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A. Proof of Lemma 3 and Theorem 5

First, the KKT optimality conditions of a condition-
ally optimal solution is written as follows:

Lemma 6 For a given ŷ ∈ {−1, 1}|U|, the necessary
and sufficient conditions for a f to be the optimal so-
lution of the convex problem (5) is (8) and

ŷiαi ≥ C∗ for i ∈ {i ∈ U|ŷif(xi) = 0}. (13)

We omit the proof of this lemma because they are
straightforwardly derived by using Lagrange multiplier
theory (Boyd & Vandenberghe, 2004). Here, we just
note that the derivation is almost same as the standard
SVM case because the predicted labels ŷ are fixed here.

Based on Lemma 6, we first prove Theorem 5.

Proof of Theorem 5 Let f∗
ŷ and f∗

ŷ′ be two condi-
tionally optimal solutions defined in pol(ŷ) and pol(ŷ′),
respectively, and consider a situation that the former
f∗

ŷ is at a boundary of pol(ŷ). To prove the theorem,
we suppose for the moment that it is also conditionally
optimal in the next polytope pol(ŷ′), i.e., f∗

ŷ = f∗
ŷ′ .

Since f∗
ŷ and f∗

ŷ′ are conditionally optimal, they satisfy
the optimality condition (13):

ŷiαi ≥ C∗ for i ∈ {i ∈ U|ŷif
∗
ŷ (xi) = 0}, (14)

and

ŷ′
iαi ≥ C∗ for i ∈ {i ∈ U|ŷ′

if
∗
ŷ′(xi) = 0}, (15)

respectively. From our current assumption that f∗
ŷ =

f∗
ŷ′ and the fact that

y′
i = −yi, i ∈ {i ∈ U|yif

∗
ŷ (xi) = 0}, (16)

(14) is rewritten as

ŷ′
iαi ≤ −C∗ for i ∈ {i ∈ U|ŷ′

if
∗
ŷ′(xi) = 0}. (17)

Now, it is clear that the two conditions (15) and (17)
cannot be satisfied at the same time, and it disprove
our assumption that f∗

ŷ = f∗
ŷ′ .

Noting that f∗
ŷ ∈ pol(ŷ′) and that it is not the con-

ditionally optimal solution in pol(ŷ′), we immediately
arrive at the conclusion that f∗

ŷ′ is a better S3VM so-
lutions than f∗

ŷ . Q.E.D.

Next, we prove Lemma 3, which is immediately ob-
tained from Lemma 6 and Theorem 5.

Proof of Lemma 3 First, if the conditionally opti-
mal solution f∗

ŷ is in the strict interior of the convex

polytope pol(ŷ), it is clear that there is no better solu-
tion in the arbitrary neighborhood of f∗

ŷ . It suggests
that f∗

ŷ is a local optimal solution of S3VM is it is in
the strict interior of pol(ŷ). On the other hand, from
Theorem 5, f∗

ŷ is not a local optimal solution of S3VM
because there exists a strictly better solution in the
adjacent convex polytope pol(ŷ′). Combining the fact
that f is conditionally optimal if and only if (8) and
(13) are satisfied, it is clear that (8) and (9) are the
necessary and sufficient conditions of a local optimal
solution. Q.E.D.

B. Computational Complexity of S3VM
Algorithm

The computational cost of the entire algorithm (from
C∗ = 0 to C) depends on the number of so-called
breakpoints in the CP-step and the number of move-
ments to adjacent polytopes in the DJ-step. It has
been reported in many empirical studies (Efron & Tib-
shirani, 2004; Hastie et al., 2004) that the number of
breakpoints is O(n), where n is the training set size.
We also observed in our experiments that the total
number of breakpoints in all CP steps scales almost
linearly with respect to O(|L|+ |U|).

The main computational cost in each breakpoint is the
same as that in the SVM regularization path (Hastie
et al., 2004). That is, at each breakpoint, we need to
solve a rank-one update problem of a linear system of
equations of size O(|M|), which costs O(|M|2). On
the other hand, the number of movements between
two polytopes depends on the number of unlabeled
instances. In our experience, this number also scales
linearly with respect to O(|U|). Note that, if we use
a warm-start strategy from the previous conditionally
optimal solution, the computational cost of the DJ-
step is negligibly small compared with the CP-step.


