
Safe Screening of Non-Support Vectors in Pathwise SVM Computation

A. The Proof of Theorem 2

Here, we prove the theorem by explicitly deriving our
non-SV screening rule in section 3.

The proof First, we proove (15) and (16) by solving
the minimization problem in (13) with the Lagrange
multiplier method. The minimization problem can be
calculated as follows:

min
w∈Θ[sb,sa]

yif(xi)

= min
w

w>yi(w>xi)

s.t.
1
2
||w||2 ≤ γb, w

∗(sa)>(w − w∗(sa)) ≥ 0

= min
w

(
max

µ≥0,ν≥0

(
yiw

>xi

+ µ(
1
2
||w||2 − γb)− νw∗(sa)>(w − w∗(sa))

))
= max

µ≥0,ν≥0

(
−µγb + ν||w∗(sa)||2

+ min
w

(µ

2
||w||2 + (yixi − νw∗(sa))>w

))
= max

µ≥0,ν≥0

(
−µγb + ν||w∗(sa)||2

− 1
2µ
||yixi − νw∗(sa)||2

)
,

where µ ≥ 0 and ν ≥ 0 are the Lagrange multipli-
ers, and the maximand in the last line is so-called La-
grangian:

L(µ, ν) :=− µγb + ν||w∗(sa)||2

− 1
2µ
||yixi − νw∗(sa)||2. (22)

At the optimal solution, we must satisfy

∂L

∂ν
= 0 ⇔ 2γa +

yif
∗(xi|sa)− 2νγa

µ
= 0.

Since the Lagrange multiplier ν ≥ 0, we can write

ν = max
(
0,

yif
∗(xi|sa)
2γa

+ µ
)
.

Thus, if µ ≤ −yif
∗(xi|sa)
2γa

, then

ν = 0. (23)

In this case, noting that the Lagrange multiplier µ ≥ 0,
we have

∂L

∂µ
= 0 ⇔ µ =

||xi||√
2γb

. (24)

On the other hand, if µ > −yif
∗(xi|sa)
2γa

, then

ν =
yif

∗(xi|sa)
2γa

+ µ. (25)

In this case, we have

∂L

∂µ
= 0 ⇔ µ =

1
2

√
2||xi||2γa − f∗(xi|sa)2

γaγb − γ2
a

. (26)

By plugging the pair of (µ, ν) in ((24), (23)) or in ((26),
(25)) into L(µ, ν) in (22), the lower bound can be sum-
marized as

min
w∈Θ[sb,sa]

yif(xi)

:=

−
√

2γb||xi||,
if − yif

∗(xi|sa)
||xi|| ≥

√
2γa√
γb

,

yif
∗(xi|sa)

−
√

γb−γa

γa
(2γa||xi||2 − f∗(xi|sa)2),

otherwise.

In the former case when −yif
∗(xi|sa)
||xi|| ≥

√
2γa√
γb

, the lower
bound minΘ[sb,sa] yif(xi) = −

√
2γb||xi||2 is clearly less

than 1, and there is no hope to screen out this instance
as a non-SV. It suggests that we can only consider the
latter case. In addition, if we look into the lower bound
in the latter case, the first term is the value of yif(xi)
at sa, while the second squared-root term is obviously
non-negative. It means that we have a chance to screen
out the ith instance only when yif

∗(xi|sa) > 1. This
is why the screening rule for R has the form in (15)
and (16).

Next, we prove (15) and (16). In the same way, we can
write the upper bound of yif(xi) as follows:

max
w∈Θ[sb,sa]

yif(xi)

:=

√
2γb||xi||,

if yif
∗(xi|sa)
||xi|| ≥

√
2γa√
γb

,

yif
∗(xi|sa)

+
√

γb−γa

γa
(2γa||xi||2 − f∗(xi|sa)2),

otherwise.

Here, we might have a chance to screen out the ith
instance also in the former case when yif

∗(xi|sa)
||xi|| ≥

√
2γa√
γb

. In the latter case, we only have a chance to
screen out the ith instance if yif

∗(xi|sa) < 1 since the
second squared-root term is non-negative. However,
for notational simplicity, we just write the screening
rule for L in the form of (17) and (18). Q.E.D.

Safe Screening of Non-Support Vectors in Pathwise SVM Computation

B. The Proof of Lemma 3

In the proof, we use index sets to represent subvectors
and submatrices. For example, vA for a vector v in-
dicates a subvector of v having only the elements in
the index set A, and MA,B for a matrix M indicates a
submatrix of M having only the rows in the index set
A and the columns in the index set B. In addition, we
write 1n to represent an n-dimensional vector of 1s.

In order to prove Lemmas 3, we first summarize the op-
timality condition of the problem (7) in s-form. Then,
based on them, we clarify the sensitivity of C in C-
form to s in s-form.

Proposition 4 Consider the optimal solution f∗(·|s)
of the problem (7) at a certain s (we assume that there
exists a feasible solution with the s). Then, the dual
problem is formulated as

max
α,C

− 1
2
α>Qα + 1>α− Cs s.t. α ∈ [0, C]n, (27)

where α ∈ Rn and C ∈ R is the Lagrange multipliers.
Using these Lagrange multipliers, the optimal classifier
is written as

f∗(x|s) =
∑
i∈N

yiαiK(x, xi), (28)

If we define the following three index sets:

R := {i ∈ N|yif
∗(xi|s) > 1}, (29a)

E := {i ∈ N|yif
∗(xi|s) = 1}, (29b)

L := {i ∈ N|yif
∗(xi|s) < 1}, (29c)

then, the Lagrange multipliers α ∈ Rn satisfy

i ∈ R ⇒ αi = 0, (30a)
i ∈ E ⇒ αi ∈ [0, C], (30b)
i ∈ L ⇒ αi = C, (30c)

where, remember that, C is the optimal Lagrange mul-
tiplier for the constraint (7b) which is also obtained
after solving the optimization problem (27).

At the optimal solution, unless all the training in-
stances are correctly classified with the margin greater
than 1 (i.e., unless the set L is empty), the constraint
(7b) is active, i.e.,∑

i∈N

[1− yif
∗(xi|s)] = s. (31)

We omit the proof of this proposition because it is
easily shown by using standard Lagrange multiplier
theory (Boyd & Vandenberghe, 2004).

The Proof In order to prove the lemma, we derive
the optimality conditions of the problem (20) at s.
Given the three index set L, E , R in (30), the opti-
mality conditions of the problem are written as

i ∈ R ⇒ yif(xi) > 1, αi = 0, (32a)
i ∈ E ⇒ yif(xi) = 1, αi ∈ [0, C], (32b)
i ∈ L ⇒ yif(xi) < 1, αi = C, (32c)∑
i∈N

[1− yif(xi)]+ = s. (32d)

If we rewrite these conditions in matrix vector form,
we have

QREαE + QRL1|L|C > 1|R|, (33a)
QLEαE + QLL1|L|C < 1|L|, (33b)
QEEαE + QEL1|L|C = 1|E|, (33c)

1>
|L|(1|L| −QLEαE −QLL1|L|C) = s. (33d)

From (33c),

αE = Q−1
EE1|L| −Q−1

EEQEL1|L|C. (34)

Substituting (34) into (33d), we have

C = − 1
1>
|L|(QLL −QLEQ−1

EEQEL)1|L|
s + constant.

(35)

Since the matrix QLL−QLEQ−1
EEQEL is the Schur com-

plement of the block QEE of a positive semi-definite
matrix

Q(E∪L)(E∪L) =
[

QEE QEL
QLE QLL

]
, (36)

this is also positive semi-definite (Boyd & Vanden-
berghe, 2004). It indicates that

∂C

∂s
= − 1

1>
|L|(QLL −QLEQ−1

EEQEL)1|L|
≤ 0. (37)

It suggests that, as long as the three index sets
L, E ,R are unchanged, C is linearly decreasing with
s. When one or more instances move from one
index set to the other, then, the decreasing rate
− 1

1>
|L|(QLL−QLEQ−1

EE QEL)1|L|
might be changed, but C

is still linearly decreasing with s. It follows that C is a
piecewise-linear function of s and each linear segment
has non-positive slope, meaning that C is monotoni-
cally decreasing with s. Q.E.D.

C. Additional information of Pathwise
Computation Algorithm

Here, we provide the pseudo-codes of FindSb and Com-

puteSubPath functions in Algorithm 2 and some ad-
ditional information about the algorithm.

Safe Screening of Non-Support Vectors in Pathwise SVM Computation

Algorithm 3 FindSb

1: Input: DN, C(t+M), w∗(sa);
2: Output: sb, w∗(sb);
3: sb ← InitializeSb;
4: isSbSafe ← false;
5: while isSbSafe = false do
6: Compute ŵ(sb) by solving (21);
7: {L̃, R̃, Z̃} ← Screen(DN, w∗(sa), ŵ(sb));
8: w∗(C(t+M)) ← SVMSolver(DZ̃ , C(t+M));
9: isOpt ← CheckOptimality(w∗(C(t+M)));

10: if isOpt then
11: Compute s(t+M) by (19);
12: sb ← s(t+M);
13: isSbSafe = true;
14: else
15: sb ← DecreaseSb(sb);
16: end if
17: end while

Algorithm 4 ComputeSubPath

1: Input: DZ̃ , {C(u)}u2
u=u1

2: Output: {w∗(C(u))}u2
u=u1

;
3: u ← u1

4: while u ≤ u2 do
5: w∗(C(u)) ← SVMSolver(DZ̃ , C(u));
6: u ← u + 1;
7: end while

• We need to plug-in SVMSolver that can solve
the SVM optimization problems (2) or (3). When
we use this solver for the subset DZ̃ (the set of
instances that are not screened out by the rule),
it must take into account the fact that αi = C for
i ∈ L̃. For simplicity, we do not explicitly write
this dependency in the pseudo-code.

• At line 4, the optimal solution at C(1) is computed
by using an SVM solver. This is because we do
not have the optimal solution at any C ≤ C(1).
Training an SVM with very small C is usually
very fast. Similarly, at line 6, the optimal solu-
tion at C(T) is computed. We compute this as a
feasible solution at C(T), which is needed to ef-
ficiently compute other feasible solutions in later
steps (see section 4.1).

• At line 11, FindSb function is called. This func-
tion returns the tightest upper bound of sb, i.e.,
sb ≡ s(t+M) and the optimal solution w∗(sb) ≡
w∗(s(t+M)). As described in Algorithm 3, this
function is a bit complicated because we find
sb ≤ s(t+M) in a trial-and-error manner. Actually,
if we simply set sb = s(T), this requirement is sat-

isfied because s(T) ≤ s(t+M). However, in order to
make the rule more effective, we would like to find
a tighter lower bound of s(t+M) here. To this end,
we first estimate an sb using InitializeSb func-
tion. Then, we construct a non-SV screening rule,
and the solution at C(t+M) is computed by using
the rule. If the solution is optimal (confirmed by
checking the optimality conditions), then we just
set sb = s(t+M). Otherwise, it indicates that our
current estimate of sb is greater than s(t+M), then
we decrease it by DecreaseSb function, and try
the above process again.

• At line 12, we construct a non-SV screening rule
defined on [sb, sa] which can be used of computing
the pathwise solutions at C(t+1), . . . , C(t+M−1).
Computing these pathwise solutions with the sub-
set DZ̃ is couducted in ComputeSubPath func-
tion described in Algorithm 4.

