data distribution (c) multiplicatively in-
crease the weights on the “difficult” examples. This
ensures that the weak learning algorithm tries to fit
those points more accurately in the next iteration. In-
deed, over the past decade, Adaboost has been ana-
lyzed both experimentally (Dietterich, 2000) and the-
oretically (Friedman et al., 2000; Collins et al., 2002).

Certain properties of Adaboost make it amenable for
use with human learners. First, it is a wrapper proce-
dure, i.e. it does not need to know the inner workings
of the weak learner; this makes it conducive for use
with “black box” human learners. Second, it does not
directly operate on the training data (xi, yi) (where xi
is the input stimulus and yi is the label), so xi could
be complex stimuli such as text or video. Third, there
is variability among humans learners, they are not re-
liable and their output is noisy. Adaboost addresses
this by adaptively reweighting the bad human learners.

Certain other parts of Adaboost need to be modified.
Adaboost reweights training examples. Humans may
not interpret these weights correctly or consistently,
and simply presenting the numerical weights would be
unreliable. The theoretical guarantees of Adaboost fail
in such a case. One potential solution is to resample
training examples, drawn from a multinomial distribu-
tion corresponding to Adaboost weights. The caveat
with this is that it will lead to examples with large
weights being repeated, and humans may not inter-
pret repetitions correctly. For instance, if we consider
stimuli such as text reviews (as in section 3.2.3), it will
be obvious to the learner if a review was repeated, and
the learned results would be unreliable.

Proposed algorithm: Our proposed boosting algo-
rithm, called HumanBoost, is detailed in Algorithm 1.
Recall that any boosting algorithm has the following
three steps in each iteration: (a) train a weak-learner
on the new data distribution, (b) compute the classi-
fication error given the new data distribution, and (c)
create a new data distribution in light of the difficult
examples in the previous round. We now discuss how
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Algorithm 1 HumanBoost

Input: MTurk oracle O, D = {(xi, yi)}Ni=1, δt,ε, mt

Set weights w1
i = 1/N , i = 1, . . . N

for t = 1, . . . , T do
Sample training set S using Filter(mt, w

t, δt).
Use O to obtain weak human classifier ht for S
Label the test set T = D − S using ht.
Edge γt =

∑
i∈T 1[yi = h(xi)]w

t
i/

∑
i∈T w

t
i − 0.5.

Set weight αt ← 0.5 log(0.5 + γt)/(0.5− γt)
Update Ht(x)← Ht−1(x) + ht(x).
Update wt+1

i ← 1/(1 + exp(yiHt(xi))).
end for
Return strong learner HT (x) = sign(

∑
t αtht(x)).

function Filter(mt, w
t, δt)

r =#calls to filter; δ′ = δt/r(r+ 1); imax = 2δt/ε.
Permute (D,w); Set S = φ; i = 1.
while |S| ≤ mt do

(x, y)← D(i); i← i+ 1.
With probability wti : add (x, y) to S.
If no update to S in past imax iters, hypothesis
Ht is sufficiently accurate; exit program.

end while
Return S.

end function

the HumanBoost algorithm performs these three key
steps. HumanBoost maintains the new distribution via
weights over the data points, just as in Adaboost. But
for training a human weak-learner, we do not want to
provide either weights over the samples, or a resampled
data set with potentially repeated samples. Instead,
we perform sampling without replacement, with prob-
ability proportional to the normalized weights. Such
subsampling without replacement in the context of
boosting was first experimentally analyzed for boosted
trees in (Friedman, 2002) in the context of Stochastic
Gradient Boosting. Here, we use a rejection sampling
framework similar to FilterBoost(Bradley & Schapire,
2008) and that of (Zadrozny et al., 2003), and as de-
scribed in the function filter in algorithm 1. We go
through the samples in a random order, and reject easy
examples one by one till we collect a sufficient number
of difficult examples S. For step (b), and computing
the weights αt, we need to measure the weighted ac-
curacy of ht. As we detail in the experimental section,
we train the human learner ht over S in an online fash-
ion, and then ask them to label examples from D−S.
Learners may memorize examples from S so we cannot
use S in the test set. This introduces an unavoidable
error in the computation of αt, as S contains the most
difficult examples and so D − S contains easy exam-
ples. However, for human learners, S is small, and if

the learner has high accuracy on D−S, we can assume
that it is sufficiently accurate. A key algorithmic de-
sign aspect of HumanBoost as pertaining to step (b)
is the classification-surrogate loss used to compute the
classification error, and the weights. While Adaboost
uses the exponential loss, its weights can grow arbi-
trarily large which reduces its tolerance to noise. One
robust approach as in Madaboost(Domingo & Watan-
abe, 2000), is to truncate the weights explicitly, to a
maximum of 1. We use the logistic function as in Log-
itBoost(Friedman et al., 2000). Step (c) of creating the
new data distribution is similar to that of Adaboost,
given the classification error in Step (b).

Remark: Algorithm 1 extends Discrete Adaboost us-
ing a logistic weight function and rejection sampling
without replacement. Note that we can also extend
“Real Adaboost” in a similar fashion. However, Real
Adaboost requires classifiers to output probability es-
timates. Experiments have shown that humans are not
good at estimating probabilities(Cosmides & Tooby,
1996). Teaching humans to output confidence values
or calibrating their output for Real Adaboost is an
interesting direction for future research. Another ex-
tension of Adaboost potentially amenable to humans
is the boosting by relabeling, also known as Agnostic
Boosting(Ben-David et al., 2001). In agnostic boost-
ing, easy examples are randomly relabeled so that the
weak learner can focus on more difficult examples.
This effectively adds label noise to the dataset pro-
portional to the weight in the distribution. Whether
humans will interpret this noise correctly is an open
question, which we will investigate in future work.

Sampling: We can show that our sampling procedure
is efficient, following the lines of (Bradley & Schapire,
2008). Specifically, if the rejective filtering procedure
terminates without giving enough examples, then the
error errt of our hypothesis H is small.

Proposition 2.1 If in any call of Filter, n ≥
2
ε ln(1/δ) consecutive examples are rejected, then
errt ≤ ε with probability 1− δ.

Analysis: A popular class of analytical results in
boosting (Collins et al., 2002; Bradley & Schapire,
2008) use the recurrences arising from the new data
distribution reweighting difficult examples in the pre-
vious iteration, and the weak-learners having an
“edge” over random guessing even on the new data
distributions. Another recent line of analytical results
are based on the view of boosting as greedy stagewise
functional gradient descent (Mason et al., 1999; Fried-
man et al., 2000; Grubb & Bagnell, 2011). Recently,
Grubb & Bagnell (2011) provided an elegant analysis
of boosting under the restriction of using weak learn-
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ers, by interpreting it as restricted gradient descent in
function space. Our analysis is an extension of this
recent result, where we interpret our algorithm as a
stochastic version of their restricted gradient descent.

Our presentation here is terse for lack of space, and
we refer to (Grubb & Bagnell, 2011) for extended de-
tails of their framework. Consider the function space
L2(X ,R, P ) of square-integrable functions, equipped
with the inner product 〈f, g〉P = EP [f(x)g(x)] =∫
X f(x)g(x)dP (x). Denote by P̂ the empirical dis-

tribution over the data {(xi, yi)Ni=1}, and the corre-

sponding inner product, 〈f, g〉P̂ =
∑N
i=1 f(xi)g(xi).

Consider the objective R : L2(P̂ ) → R derived from

the empirical risk Remp[f ] = 1
N

∑N
i=1 l(yif(xi)); as-

sume the loss function l is convex, and differentiable
(note that the function l in our case is the logistic func-
tion l(t) = log(1 + exp(−t))). Denote the “restriction
set” of weak learners as H. Boosting can then be de-
rived as a method to minimize Remp[f ] subject to the
constraint that f =

∑
t αtht with ht ∈ H and αt ∈ R.

The subgradient of Remp[f ] at any f can be written

as ∇Remp[f ] = {g|g(xi) = ∂l(yif(xi))
∂f(x) = l′(yif(xi))yi};

denote this by ∇. The key insight in Grubb &
Bagnell (2011) was to leverage the fact that each
boosting step can be written as ft+1 = ft +
αtht, where ht ∈ arg maxh∈H〈∇, h〉/‖h‖, and αt =
−1/ηt〈∇, ht〉/‖ht‖2, for some step-size ηt. Another
key idea there was that the weak-learning assumption
can be asserted as an approximate gradient condition:
arg maxh∈H〈∇, h〉/‖h‖ ≥ γ‖∇‖, for some γ > 0. They
then relate this γ to the edge parameter used in typ-
ical boosting analyses. Note that the boosting step
is in effect a restricted gradient descent, which they
then leverage to show that (i) the algorithm asymp-
totically converges to the optimum of the desired loss
function, and that (ii) it does so efficiently, i.e. at a
rate polynomial in 1/ε, where ε is the desired error.

The key difference in our boosting algorithm when
compared to the setting of (Grubb & Bagnell, 2011)
is that we sample training data without replacement,
and provide them to the learner without weights, so
that instead of the ∇ derived above, we use a stochas-
tic gradient ∇′: where ∇′(xi) = Siyi, with Si ∈ {0, 1}
is an indicator for data instance i, i.e. 0 if xi /∈ S
and 1 if xi ∈ S. Our algorithm is thus a stochas-
tic restricted gradient descent, and we can extend the
analysis of (Grubb & Bagnell, 2011) to obtain con-
vergence rates even in our setting. We first note that
the function Filter in 1 ensures that p(xi ∈ S) =
1/(1 + exp(−yif(xi))) = l′(yif(xi)) where f is the
current hypothesis. It thus follows that the inclusion
probability of xi satisfies: E[Si] = l′(yif(xi)), so that

E[∇′] = ∇ on xi. Our boosting algorithm can then be
abstracted as performing the step: ft+1 = ft + αtht,
where ht ∈ arg maxh∈H〈∇′, h〉/‖h‖, where ∇′ is the
stochastic gradient detailed above. For the purpose of
analysis, set the weight as αt = −1/ηt〈∇′, ht〉/‖ht‖2.
Further, we require that the restriction set satisfy the
weak-learning assumption with respect to the stochas-
tic gradient, so that arg maxh∈H〈∇′, h〉/‖h‖ ≥ γ‖∇′‖,
for some γ > 0. We can then extend the analysis of
(Grubb & Bagnell, 2011) to obtain the following:

Theorem 2.2 Let Remp[f ] be a α-strongly con-
vex, and β-strongly smooth functional over F :=
L2(X ,R, P̂ ). Let H ⊂ F be a restriction set with edge
γ. Suppose further that the variance of the stochastic
gradients is bounded so that E[‖∇′t − ∇t‖] ≤ κ‖∇t‖.
Let f∗ ∈ arg minf∈F Remp[f ]. Given a starting point
f0, and step-size ηt = 1/β, after T iterations of our
algorithm, we have:

E[Remp[fT ]]−Remp[f∗] ≤ ρT [Remp[fo]]−Remp[f∗]] ,

where ρ := (1 − (2α/β)(γ/4 − κ2 − κ(1 + γ/2))), and
where the expectation is over the randomization in our
sampling procedure.

3. Experiments and Results

We first describe our experimental setup and then
present our experimental results demonstrating Hu-
man Boosting on category learning tasks, where learn-
ers are expected to learn to distinguish between two
classes A and B of stimuli, based on examples.

3.1. Experimental Setup

We conduct experiments using Amazon’s Mechani-
cal Turk(MTurk). MTurk is a crowdsourcing market-
place which connects requesters, who assign HITs (Hu-
man Intelligence Tasks), to workers who perform the
HITs. MTurk is ideally suited to microtasks which can
be performed quickly. Our program posted HITs on
MTurk to recruit workers and led them to our server
for experiments. On completing the experiment, they
were given a unique random string to enter on MTurk
as verification for payment. Since HITs are paid tasks,
workers have the incentive to spam tasks, i.e. click
through them quickly giving wrong results. Workers
on MTurk are also typically less attentive than vol-
unteers in laboratory experiments. To ensure worker
attentiveness and to discourage spammers, a one sec-
ond delay was given after every training example and
a half second delay was given after every test example.
Our experiments used workers with > 1000 approved
HITs, and a > 95% acceptance rate. All HITs were de-
signed to be completed in less than 20 minutes. Each
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Figure 1. Interface presented to learners, with both visual
and text feedback: correct answers are colored green, and
displayed as text; incorrect answers are colored red.

HIT corresponds to one round of boosting and can
only be picked up by a single worker, and we ensured
that the workers in a run of the boosting algorithm
were all distinct.

Interface: Our interface (Figure 1) is a point and
click web-page built using python CGI and javascript.
Each HIT is a session consisting of two phases, the
training phase and the testing phase. In the training
phase, the learner is shown a stimulus and presented
two buttons, one for each class (“Class A” and “Class
B”). After he chooses an option, he is told whether his
response was correct, and the next stimulus is shown.
Previous stimuli are not removed from the screen. This
kind of training is called “Training with feedback”,
and is known to be superior to observational training
where the learner is only shown examples from each
class(Ashby et al., 2002). After the training phase, we
ask the participant to decide on a rule, write it down
and verify that this rule works on the training exam-
ples they have been provided. In the testing phase,
workers are asked to use the learned rule to label un-
seen examples. Note that since all test examples are
shown to each learner, the test examples will not have
the same distribution as the reweighted training data
(in fact, their distribution is the same as the origi-
nal data). Human learners respond to the test exam-
ples as if they were unlabeled examples and this may
cause drifting of the classification boundary (Zhu et al.
(2010) call this the test-item effect). We attempt to
mitigate this by asking them to explicitly write down
the rule before they begin labeling examples.

3.2. Results

We present experiments on three stimuli: two syn-
thetic, Crosshairs and Gabor patches, and one real
world, the Opinion Spam detection dataset (Ott et al.,
2011). For each stimulus, we contrast the performance
of two groups of learners: the control group and the
boosted group. The control group is trained on a small
sample of the dataset and their accuracy on a test
set is measured. Each learner in the boosted group
is used only in one round of boosting. Humans in

both groups are given the same number of training
examples. The exact instructions given to the work-
ers is included in supplementary materials. Synthetic
stimuli prevent learners from using preconceived no-
tions of classes, so that we can observe the effects of
learning more clearly. Preconceived notions are un-
avoidable when using real world stimuli, however we
mitigate this by hiding the true class labels and telling
the learner only that there are two classes which need
to be distinguished.

We compare the accuracy of the best learner in the
control group to the boosted learner. In the case
of noisy learners such as humans on Turk, the best
learner performs better than the majority vote learner,
and we just compare the performance of the best hu-
man learner with that of the boosted algorithm. Note
that our algorithm is in fact complementary to crowd-
sourcing algorithms used to aggregate human learners
such as those of (Dawid & Skene, 1979; Sheng et al.,
2008), and we are solving the essentially different prob-
lem of boosting human learners.

3.2.1. Crosshair Task

20 40 60

40

60

80

Parameter x

P
ar

am
et

er
 y

Distribution for Crosshair task

Figure 4. Crosshair Learning Task

Two intersecting perpendicular lines, see Figure 4(a),
are presented to the subject as a 100 × 100 pixel im-
age. The class of the cross-hair image depends on
the control dimensions, viz the x and y coordinate of
the point of intersection. We draw classes from the
overlapping gaussians in Figure 4(b). Preliminary ex-
periments indicated that if the classes were separated,
humans would easily learn a linear boundary involv-
ing both dimensions, but they report confusion if the
classes overlap. Further, the optimal decision bound-
ary in Figure 4(b) is quadratic and thus nonlinear.
Since knowing the control parameters for a data point
only probabilistically determine a class, this is an ex-
ample of a probabilistic decision boundary as described
in (Ashby & Maddox, 2005). The human learners were
informed that some class labels may be incorrect. Due
to the class overlap, the maximum accuracy achievable
in this task is 85%. The aim of this experiment is to
demonstrate the boosting can help recover from noisy
input which confuses human learners.

Figure 2(a) shows a histogram of the human learners
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(b) Boosting accuracy

Figure 2. Boosting on the Crosshair Task: The training accuracy of the boosted learners approaches the maximum possible
accuracy of 85% in 10 rounds, performing better than the best control group learner. Boosting can overcome noise in the
dataset
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(b) Boosting with 20 examples
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(c) Boosting with 5 examples

Figure 3. Boosting on the Gabor Task: Given 20 examples in each round, the boosted learner suffers the same limitation
as the best control group learner (uses only the stronger perceptual dimension). However, with 5 examples, boosting
forces learners to concentrate on the discriminative features and achieves > 90% training accuracy in 30 rounds

in the control group who were trained with 5 exam-
ples each. They achieved an average test accuracy of
55.74% ± 11.35% with a maximum of 70%. The re-
ported rules were typically noisy decision stumps in
either dimension. With 5 examples, humans are weak
learners on this task. With more examples, humans do
perform better, but report confusion about the class
boundary. We perform experiments with 5 examples
to demonstrate the effect of boosting.

Figure 2(b) shows the performance of the boosted
learners. In 10 rounds, human boosting achieves 85%
training accuracy and 75% test accuracy, which is bet-
ter than the best control group learner. The gap be-
tween the training and test accuracy is called the “gen-
eralization error” and is a common occurrence in ma-
chine learning algorithms. This error typically goes to
zero as the size of the training set is increased.

3.2.2. Gabor Patch Task
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Figure 6. Gabor Learning Task

A Gabor patch(Figure 6(a)) is a sinusoidal grating
with control parameters: spatial frequency d and ori-
entation θ. The patches are generated using a sine
wave z = sin((0.25 + d/50)x) rotated θ anticlockwise
from the positive x-axis and presented as a 200× 200
pixel image. These dimensions are separable so hu-
mans can reason independently about each of these
dimensions but they find it difficult to learn decision
rules jointly involving both dimensions. This task is
an example of learning information-integration bound-
aries, albeit around 800 examples are required to learn
the information-integration boundary. The classes are
drawn as in Figure 6(b) where the optimal decision
boundary is linear at a 45◦ angle to the axes. We
use parameter values as in (Ell et al., 2009), which
were chosen such that the resulting patches are not too
dense and it is possible to count the number of lines
in the grating and the effects of the dimensions are
balanced. Since humans naturally find this task diffi-
cult, we do not add noise. Note that an ideal boosting
procedure using decision stumps on the true param-
eters can achieve 100% accuracy on this task. Thus,
this task is one of learning an information-integration
boundary using an aggregation of rule-based learners.
We demonstrate that boosting excels at this task and
achieves very high accuracy.

In preliminary experiments, we found that if the deci-
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Figure 5. Boosting on the Opinion Spam dataset: Due to the complexity of the task, control group learners can identify
relevant features, but not the class towards which they point. After 30 rounds, the boosted learner performs better than
all control group learners, though the accuracy will increase if we run it for more iterations

sion boundary is axis-parallel, then it is learned per-
fectly with < 10 examples. On the distribution shown
in Figure 6(b), the average accuracy of human learn-
ers from the control group trained with 20 examples
each was 60.11% ± 12.22%(see Figure 3(a)). Most
learners learned decision rules involving the spatial fre-
quency while none used the orientation. Some partic-
ipants learned rules based on irrelevant artifacts such
as “ropiness” of lines and their responses could not
discriminate between classes. The optimal spatial fre-
quency decision boundary achieves accuracy of 72%,
achieved by 3 learners, though 100% performance is
possible in principle.

Boosting with 20 training examples(Figure 3(b))
quickly achieves 72% training accuracy and stabilizes
at this value (first 11 rounds shown). This is a failure
of the boosting algorithm as it only performs as well as
the best human learner. Examining the user responses
revealed that all learned decision rules used only the
spatial frequency. We speculate that this is because,
with 20 examples, learners focus on the most obvi-
ous discriminative perceptual dimension(spatial fre-
quency) and ignore the others. Boosting with 5 train-
ing examples(Figure 3(b)) on the other hand allows
weak learners to learn decision rules based on the ori-
entation and consequently achieves > 90% training ac-
curacy. This finding might be of interest even from a
cognitive science point of view. It is interesting to
note that (Friedman, 2002) observed a similar effect
with decision trees, viz subsampling can improve per-
formance, though their differences were not as stark.

3.2.3. Opinion Spam Task

While the earlier experiments were based on synthetic
data, we now consider the performance of our method
on a real world dataset. The Opinion Spam task aims
to separate truthful and deceptive reviews. Each stim-
ulus is a hotel review, usually a small paragraph with
4-5 sentences. We used the opinion spam detection

dataset introduced in (Ott et al., 2011) which con-
tains truthful hotel reviews extracted from TripAd-
visor and deceptive reviews for the same hotels gen-
erated using Mechanical Turk. By design, deceptive
reviews are meant to deceive humans and Turkers do
find this task difficult, often performing near random.
This task is challenging because of the number of pos-
sible perceptual dimensions to the task, because the
nature of the decision boundary is unknown and be-
cause the classes may overlap. This task is particularly
interesting for a black-box procedure such as boosting,
since the relevant features are unknown. The decision
boundaries learned by human learners are based on
semantic features which are difficult to capture with
computers (is the review humorous?, sarcastic?, well-
written?). Preliminary experiments showed that if the
learners are informed that they are trying to separate
fake and truthful reviews, they completely ignore the
given training set and use their own preconceived no-
tions of what constitutes a truthful review. Hence, in
our experiments they are only informed that the task is
to separate two classes of reviews. This may, however,
lead to many features not being discriminative. The
average accuracy over the control group human learn-
ers (Figure 5(a)) trained with 10 examples was 51% ±
8.76%, i.e. only slightly better than random. In this
task, we only expect human learners to identify dis-
criminating features in the training set and to classify
the remaining instances according to that feature.

With human boosting(Figure 5(b)), we gradually
achieve 70% training accuracy and 65% test accuracy
on this task after 30 boosting rounds. We expect the
increasing trend in the training accuracy to continue
if the algorithm is run for more iterations.
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