Stochastic ADMM

7. Appendix
7.1. Proof of Lemma 1

Proof. Invoking the optimality condition for (6), we have
(g(x") +sVD(x",u),x —x") >0, Vx € X,
which is equivalent to
(g(x"),x" —x) < s(VD(x",u),x — x")
= s (Vw(x") — Vw(u),x — x")
= s[D(x,u) — D(x,x") — D(x*,u)].

7.2. Proof of Lemma 2

Proof. Due to the convexity of 1 and using the definition of d;, we have

01 (xk) — 01(x) < (01(xk),xx — %) = (01 (xk, Eks1), Xkt1 — X) + (Ghp1, X — Xi) + (01 (Xk, Epg1), Xk — Xpg1) -

Applying Lemma 1 to Line 1 of Alg.2 and taking D(u,v) = %Hv —ul|?, we have

<9/1(Xk7£k+1) + A" [B(Axk 41 + Byr — b) — A, Xpq1 — X>

< g (e = = ek = 1” = fpex = xua )

Combining (23) and (24) we have

91(Xk) — 0, (X) + <Xk+1 — X, —ATAIC+1>

(23)
< 01Xk, € t1), Xkpr — X) + (Brp1, X — Xk) + (01(Xk, Er1), X — Xpp1) +

<Xk+1 — x, AT [B(Axx11 + Byri1 — b) — Ak]>
= <9/1 (Xk,€k+1) + AT [ﬁ(Akarl + Byk - b) - )\k} y Xk+1 — X> +

(Ok+1,X — Xk) + <X — X i1, BAT B(yx — Yk+1)> + (01 (xk, &ror1), Xh — Xk41)
(24)
< 1
T 20kt
<X - xk41, BAT B(yx — }’k+1)> + (01 (XK, €k t1), Xk — Xit1)

(e — 2 = I = X1 = lIxksr = xxl1%) + (Br1x —x1) +

We handle the last two terms separately:
<X — xk41, BAT B(yx — Yk+1)> = B(Ax — Axpt1, Byr — Byr+1)

[(IlAx + Byr = b|* — [|Ax + Byrs1 = b|*) + (| Axk41 + Byr+1 — bl|* — | Axis1 + Byx — bl|*)]

<

@ N

1
(45 -+ By = b = | 4x + Byir = bI) + 55|k = Al

and ||2

< M1 [103 <k, €k41) [k — x|
= 2 2Nk41
where the last step is due to Young’s inequality. Inserting (26) and (27) into (25), we have

(01 (%, €k v1), Xk — Xpy1)

01(x1) — 01(x) + (xics1 =%, A A )

< 1

T 2Nk
1

+ § (I4x + Bys = b* — [ 4% + Byi1 = blI*) + 35 Aerr = Acl®,

N1 101 (xk, €)1
2

(i = I = f[xicss — %) + (81, X — X)

(24)

(25)

(26)

(27)
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Due to the optimality condition of Line 2 in Alg.2 and the convexity of 62, we have
O2(yr+1) — O2(y) + <Yk+1 -y, *BTAk+1> <o.

Using Line 3 in Alg.2, we have

(Ak+1 — A\, AXp41 + Byg+1 — b)

(X = Xl = IX = A |1 = X1 — Al

Taking the summation of inequalities (28) (29) and (30), we obtain the result as desired.

7.3. Proof of Theorem 1
Proof. (i). Invoking convexity of 61(-) and 02(-) and the monotonicity of operator F(-), we have Yw € W:

(62 (1) + O2(y) = O(u) + (wic — w) " F(w)]

IN
| =
MN

=

0(ar) — (u) + (we — w)" F(w:)

&
Il

| =

[602600) + 02(341) = (W) + (Wicss = W) F(wir1)]

kS
Il
=}

Applying Lemma 2 at the optimal solution (x,y) = (x«,y«), we can derive from (31) that, YA

) = 0(w) + (% — %) (A" X) + (Fe — yo) (=BT X) + (A — AT (A%, + By, — b)

07 (x 2 1
Me+11101 (Xk, Ex+1) || + (ka . X*HQ - x*||2) T (G, X — Xk>}
2 2Mk+1

1
2. + Byo — bl + 1A~ w)

D? 1
Dy Bp2 oy 35 - Aoll%)

04 2 1
k1| 1(X2k7£k+1)|\ 4 (Bir, % 7Xk>] +i (

INA

& | =
(]
| — [\&)

(32)

The above inequality is true for all A € R™, hence it also holds in the ball By = {A : ||A||2 < p}. Combing with the fact

that the optimal solution must also be feasible, it follows that

max
AEBy

= max
AEBy

= max {0(@) - 0(u.) — X" (A, + By, — b)}

[6(a,) — 6(u.) + X (Ax. + By. — b) — A"(A%, + By, —b)}

= 0(:) — 0(u.) + p||A%: + By: — b2

{6) —0u) + (e = x)T(~ATA) + (71— y) (=B X) + (A = N (4%, + By —b)}

(33)
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Taking an expectation over (33) and using (32) we have:

E[f(a;) — 0(u.) + p|| AX; + By: — b||2]
14 0, 2 1 /D2
n Z (nkHH 16cks ) + (Okg1, % — Xk>) 1 (7)( + gDi*»Bﬂ

t 2
k=0

e L

<E

WAy ,BD t—1
<= =X L . —
=7 < > an-i- >+ +25t+ ZE (041, %X — X))

1 (M ¢ BD y* 92
_t<2;nk+>+ T

2
< V2DM | BDy.p |
NG 2 28t

In the second last step, we use the fact that xj is independent of &y1, hence E£k+1\£[1:k] (Okt1,Xe — Xi) =
<E£k+1\5[1:k] Ohy1,Xu — Xk> =0.
(#4) From the steps in the proof of part (i), it follows that,
000 = 0u.) + plAxc + By bl
1

0% (xx, 1« 1(D 2
Met1 || 1(2k €r)])? {Z Okt1,Xs — X)) + n (2—7: + gDy* B+ g—ﬁ) (34)

IA

EAt+Bt+Ct

Note that random variables A; and B; are dependent on &[;.

Claim 1. For 1 >0,

M2
Prob (At >(1+ Ql)g ,;nk> <exp{—-}. (35)
Let oy = Z‘, o Vk=1,...,t, then 0 < o < 1 and 22:1 a = 1. Using the fact that {8k, Vk} are independent and

applying Assumptlon 2, one has

€xp {Z ok |07 (%, £k+1)||2/M2 }:|

k=1

" E [exp {103 (i, &) 1*/M°}]

I
’:lﬁ

B
Il
iR

(IE [exp {64 (xx, £k+1)||2/M2}] )ak (Jensen’s Inequality)

(exp{l}) £ =exp {Z ak} = exp{1}

k=1

-

<

B
Il

1

’:lﬁ

<
k

Hence, by Markov’s Inequality, we can get

M2
Prob <At >(1+0)— an> <exp{—(1+M)}E |:exp {Zaknel Xk, Exr1) || /M2} < exp{—}.
= k=1
We have therefore proved Claim 1.
Claim 2. For Q2 >0,
DxM 02
Prob (Bt > 20 \ji ) < exp{ff}. (36)

In order to prove this claim, we adopt the following facts in Nemirovski’s paper (Nemirovski et al., 2009).
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Lemma 3. Given that for all k = 1,...,t, (¢ is a deterministic function of &) with E[§k|£[k_1]] = 0 and
E [exp{{%/aiﬂﬁ[k,u] < exp{l}, we have

(a) For~v>0, E [exp{fy(k}|£[k,1]] < exp{’yQa,%},Vk =1,...,t
(b) Let Sy =3t _| (i, then Prob{S; > Qy/>"1_, 07} < exp {—%2} .

Using this result by setting (¢ = (8k, X« — Xk—1) , St = > 4_, Ck, and o = 2Dx M, Vk, we can verify that E [Cel€r—11] =0

and

E [exp{Ci/ok}ék—11] < E [exp{Dx|8x|*/ok}€r—11] < exp{1},
since [Gu[? < f[x. — xi1 |2 16c]2 < D% (200} (xx, €xr1)[1” +2M2).
Implementing the above results, it follows that

Q3
Prob (St > QQQDXM\/E) < exp (-

Since S; = tB;, we have

DxM 03
Prob (Bt>2QQ \A;Z )gexp{—i}

as desired.

Combining (34), (35) and (36), we obtain

_ M2 DxM Qs
Prob (Errp(ut) > (1‘*‘91)? ;nk+292 i +Ct> Sexp{—ﬂl}—l—exp{—j},
where Err,(@i;) = 0(t;) — 6(u.) + p||A%: + By: — b||2. Substituting Q1 = Q, Q2 = 2v/Q and plugging in n;, = o e
obtain (10) as desired. O

7.4. Proof of Theorem 2
Proof. By the strong-convexity of §; we have Vx:
61 (xi) — 01 (x) < (01 (x), X = %) = £ lx =i
= (01 (%ks €k+1)s Xip1 — X) + (Fpp1, X — Xp) + (01 (%, 1), Xk — k1) — %HX — x|

Following the same derivations as in Lemma 2 and Theorem 1 (i), we have

E[0(t) — 0(us) + pl|AXe + Byt — b)2]
t—1
1 M 104 (xk, Ep41) |12 1 @ 2 llxe — x?
<E{-> Sy RN s = Sl |
E{tZ[ > + 5 ) Ik — x|

P 2Mk41 20k41
BD;. 5 1 >

=2+ B o {5 12— ol
T TR max (g lA — Aol

M2 1 1 uk o plk+1) 2 BDy2 B 0>
<7§ il ,E E |22 —x, %= —x, yeB o P
P2 k+tk0 |:2HXk X | || X541 x||]+ +

2 2t 23t
o Mlogt  pDy  BDy.p  p°
- ut 2t 2t 208t"

7.5. Proof of Theorem 3
Proof. The Lipschitz smoothness of §; implies that Vk > 0:

L
O1(xk+1) < 01(3k) + (VOL(xk), Xk1 = Xi) + Tl x4 — i ?

: L
© 01 (xk) + (V01 (XK, Eut1), X1 — Xi) — (Ot 1, Xe1 — Xi) + §||Xk+1 — x|
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It follows that Vx € X:
01(xk41) — 01(x) + <Xk+1 - X, —ATAk+1>
< 01(xk) — 01(x) + (VO (Xks Ebt1), X1 — Xi) — (Ot1, Xk 1 — Xi) + g“xk+1 — x| + <Xk+1 - X, —AT)\k+1>
= 03(06) = 0200 + (V8 (0§, = k) = (B, X = x0) + 5 [xis —
+ [(Vel(xh&kJrl)vkarl -x)+ <Xk+1 - X, —ATM+1>}
< (V03 (x6), Xa = %) + (V01 (5, 1), X = X0) — (B, Xis = %) + 3 e —
+ [<ve1(xk»£k+l)vxk+l -x)+ <Xk+1 - X, —ATM+1>]
= (Bt x = xes) + e %l 4+ (901 0cks o), %001 = %) + (xee =%, —A"Au )]

L
= (Ok+1,X — Xpy1) + §||Xk+1 — x| + <X — Xpt1, BATB(yr — Yk+1)>

+ <V91(Xk,€k+1) + AT [B(Axii1 + Byr — b) — Ai], X1 — X>

(24) 1 1 —L
< e (el = o= 2) = L2 E -

+ <x — xit1, BAT B(yy, — Yk+1)> + (Okt1,X — Xi41) -
The last inner product can be bounded as below using Young’s inequality, given that ng4+1 < %:

(Ok41,X — Xpt1) = (Okt1,X — Xp) + (01, Xk — Xpp1)

1 o /g1 — L 2
< - S AL T e — .
< (Ok1, X = Xp) + (= D) 6k+11" + 5 1%k = X1

Combining this with inequalities (26,29) and (30), we can get a similar statement as that of Lemma 2:

r 811
O(uti1) = 0w + (Wirs = W) F(Wis) < g el

+ 5—— (e = x)I* = [lxa1 — x)|*) + b (IAx + Byx — b||* — | Ax + Byx+1 — b||?)
2141 2

1
+ (Ok41, X — Xk) + 25 (IX = Xkllz = X = A1 ll3) -

The rest of the proof are essentially the same as Theorem 1 (i), except that we use the new definition of @ in (12)



