Infinitesimal Annealing for Semi-Supervised SVMs

A. Proof of Lemma 3 and Theorem 5

First, the KKT optimality conditions of a condition-
ally optimal solution is written as follows:

Lemma 6 For a given §j € {—1,1}1, the necessary
and sufficient conditions for a f to be the optimal so-
lution of the convex problem (5) is (8) and

gic; > C* for i € {i € U|g;f(x;) = 0}. (13)

We omit the proof of this lemma because they are
straightforwardly derived by using Lagrange multiplier
theory (Boyd & Vandenberghe, 2004). Here, we just
note that the derivation is almost same as the standard
SVM case because the predicted labels ¢ are fixed here.

Based on Lemma 6, we first prove Theorem 5.

Proof of Theorem 5 Let f; and f7, be two condi-
tionally optimal solutions defined in pol(4) and pol(§’),
respectively, and consider a situation that the former

5 is at a boundary of pol(g). To prove the theorem,
we suppose for the moment that it is also conditionally
optimal in the next polytope pol(y'), i.e., f; = f5.
Since f; and [, are conditionally optimal, they satisfy
the optimality condition (13):

giOéi > (C* fori e {’L € L{\;Qlfg‘(xl) = O}, (14)
and
iy > C* for i € {i € U] f3 (x;) = 0}, (15)

respectively. From our current assumption that f;‘ =
[;, and the fact that

y; = —yi,i € {i € Ulyi f; (x;) = 0}, (16)
(14) is rewritten as
gi; < —C* for i € {i eU|y;f; (x;) =0} (17)

Now, it is clear that the two conditions (15) and (17)
cannot be satisfied at the same time, and it disprove
our assumption that f7 = f7,.

Noting that f; € pol(¢’) and that it is not the con-
ditionally optimal solution in pol(§’), we immediately
arrive at the conclusion that f;, is a better SVM so-
lutions than f7. Q.E.D.

Next, we prove Lemma 3, which is immediately ob-
tained from Lemma 6 and Theorem 5.

Proof of Lemma 3 First, if the conditionally opti-

mal solution f7 is in the strict interior of the convex

polytope pol(%), it is clear that there is no better solu-
tion in the arbitrary neighborhood of f7. It suggests
that f; is a local optimal solution of S*VM is it is in
the strict interior of pol(g). On the other hand, from
Theorem 5, f7 is not a local optimal solution of S3VM
because there exists a strictly better solution in the
adjacent convex polytope pol(§’). Combining the fact
that f is conditionally optimal if and only if (8) and
(13) are satisfied, it is clear that (8) and (9) are the
necessary and sufficient conditions of a local optimal
solution. Q.E.D.

B. Computational Complexity of S*VM
Algorithm

The computational cost of the entire algorithm (from
C* = 0 to C) depends on the number of so-called
breakpoints in the CP-step and the number of move-
ments to adjacent polytopes in the DJ-step. It has
been reported in many empirical studies (Efron & Tib-
shirani, 2004; Hastie et al., 2004) that the number of
breakpoints is O(n), where n is the training set size.
We also observed in our experiments that the total
number of breakpoints in all CP steps scales almost
linearly with respect to O(|L| + |U]).

The main computational cost in each breakpoint is the
same as that in the SVM regularization path (Hastie
et al., 2004). That is, at each breakpoint, we need to
solve a rank-one update problem of a linear system of
equations of size O(|]M|), which costs O(|M]?). On
the other hand, the number of movements between
two polytopes depends on the number of unlabeled
instances. In our experience, this number also scales
linearly with respect to O(|U]). Note that, if we use
a warm-start strategy from the previous conditionally
optimal solution, the computational cost of the DJ-
step is negligibly small compared with the CP-step.



