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Abstract

In this paper, we claim that some of the non-
support vectors (non-SVs) that have no influ-
ence on the SVM classifier can be screened
out prior to the training phase in pathwise
SVM computation scenario, in which one is
asked to train a sequence (or path) of SVM
classifiers for different regularization param-
eters. Based on a recently proposed frame-
work so-called safe screening rule, we derive
a rule for screening out non-SVs in advance,
and discuss how we can exploit the advan-
tage of the rule in pathwise SVM computa-
tion scenario. Experiments indicate that our
approach often substantially reduce the total
pathwise computation cost.

1. Introduction

The support vector machine (SVM) is one of the most
successful classification algorithms. An advantage of
the SVM is that, once we identify non-support vectors
(non-SVs) that do not have any influence on the classi-
fier, they can be thrown away in the future test phase.
In this paper, we show that, in a certain scenario, some
of the non-SVs can be screened out and they can be
thrown away prior to the training phase, which often
leads to substantial reduction in the training cost.

The main contribution of this paper is to introduce an
idea of recently proposed safe screening rule for the
purpose of identifying non-SVs in SVM prior to train-
ing phase. The safe screening rule was first introduced
in Ghaoui et al. (2010) in the context of L1 sparse reg-
ularization, and some extensions have been recently
reported (Xiang et al., 2012; Xiang & Ramadge, 2012;
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Wang et al., 2012; Dai & Pelckmans, 2012). Those
rules allow us to safely identify the features whose coef-
ficients would be zero at the optimal solution before ac-
tually solving it1. Our contribution is in non-trivially
adapting the idea of safe feature screening to non-SV
screening in SVM. To the best of our knowledge, there
are no other screening rules that can “safely” screen-
out non-SVs of standard kernel-based SVM before ac-
tually training it.

In this paper, we argue that the advantage of our non-
SV screening rule can be fully exploited in a pathwise
computation scenario where a sequence (or path) of
SVM classifiers for different regularization parameters
must be trained. Since pathwise computation is in-
dispensable for model selection, our approach, that
can often substantially reduce the total cost, would
be practically useful.

2. Problem Setup

Suppose we have a training set DN := {(xi, yi)}i∈N,
where xi ∈ X ⊆ Rd, yi ∈ {−1, 1} and N := {1, . . . , n}.
We consider classifiers in the form2:

f(x) = w>x, (1)

where w is a vector in a feature space that is often
defined implicitly by a kernel function K : X×X → R.
Our task is to train a support vector machine (SVM)
by solving the following optimization problem

min
w∈Rd

1
2
||w||2 + C

∑
i∈N

[1− yif(xi)]+, (2)

where [z]+ indicates the positive part of z. Here, C > 0
is a regularization parameter that controls the balance

1Note that these safe rules are different from non-safe
screening heuristics such as (Fan & Lv, 2008; Tibshirani
et al., 2011; Vats, 2012).

2The bias term can be augmented to w and x as an
additional dimension. See also the discussion in section 6.
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between the regularization term and the loss term.

The dual of (2) is the following maximization problem

max
α
− 1

2
α>Qα + 1>α s.t. α ∈ [0, C]n, (3)

where α is an n-dimensional vector of Lagrange mul-
tipliers, and Q is an n × n matrix whose element is
defined as Qij := yiyjK(xi, xj). With the Lagrange
multipliers, the classifier (1) is rewritten as

f(x) =
∑
i∈N

αiyiK(x, xi). (4)

If we categorize the n training instances into

R := {i ∈ N|yif(xi) > 1}, (5a)
E := {i ∈ N|yif(xi) = 1}, (5b)
L := {i ∈ N|yif(xi) < 1}, (5c)

the optimality conditions of the problems (2) or (3)
are summarized as

i ∈ R ⇒ αi = 0, (6a)
i ∈ E ⇒ αi ∈ [0, C], (6b)
i ∈ L ⇒ αi = C, (6c)

where E stands for the points at the E lbow of the hinge
loss function, while R and L are for Right and Left of
the elbow.

The optimality condition (6a) suggests that, if some
of the training instances are known to be the members
of R in advance, we can throw away those instances
prior to the training stage. Similarly, if we know that
some instances are the members of L, we can fix the
corresponding αi = C at the following training phase.
Namely, if some knowledge on these three index sets
are known a priori, our training task would be ex-
tremely simple and easy. In fact, existing SVM solvers
usually spend most of their computational resources
for identifying these index sets (Joachims, 1999; Platt,
1999; Cauwenberghs & Poggio, 2001; Hastie et al.,
2004; Fan et al., 2008; Chang & Lin, 2011).

The instances in R are often called non-support vec-
tors (non-SVs) because they have no influence on the
resulting classifier. In this paper, we show that, in a
certain situation, some of the non-SVs and some of the
instances in L can be screened out prior to the train-
ing stage. In what follows, we call the screening rule as
non-SV screening rule. Note, however, that this ter-
minology refers to the rule for screening out not only
non-SVs (the instances in R) but also those in L.

3. Screening Non-Support Vectors

In order to derive a non-SV screening rule, let us write
the primal SVM problem (2) as

min
w

J(w) :=
1
2
||w||2 (7a)

s.t. H(w) :=
∑
i∈N

[1− yif(xi)]+ ≤ s, (7b)

where s > 0 is an upper bound of the sum of the hinge
loss. The formulations in (2) and (7) are equivalent
in the sense that there is always a correspondence be-
tween the regularization parameter C and the upper
bound s (see section 4). We denote the optimal solu-
tion of (7) at s as w∗(s) and the optimal classifier at
s as f∗(x|s) := w∗(s)>x.

Properties of the optimal solutions Let us con-
sider two upper bounds sa > sb. Then, it is easy to
see that

J(w∗(sa)) ≤ J(w∗(sb)) (8)

because the constraint in the latter problem is uni-
formly tighter than the former. The relation (8) can be
rewritten with ∇J(w)|w=w∗(sa), the gradient of J(w)
at w = w∗(sa). Since (8) indicates that the vector
w∗(sb)− w∗(sa) must be an ascent direction of J(w),
we have

(∇J(w)|w=w∗(sa))>(w∗(sb)− w∗(sa)) ≥ 0

⇔ w∗(sa)>(w∗(sb)− w∗(sa)) ≥ 0. (9)

Next, let ŵ(sb) be an arbitrary primal feasible solution
to (7) at s = sb. Then, it is clear that

J(w∗(sb)) ≤ J(ŵ(sb)) ⇔ ||w∗(sb)||2 ≤ ||ŵ(sb)||2 (10)

because w∗(sb) minimizes J(w) under the constraint
H(w) ≤ sb.

In fact, the relations (9) and (10) can be applied not
only to w∗(sb), but also to the entire range of the op-
timal solutions for all s ∈ [sb, sa]. This simple fact is
summarized in the following lemma:

Lemma 1 Consider two positive scalars sa > sb, and
assume that there exists at least a (primal) feasible so-
lutions of (7) at s = sb. Let w∗(sa) be the optimal
solution of the problem (7) at s = sa, and ŵ(sb) be
an arbitrary feasible solution of (7) at s = sb, i.e.,
H(ŵ(sb)) ≤ sb. Then,

w∗(sa)>(w∗(s)− w∗(sa)) ≥ 0 (11)

and

||w∗(s)||2 ≤ ||ŵ(sb)||2 (12)

are satisfied for all s ∈ [sb, sa].
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Figure 1. A geometric interpretation of the properties of
the solutions of (7) in Lemma 1. For any sa > sb, when
one has the optimal solution w∗(sa) at sa, and a primal
feasible solution ŵ(sb) at sb, then the optimal solutions
w∗(s) at any s ∈ [sb, sa] is guaranteed to be located in the
red dome-shape region Θ[sb,sa]. It is because the vector
w∗(sa)−w∗(s) must be an ascent direction of the objective
function values J(w), and because J(w∗(s)) ≤ J(ŵ(sb)).
The former suggests that the solution w∗(s) must be in
the upper right part of the dotted line, while the latter
indicates that w∗(s) must be inside the circle.

We omit the proof of this lemma because it is clear
from the discussion in (9) and (10). Figure 1 provides
a geometric interpretation of Lemma 1.

Basic idea According to the optimality conditions
(5) and (6), the ith training instance is categorized into
either of R, E or L based on the value of yif(xi). The
basic idea for constructing our non-SV screening rule
is to bound yif(xi) by using the properties discussed
in Lemma 1. Namely, we consider a subset of the solu-
tion space Θ[sb,sa] ⊂ Rd in which the optimal solution
w∗(s) for any s ∈ [sb, sa] is guaranteed to exist, and
compute the minimum and the maximum values of
yif(xi) within the set Θ[sb,sa]. From Lemma 1,

Θ[sb,sa] :=
{

w ∈ Rd

∣∣∣∣ w∗(sa)>(w − w∗(sa)) ≥ 0,
||w||2 ≤ ||ŵ(sb)||2

}
.

We can ensure that ith training instance would be in
R (i.e, non-SV) if

min
w∈Θ[sb,sa]

yif(xi) > 1, (13)

and, it would be in L if

max
w∈Θ[sb,sa]

yif(xi) < 1. (14)

for the entire range optimal solutions at s ∈ [sb, sa]. It
is simply because (13) and (14) suggests yif

∗(xi|s) > 1
and yif

∗(xi|s) < 1, respectively. Figure 2 illustrates
the idea behind this.

Figure 2. Schematic illustrations of how the lower and the
upper bounds of yif(xi) can be used for screening out non-
SVs. In the left, the ith instance would not be screened
out because the pink line yif(xi) = w>(xiyi) = 1 intersects
with the red region Θ[sb,sa], which means that yif(xi) can
be either less than 1, equal to 1, or greater than 1 at the op-
timal solution. On the other hand, the jth instance in the
right plot can be safely screened out as a non-SV because
the lower bound of yjf(xj) is greater than 1.

Computing the bounds A nice thing about (13)
and (14) is that the solutions of these minimization
and maximization problems can be explicitly com-
puted. We obtain the following screening rule:

Theorem 2 Consider two scalars sa < sb, and let
w∗(sa) and ŵ(sb) be the optimal solution at s = sa and
a feasible solution at s = sb, respectively, as Lemma 1.
Also, let us write

γa := J(w∗(sa)), γb := J(ŵ(sb))

for notational simplicity. Then, for all s ∈ [sb, sa],

yif
∗(xi|sa) > 1 and `i > 1 ⇒ i ∈ R ⇔ αi = 0,

(15)
where

`i := yif
∗(xi|sa)

−
√

γb − γa

γa
(2γa||xi||2 − f∗(xi|sa)2). (16)

Similarly,

ui < 1 ⇒ i ∈ L ⇔ αi = C, (17)

where

ui :=



√
2γb||xi||,

if yif
∗(xi|sa)
||xi|| ≥

√
2γa√
γb

,

yif
∗(xi|sa)

+
√

γb−γa

γa
(2γa||xi||2 − f∗(xi|sa)2),

otherwise.

(18)
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Algorithm 1 SafeScreening

1: Input: DN = {(xi, yi)}i∈N, w∗(sa), ŵ(sb);
2: Output: L̃, R̃, Z̃;
3: Initialize: L̃ ← ∅, R̃ ← ∅, Z̃ ← N and i ← 1;
4: while i ≤ n do
5: if (xi, yi) satisfies the conditions in (15) then
6: R̃ ← R̃ ∪ {i}, Z̃ ← Z̃ \ {i};
7: end if
8: if (xi, yi) satisfies the condition in (17) then
9: L̃ ← L̃ ∪ {i}, Z̃ ← Z̃ \ {i};

10: end if
11: i ← i + 1;
12: end while

The proof of Theorem 2 is given in the supplementary,
where we just solved the minimization and the max-
imization problems (13) and (14) by using standard
Lagrange multiplier method. The main cost for eval-
uating the rule is in the computation of f∗(xi|sa) =
w∗(sa)>xi, which takes O(d) cost if xi is dense. How-
ever, in pathwise computation scenario that we discuss
in section 4, it is likely that this value would have been
already computed in earlier steps and stored in cache.
In this case, the rule can be evaluated with O(1) cost.

From (16), we see that `i is not larger than yif
∗(xi|sa).

It suggests that the screening rule (15) should be
applied only to the instances with yif

∗(xi|sa) > 1.
On the other hand, we might get a chance to have
yif

∗(xi|s) < 1 for some i and s ∈ [sb, sa] even if
yif

∗(xi|sa) ≥ 1 at sa. Thus, the rule (17) is also ap-
plied to such an instance.

Algorithm 1 describes the non-SV screening rule.
Here, {L̃, R̃, Z̃} are the output of the rule. Each of
them represents the subset of the training instances
guaranteed to be in L (i.e., αi = C), those guaranteed
to be in R (i.e., αi = 0), and those we are not sure
where it belongs to, respectively. When we compute
the solution at an s ∈ [sb, sa], we can only work with
the subset of the training instances DZ̃ (note that, the
variable αi, i ∈ L̃ can be fixed to C during the opti-
mization process).

Kernelization It is easy to note that the lower
bound `i and the upper bound ui can be computed
only through kernels. The dual of (7) has similar
form as (3) (see (20) later), and f(x) is written as
in (4) using the Lagrange multipliers α ∈ Rn. Not-
ing that ||xi||2 = K(xi, xi), all the quantities in (16)
and (18) can be evaluated by using the kernel K and
the dual variables α. In this case, the computation of
yif

∗(xi|sa) = (Qα∗(sa))i takes O(n) cost, where (v)i

for a vector v represents the ith element, and α∗(sa)

is the optimal Lagrange multipliers at sa. In pathwise
computation scenario, this value has been often com-
puted in earlier steps. Then, the rule can be evaluated
with O(1) cost for each instance.

Interpretation The non-SV screening rule can be
interpreted in the following way. The lower bound `i

in (16) indicates that

yif
∗(xi|sa)− yif

∗(xi|s)

≤
√√√√(γb − γa)/γa︸ ︷︷ ︸

(♠)

· (||xi||2||w∗(sa)||2 − (x>
i w∗(sa))2)︸ ︷︷ ︸

(♣)

,

i.e., the difference of yif(xi) values between sa and
s are bounded by the quantity in the r.h.s. Roughly
speaking, (♠) is the relative difference of the objec-
tive function values between sa and sb, while (♣) rep-
resents how close the ith instance is to the decision
boundary at sa (note that, the quantity in (♣) is max-
imized when cos(xi, w

∗(sa)) = 0 and minimized when
cos(xi, w

∗(sa)) = ±1 if the sizes of the two vectors are
fixed). It suggests that, if there is no much difference
between two objective function values and the ith in-
stance is away from the decision boundary at sa then
yif

∗(xi|s) would not be so different from yif
∗(xi|sa).

Then, if yif
∗(xi|sa) is also reasonably away from 1, the

ith instance is likely to be screened out as a non-SV.

4. Pathwise SVM Computation

For evaluating a non-SV screening rule, we need to
know two things: the optimal solution at a smaller C,
and a feasible solution at a larger C (note that a small
s in (7) corresponds to a large C in (2), and vice-versa).
If we do not have these two, they must be computed
prior to the rule evaluation. Then, the computational
gain brought by the screening rule might be small or
even vanish with these additional costs.

However, in a situation that a series of pathwise op-
timal solutions w.r.t. the regularization parameter C
must be computed, we can exploit the advantage of
the screening rule. In this section, we describe how
we can efficiently compute pathwise solutions by us-
ing the non-SV screening rule we have developed in
the previous section. Computing pathwise solutions is
practically important because model selection (e.g., by
cross-validation) is indispensable for selecting a classi-
fier that generalizes well.

Regularization Path These pathwise solutions are
often referred to as regularization paths. In the SVM,
the regularization path was first studied in (Hastie
et al., 2004), where parametric programming (Allgo-
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wer & George, 1993; Gal, 1995; Best, 1996; Takeuchi
et al., 2009; Karasuyama et al., 2012) is introduced
for computing the exact path of the SVM solutions.
This algorithm is quite efficient for small or medium-
size problems. For larger problems, approximate path
obtained by computing a fine grid sequence of path-
wise solutions can be used as an alternative (Friedman
et al., 2007; 2010; Yuan et al., 2010; 2012).

In what follows, we present an algorithm for comput-
ing a sequence of the optimal solutions of (3) at T
different Cs: 0 < C(1) < . . . < C(T ). By the reason
that will be explained later, we first solve two opti-
mization problems at the smallest C(1) (the largest
s(1)) and at the largest C(T ) (the smallest s(T )). Al-
though these costs might be rather expensive, once
we obtain these two optimal solutions, the rest of the
pathwise solutions at C(2), . . . , C(T−1) can be fairly
cheaply computed by exploiting the advantage of the
non-SV screening rule. In the algorithm, many non-
SV screening rules are made, and each rule is used for
computing a sub-sequence of the pathwise solutions.
Let M ≥ 2 be the length of each sub-sequence. Then,
roughly speaking, each non-SV screening rule covers
the sub-sequence of the solutions in the following way:

1st rule : {C(2) . . . C(M+1) },
2nd rule : {C(M+2) . . . C(2M+1)},

...
...

T
M th rule : {C(T−M) . . . C(T−1) }.

The details of the algorithm are described in Algo-
rithms 2 at the end of this section.

Our algorithm is a meta-algorithm in the sense that
any SVM solvers that can solve the dual optimization
problem (3) can be used as a component.

Relation between C-form and s-form Before
presenting how to construct the rule for each sub-
sequence, we need to clarify the relation between the
two formulations (2) and (7) because the algorithm
uses both formulations interchangeably. We call the
former as C-form, and the latter as s-form.

First, consider a situation that we have the optimal
solution of C-form at a certain C. Then, the corre-
sponding s in the s-form is simply computed as

s =
∑
i∈N

[1− yif
∗(xi|C)]+, (19)

where f∗(·|C) is the optimal classifier at C. On the
other hand, when we have an s-form problem at a
certain s, the dual of (7) is written as

max
α,C

− 1
2
α>Qα + 1>α− Cs s.t. α ∈ [0, C]n, (20)

and the corresponding C in C-form is obtained by solv-
ing this dual problem.

When we interchangeably use these two formulations
in the algorithm, we use the following simple fact:

Lemma 3 For Ca < Cb in C-form, the corresponding
sa and sb in s-form satisfy sa ≥ sb. Conversely, for
sa > sb in s-form, the corresponding Ca and Cb satisfy
Ca ≤ Cb.

The proof is in the supplementary.

Using the correspondence between C and s, we de-
note the sequence of s corresponding to C(1) < C(2) <
. . . < C(T ) as s(1) ≥ s(2) ≥ . . . ≥ s(T ), respectively.
In addition, with a slight abuse of notation, we write
w∗(C) and w∗(s) to represent the optimal solution at
C in C-form, and at s in s-form, respectively.

4.1. Constructing a non-SV screening rule

Consider a situation that the pathwise solutions at
C ≤ C(t) have already been computed. Our next task
is to construct a non-SV screening rule that is used for
computing the solutions at C(t+1), . . . , C(t+M) (equiv-
alently, at s(t+1), . . . , s(t+M)). To this end, we need
to know the optimal solution at an sa ≥ s(t+1) and a
feasible solution at an sb ≤ s(t+M). For the former, we
can just set sa = s(t) and use the optimal solution at
s(t) because it has already been computed.

For the later, we can set sb = s(T ) since s(T ) ≤ s(t+M)

(see Lemma 4). However, if s(T ) is much smaller than
s(t+M), then the rule would not be able to screen out
many non-SVs. In order to make a better rule, we
need to find a tighter sb ≥ s(t+M). Unfortunately, this
is a non-trivial challenging task from the following two
aspects. First, we do not know s(t+M) since it is avail-
able only after finding the optimal solution at C(t+M).
Second, even if we could have an sb ≤ s(t+M), finding
a feasible solution at the sb is often as difficult as find-
ing the optimal solution. We address the first issue
in a trial-and-error manner, and its detail is discussed
in section 4.2 and supplementary. In the sequel, we
describe how to handle the second issue.

Computing a feasible solution To address the
difficulty in finding a feasible solution at sb, we first
compute the optimal solution w∗(s(T )) at the largest
C = C(T ) (corresponding to the smallest s = s(T )) us-
ing any algorithms that suits to this task. Although
this cost would be rather expensive, once we have
w∗(s(T )), we can utilize it for finding all the other
feasible solutions in later steps in a trivial amount of
computation.
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Consider a case that we make a rule defined on [sb, sa].
Given w∗(sa) and w∗(s(T )), we can easily find a
feasible solution at sb by solving the following one-
dimensional convex optimization problem:

min
v∈[0,1]

1
2
||w(v)||2

s.t.
∑
i∈N

[1− yif(xi)]+ ≤ sb

w(v) = vw∗(sa) + (1− v)w∗(s(T )). (21)

This one-dimensional convex problem can be easily
solved by a line-search algorithm such as bisection
method. Note that we can always find a feasible
v ∈ [0, 1] for any sb ∈ [s(T ), sa] because the constraint
set H(w) ≤ sb is convex. This line-search can be ker-
nelized since both the objective function values and
the constraints can be evaluated only through kernel
computations. Figure 3 depicts how to find a primal
feasible solution.

Figure 3. Geometric interpretation of the one-dimensional
line-search problem in (21). For sa > sb > s(T ), when one
has the optimal solution w∗(sa) at sa, and the optimal so-
lution w∗(s(T )) at the smallest s = s(T ) (corresponding to
the largest C = C(T )), then a primal feasible solution ŵ(sb)
at sb can be easily found by solving this one-dimensional
convex problem with any line-search solver.

4.2. Pathwise computation algorithm

Algorithm 2 describes how we compute pathwise SVM
solutions with the help of non-SV screening rules. In
this algorithm, we first compute two SVM solutions
w∗(C(1)) and w∗(C(T )) using the entire training set.
Once we obtain these two optimal solutions, the rest
of the pathwise solutions at C(2), . . . , C(T−1) can be
computed efficiently because non-SV screening rules
can reduce the training set size. The algorithm is a bit
complicated because we need to use C-form and s-form
interchangeably. Due to space limitation, FindSb and
ComputeSubPath functions in Algorithm 2 and some

additional information about the algorithm is provided
in the supplementary.

Algorithm 2 SafeScreeningPath (see section 4.2)

1: Input: DN := {(xi, yi)}i∈N, {C(t)}Tt=1, M ;
2: Output: {w∗(C(t))}Tt=1;
3: Initialization:
4: w∗(C(1)) ← SVMSolver(DN, C(1));
5: Compute s(1) by (19);
6: w∗(C(T )) ← SVMSolver(DN, C(T ));
7: Compute s(T ) by (19);
8: t ← 1;
9: while t < T −M do

10: sa ← s(t);
11: {sb, w

∗(sb)} ← FindSb(DN, C(t+M), w∗(sa));
12: {L̃, R̃, Z̃} ← Screen(DN, w∗(sa), w∗(sb));
13: {w∗(C(u))}t+M−1

u=t+1

← ComputeSubPath(DZ̃ , {C(u)}t+M−1
u=t+1 )

14: t ← t + M ;
15: end while
16: {L̃, R̃, Z̃} ← Screen(DN, w∗(s(t)), w∗(s(T )));
17: {w∗(C(u))}T−1

u=t+1

← ComputeSubPath(DZ̃ , {C(u)}T−1
u=t+1)

5. Numerical Experiments

In this section, we report experimental results.

Toy example First, we applied our non-SV screen-
ing to a simple 2-dimensional toy data set plot-
ted in Figure 4. In each class, 300 data
points were generated from N({1.5, 1.5}>, 0.752I) and
N({−1.5,−1.5}>, 0.752I), respectively, where I is an
identity matrix. We constructed a non-SV screening
rule for the range of C ∈ [1, 10]. Among 600 data
points, the rule screened out 530 points. Among them,
only one instance was screened out as a member of
L̃, and the rest were screened out as R̃ (non-SVs).
It means that, if we want to train an SVM for any
C ∈ [1, 10], we have only to solve the optimization
problem with the remaining 70 data points. Figure 4
shows which data points are screened out. Interest-
ingly, some data points close to the boundaries were
also screened out, while some points distant away from
the boundaries are kept remained.

Pathwise computation cost We investigate the
performance of our non-SV screening in the pathwise
computation scenario discussed in section 4. Here, we
only report the experiments with linear kernel. As the
plug-in SVM solver, we used a state-of-the-art linear
SVM solver LIBLINEAR (Hsieh et al., 2008).
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Figure 4. The non-SV screening rule defined in C ∈ [1, 10]
for linear classification of 2D toy data set. Green and pink
dotted lines are the optimal decision function at C = 1
and C = 10, respectively. The points represented by open
squares and triangles are those screened out by the rule.
The points represented by filled circle are not screened out
and kept remained. Any SVM for C ∈ [1, 10] can be trained
only with those data points.

We applied the pathwise computation algorithm to
four data sets as described in Table 1. For each data
set, our task is to compute the SVMs for 100 different
C ∈ [10−2, 102] evenly distributed in logarithmic scale.
As explained in the previous section, we set M = 5,
where M is the number of solutions each screening
rule covers. It means that, we constructed 20 screen-
ing rules for each data set.

We compared our non-SV screening with “naive” and
“heuristic screening” approaches. In the naive ap-
proach, we just computed each pathwise SVM solu-
tions one by one. In the heuristic screening approach,
we predicted the active sets R and L as those at the
previously computed SVM solution with smaller C,
and their corresponding αi were fixed as 0 and C, re-
spectively. If some of those predictions were found to
be wrong (by cheking the optimality condition), we
trained the SVM again after adding those violating
instnaces to the training set, and this process was re-
peated until all the instances satisfy the optimality.
Table 1 summarizes the computation time for obtain-
ing the pathwise solutions on these four data sets.

Figures 5 ∼ 8 show the screening results of the four
data sets in Table 1. In each figure, the top plot in-
dicates the rate of screened out instances at each C.
Since we made 20 rules in this experiment, there are
20 segments in these plots. The bottom plot indicates
the computation time spent for computing an SVM
solution at each C. The blue lines and dots indicate
the time when we solve an SVM with the entire train-

Table 1. Computation Time in Pathwise Computation on
four data sets. In “Naive approach”, all the pathwise so-
lutions were naively computed one by one. In “Heuristic
screening”, the active sets R and L were assumed to be
same as the previous SVM with smaller C, and “Wasted”
indicates the computation time taken for computing non-
optimal solutions (by wrong prediction). In our Non-SV
screening, “Line Search” and “Rule” indicates the com-
putation time spent for finding feasible solutions, and for
constructing the rules, respectively. “ SVM Solver” is the
total time spent to compute pathwise solutions in SVM
solver.

DIGIT1 Data (n = 1500, d = 241)

Naive Approach Total 53.405 sec

Heuristic Screening
Wasted 14.400 sec
Total 22.334 sec

Line Search 0.0020 sec

Non-SV Screening
Rule 0.0010 sec

SVM Solver 18.591 sec
Total 18.599 sec

PCMAC Data (n = 1946, d = 7511)

Naive Approach Total 1.9817 sec

Heuristic Screening
Wasted 1.3800 sec
Total 3.0016 sec

Line Search 0.0060 sec

Non-SV Screening
Rule 0.0040 sec

SVM Solver 1.2588 sec
Total 1.2748 sec

Magic Gamma Telescope Data (n = 19020, d = 10)

Naive Approach Total 7255.5 sec

Heuristic Screening
Wasted 6407.5 sec
Total 12139 sec

Line Search 0.0210 sec

Non-SV Screening
Rule 0.0240 sec

SVM Solver 4916.8 sec
Total 4916.8 sec

IJCNN1 Data (n = 49990, d = 22)

Naive Approach Total 27876 sec

Heuristic Screening
Wasted 830.33 sec
Total 8020.5 sec

Line Search 0.0500 sec

Non-SV Screening
Rule 0.0360 sec

SVM Solver 16495 sec
Total 16495 sec

ing set in the naive approach. The green lines and
dots indicate the total computation time of the heuris-
tic screening. The red lines and points indicate SVM
training time for reduced training set after applying
our non-SV screening rule. In these, red circles are
plotted at every five Cs (since M = 5). These points
correspond to the cost at line 8 of Algorithm 3 (see
supplementary). The costs at these points are usually
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Figure 5. DIGIT1 Screening Results
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Figure 6. PCMAC Screening Results

higher than others because we used a rough estimate
of sb when making the rule for this solution.

From Table 1 and Figures 5 ∼ 8, we see that our non-
SV screening rule could substantially reduce the total
pathwise computation cost. Compared with the naive
approach, our non-SV screening rule reduced the to-
tal cost by 65%, 36%, 32%, and 41% in each data set.
Note that the cost for finding feasible solutions “Line
Search” and that for constructing rules “Rule” are neg-
ligible. In three of the four data sets, the costs of the
heuristic screening rule were larger than those of our
non-SV screening rule. Note that, in PCMAC data
set, it was even worse than the naive approach. This
is because the heuristic screening rule is NOT safe,
meaning that, when it makes false positive screenings,
one needs to repeat the training after correcting those
mistakes (“Wasted” in Table 1 indicates the training
cost with false positive screenings). Overall, the ex-
periments illustrate that our non-SV screening rule is
useful in pathwise computation scenario.
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Figure 7. MAGIC Screening Results
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Figure 8. IJCNN1 Screening Results

6. Conclusions and Discussions

In this paper, we introduced the idea of safe screen-
ing rule for the task of identifying non-SVs prior to
SVM training. We show that the advantage of non-
SV screening rule can be fully exploited in pathwise
computation scenario. Some experiments illustrate ad-
vantages of our approach.

In our experiments, our non-SV screening rule could
not screen-out many instances when we used Gaussian
kernel. It would be important to clarify what types of
kernel could be used with our non-SV screening rule.
In addition, we would also need to consider how we
can extend the current non-SV screening rules when
the decision function has constant bias term.
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