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Abstract

We propose squared-loss mutual information
regularization (SMIR) for multi-class proba-
bilistic classification, following the informa-
tion maximization principle. SMIR is convex
under mild conditions and thus improves the
nonconvexity of mutual information regular-
ization. It offers all of the following four abil-
ities to semi-supervised algorithms: Analyt-
ical solution, out-of-sample/multi-class clas-
sification, and probabilistic output. Further-
more, novel generalization error bounds are
derived. Experiments show SMIR compares
favorably with state-of-the-art methods.

1. Introduction

Semi-supervised learning, which utilizes both labeled
and unlabeled data for training, has attracted much
attention over the last decade. Many semi-supervised
assumptions have been made to extract information
from unlabeled data. Among them, the manifold as-
sumption (Belkin et al., 2006) is of vital importance.
Its origin is the low-density separation principle.

However, this low-density separation principle is not
the only way to go. A useful alternative is the informa-
tion maximization principle (IMP). IMP comes from
information maximization clustering (Agakov & Bar-
ber, 2006; Gomes et al., 2010; Sugiyama et al., 2011),
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where a probabilistic classifier is trained in an unsu-
pervised manner, so that a given information measure
between data and cluster assignments is maximized.
These clustering methods have shown IMP is reason-
able and powerful.

Following IMP, we propose an information-theoretic
approach to semi-supervised learning. Specifically, the
squared-loss mutual information (SMI) (Suzuki et al.,
2009) is designated as the information measure to be
maximized. Then, we introduce an SMI approxima-
tor with no logarithm inside (Sugiyama et al., 2011),
and propose the model of SMI regularization (SMIR).
Unlike maximizing the mutual information, SMIR is
strictly convex under mild conditions and the unique
globally optimal solution is accessible. Albeit we can
employ any convex loss in principle, SMIR can get rid
of logarithm in the involved optimization and guar-
antees the analytic expression of the globally optimal
solution if we use the squared difference of two prob-
abilities (Sugiyama, 2010). SMIR aims at multi-class
probabilistic classifiers that possess the innate ability
of multi-class classification with the probabilistic out-
put, and no reduction from the multi-class case to the
binary case (cf. Allwein et al., 2000) is needed. These
classifiers can also naturally handle unseen data and
need no explicit out-of-sample extension. To the best
of our knowledge, SMIR is the only framework up to
the present which leads to semi-supervised algorithms
equipped with all these properties.

Furthermore, we establish two data-dependent gener-
alization error bounds for a reduced SMIR algorithm
based on the theory of Rademacher averages (Bartlett
& Mendelson, 2002). Our error bounds can consider
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not only labeled data but also unlabeled data. Thus,
they can reflect the properties of the particular mech-
anism generating the data. Thanks to the analytical
solution, our bounds also have closed-form expression
even though they depend on the data in terms of the
Rademacher complexity. Notice that previous bounds
(Belkin et al., 2004; Cortes et al., 2008) just focus on
the regression error, and none of semi-supervised algo-
rithms hitherto have similar theoretical results.

The rest of this paper is organized as follows. First of
all, we present preliminaries, and propose the model
and algorithm of SMIR in Section 2. In Section 3, we
derive the generalization error bounds. The compar-
isons to related works are in Section 4, and then the
experiments are in Section 5.

2. Squared-loss Mutual Information
Regularization (SMIR)

In this section, we propose the SMIR approach.

2.1. Preliminaries

Let X ⊆ Rd and Y = {1, . . . , c} where d and c are
natural numbers, (X,Y ) ∈ X × Y have an underlying
p(x, y) and p(x) > 0 over X . Given i.i.d. {(xi, yi)}li=1

and {xi}ni=l+1 where n = l + u and l � u, we aim at
estimating p(y | x). Then, we can classify any x ∈ X
to ŷ = arg maxy∈Y p(y | x).

As an information measure, squared-loss mutual infor-
mation (SMI) (Suzuki et al., 2009) between random
variables X and Y is defined by

SMI :=
1

2

∫
X

∑
y∈Y

p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dx.

SMI is the Pearson divergence (Pearson, 1900) from
p(x, y) to p(x)p(y), while the mutual information
(Shannon, 1948) is the Kullback-Leibler divergence
(Kullback & Leibler, 1951) from p(x, y) to p(x)p(y).
They both belong to f -divergence (Ali & Silvey, 1966;
Csiszár, 1967), and thus share similar properties. For
instance, both of them are nonnegative, and take zero
if and only if X and Y are independent.

In Sugiyama et al. (2011), a computationally-efficient
unsupervised SMI approximator was proposed. By as-
suming a uniform class-prior probability p(y) = 1/c,
SMI becomes

SMI =
c

2

∫
X

∑
y∈Y

(p(y | x))2p(x)dx− 1

2
. (1)

Then, p(y | x) is approximated by a kernel model:

q(y | x;α) :=
∑n

i=1
αy,ik(x,xi), (2)

where α = {α1, . . . ,αc} and αy = (αy,1, . . . , αy,n)>

are model parameters, and k : X × X 7→ R is a ker-
nel. After approximating the expectation w.r.t. p(x)
in Eq. (1) by the empirical average, an SMI approxi-
mator is derived as

ŜMI =
c

2n

∑
y∈Y

α>yK
2αy −

1

2
,

where K ∈ Rn×n is the kernel matrix.

2.2. Basic model

Instead of Eq. (2), we introduce an alternative kernel
model for SMIR (the reason will be explained in Re-
mark 1). Let the empirical kernel map (Schölkopf &
Smola, 2001) be

Φn : X 7→ Rn,x 7→ (k(x,x1), . . . , k(x,xn))>,

the degree of xi be di =
∑n
j=1 k(xi,xj), and the de-

gree matrix be D = diag(d1, . . . , dn). We approximate
the class-posterior probability p(y | x) by1

q(y | x;α) := 〈K−1/2Φn(x),D−1/2αy〉, (3)

where 〈a, b〉 =
∑n
j=1 ajbj is the inner product. Plug-

ging (3) into Eq. (1) gives us an alternative SMI ap-
proximator:

ŜMI =
c

2n
tr
(
A>D−1/2KD−1/2A

)
− 1

2
, (4)

where A = (α1, . . . ,αc) ∈ Rn×c is the matrix repre-
sentation of model parameters.

Subsequently, we employ Eq. (4) to regularize a loss
function ∆(p, q) that is convex w.r.t. q. More specif-
ically, we have three objectives: (i) Minimize ∆(p, q);

(ii) Maximize ŜMI; (iii) Regularize α. Therefore, we
formulate the optimization problem of SMIR as

min
α1,...,αc∈Rn

∆(p, q)− γŜMI + λ
∑

y∈Y

1

2
‖αy‖22, (5)

where γ, λ > 0 are regularization parameters.

A remarkable characteristic of optimization (5) is its
convexity, as long as the kernel function k is nonnega-
tive and λ > γc/n:

Theorem 1. Assume that k : X × X 7→ R+ and λ >
γc/n. Then optimization (5) is strictly convex, and
there exists a unique globally optimal solution.2

1Assume that K is full-rank, and then K−1/2 is well-
defined. The Gaussian kernel matrix is full-rank as long as
∀i 6= j,xi 6= xj .

2In the rest of this paper, we will assume that k is non-
negative and λ > γc/n. See Appendix A for the proof.
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Remark 1. We introduced Eq. (3) due to the follow-
ing reasons: (i) In principle, any kernel model linear
w.r.t. αy may be used to approximate p(y | x), and

maximizing ŜMI alone must be non-convex. However,
optimization (5) becomes convex if λ is large enough.
Hence, only λ above a certain threshold is acceptable:
The threshold of (3) is γc/n. The threshold of (2) is
‖K‖22 · γc/n where ‖K‖2 is the spectral norm of K. It
depends upon all the training data thoroughly and is
usually much larger than γc/n. (ii) We found that (3)
experimentally outperformed (2).

2.3. Proposed algorithm

Due to limited space, we give a brief derivation here.

We choose the squared difference of probabilities p and
q as the loss function (Sugiyama, 2010):

∆2(p, q) :=
1

2

∫
X

∑
y∈Y

(p(y | x)−q(y | x;α))2p(x)dx.

It enables the analytical solution and facilitates our
future theoretical analysis. Its empirical version is

∆̂2 = Const.− 1

l

l∑
i=1

q(yi | xi) +
1

2l

l∑
i=1

c∑
y=1

(q(y | xi))2.

(6)
Let Y ∈ Rl×c be the class indicator matrix for l la-
beled data and B = (I l;0u×l) ∈ Rn×l. Subsequently,
Eq. (6) can be expressed by

∆̂2 = Const.− 1

l
tr(Y>B>K1/2D−1/2A)

+
1

2l
tr(A>D−1/2K1/2BB>K1/2D−1/2A).

(7)

Substituting Eq. (7) into optimization (5), we will get
the following objective function:

F(A) = −1

l
tr(Y>B>K1/2D−1/2A)

+
1

2l
tr(A>D−1/2K1/2BB>K1/2D−1/2A)

− γc

2n
tr(A>D−1/2KD−1/2A) +

λ

2
tr(A>A).

At last, by equating ∇F to the zero matrix, we obtain
the analytical solution to unconstrained optimization
problem (5):

A∗F = n
(
nD−1/2K1/2BB>K1/2D−1/2 + λnlIn

−γlcD−1/2KD−1/2
)−1

D−1/2K1/2BY .

We recommend to post-process the model parameters
as

βy = nπy ·
K−1/2D−1/2α∗y

1>nK
1/2D−1/2α∗y

,

where βy is a normalized version of α∗y, and πy is an
estimate of p(y) based on labeled data. In addition,
probability estimates should be nonnegative and thus
our final solution can be expressed as follows (cf. Ya-
mada et al., 2011):

p̂(y | x) =
max(0, 〈Φn(x),βy〉)∑c

y′=1 max(0, 〈Φn(x),βy′〉)
.

Although q(y | x;α∗) might be negative or unnormal-
ized, Kanamori et al. (2012) implies that minimizing
∆2 could achieve the optimal non-parametric conver-
gence rate from q to p, and when we have enough data
q is automatically a probability (i.e., non-negative and
normalized).

3. Generalization Error Bounds

To elucidate the generalization capability, we reduce
SMIR to binary classification. Now, a class label y is
±1, a single vector α ∈ Rn is enough to construct a
discriminative model, and we classify any x ∈ X to

ŷ = sign(〈K−1/2Φn(x),D−1/2α〉).

Let us encode the information of class labels into y =
(y1, . . . , yl)

> ∈ Rl. The solution is then

α∗F = n
(
nD−1/2K1/2BB>K1/2D−1/2 + λnlIn

−γlcD−1/2KD−1/2
)−1

D−1/2K1/2By,
(8)

and for convenience, we define the decision function

f(x) = 〈K−1/2Φn(x),D−1/2α∗F 〉. (9)

Let E and Ê stand for the true and empirical expecta-
tions, `(z) = (1− sign(z))/2 be the indicator loss, and
`η(z) = min(1,max(0, 1− z/η)) be the surrogate loss.
We bound E`(yf) using the theory of Rademacher av-
erages (Bartlett & Mendelson, 2002). If all labels are

available for evaluation, we can evaluate Ê`η(yf) over
all training data and bound E`(yf) more tightly. We
state the theoretical result in Theorem 2 and prove it
in Appendix B.

Theorem 2. Assume that

∃Bk > 0,∀x,x′ ∈ X , k(x,x′) ≤ B2
k.

Let α∗F and f(x) be the optimal solution and the deci-
sion function defined in Eqs. (8) and (9) respectively,
and

BF = ‖D−1/2α∗F‖2, B′F = ‖K−1/2D−1/2α∗F‖1.
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For any η > 0 and 0 < δ < 1, with probability at least
1− δ, we have

E`(yf(x)) ≤ 1

l

l∑
i=1

`η(yif(xi)) +
2BkBF

η
√
l

+ min

(
3, 1 +

4B2
kB
′
F

η

)√
ln(2/δ)

2l
.

(10)

If the ground truth class labels yl+1, . . . , yn are also
available for evaluation, with probability at least 1− δ,
we have

E`(yf(x)) ≤ 1

n

n∑
i=1

`η(yif(xi)) +
2BkBF
η
√
n

+ min

(
3, 1 +

4B2
kB
′
F

η

)√
ln(2/δ)

2n
.

(11)

Theorem 2 gives the tightest upper bounds (i.e., the
coefficients of 1/

√
l and 1/

√
n are smallest under each

given scenario) based on the inductive Rademacher
complexity. The bound in Eq. (10) is asymptotically
O(1/

√
l), if we only know the first l labels. In such

cases, we may benefit from unlabeled data by a lower
empirical error. It becomes O(1/

√
n) in Eq. (11) if we

can access the other u labels, even though they are not
used for training. Due to the smaller deviation of the
empirical error and the empirical Rademacher com-
plexity when they are estimated over all training data,
we can improve the order from O(1/

√
l) to O(1/

√
n).

Nevertheless, there is no free lunch: In (11), the em-
pirical error is evaluated over all training data, and it
may be significantly higher than that evaluated over
labeled data. Basically, (10) or (11) which right-hand
side is smaller reflects whether the information maxi-
mization principle befits the data set or not.

4. Related Works

Information-theoretic semi-supervised approaches di-
rectly constrain p(y | x) by unlabeled data or some
p(x) given as the prior knowledge. Information regu-
larization (IR; Szummer & Jaakkola, 2002) is the pi-
oneer for this purpose. Compared with later informa-
tion maximization methods, IR minimizes the mutual
information (MI) based on a key observation: Within
a small region Q ⊂ X , MIQ is low/high if the label in-
formation is pure/chaotic. Subsequently, IR estimates
a cover C of X from {x1, . . . ,xn}, and minimizes the
maximal MIQ for Q ∈ C, subject to class constraints
provided by labeled data. The advantage of IR is its
flexibility and convexity, while the drawback is that
it is unclear how to estimate C properly. Each region
should be small enough to preserve the locality of the

label information in a single region; each pair of re-
gions should be connected to ensure the dependence
of p(y | x) over all regions, and this implies a great
number of tiny regions.

By employing the Shannon entropy of p(y | x) as a
measure of class overlap, entropy regularization (ER;
Grandvalet & Bengio, 2004) minimizes the entropy
from a viewpoint of maximum a posteriori estimation.
More specifically, ER regularizes the maximum log-
likelihood estimation of a logistic regression or kernel
logistic regression model by an entropy term:

max
α

∑l

i=1
ln q(yi | xi;α)

+ γ
∑n

i=l+1

∑
y∈Y

q(y | xi;α) ln q(y | xi;α).

ER favors low-density separations, since the low/high
entropy means that the class overlap is mild/intensive.
ER and IR seem opposite at a first glance, because MI
equals the difference of the entropies of class prior and
posterior. However, IR minimizes MI locally and ER
minimizes the entropy globally, so both of them highly
penalize the variations of the class-posterior probabil-
ity in high-density regions. A recent framework called
regularized information maximization (RIM; Gomes
et al., 2010) follows ER and further maximizes the
entropy of the class-prior probability to encourage bal-
anced classes. ER and RIM do not model p(x) explic-
itly which is a major improvement, but the disadvan-
tage is the non-convexity of their optimizations.

Expectation regularization (XR; Mann & McCallum,
2007) goes one step further such that it does not use
p(x) at all. Therefore, XR does not favor low-density
separations and can handle highly overlapped classes.
XR encourages the predictions on unlabeled data to
match a designer-provided expectation by minimizing
the KL-divergence between the expectations predicted
by the model and provided as the prior knowledge. If
there is no prior knowledge, XR will match the class
prior of unlabeled data with that of labeled data:

max
α

∑l

i=1
ln q(yi | xi;α)− λ

∑
y∈Y

1

2
‖αy‖22

+ γ
∑

y∈Y
πy ln

(∑n

i=l+1
q(y | xi;α)

)
,

where πy is an estimate of p(y) through labeled data,
and q(y | x;α) is a logistic or kernel logistic regression
model. Unlike IR and ER, XR does not prefer low-
density separations. As a result, XR cannot deal with
low-dimensional data with nonlinear structures (such
as the famous two-moons or two-circles), if there are
not enough labeled data.

On the other hand, there are lots of geometric meth-
ods for semi-supervised learning. Please see Table 1
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Table 1. Summary of existing semi-supervised learning methods.

AS OC MC PO

Geometric

Transductive SVM (Joachims, 1999) × © 4 ×
Semi-supervised SVM (Bennett & Demiriz, 1998) × © 4 ×
Laplacian SVM (Belkin et al., 2006) × © 4 ×
Laplacian Regularized Least Squares (Belkin et al., 2006) © © 4 ×
Markov Random Walks (Szummer & Jaakkola, 2001) × × © ©
Local and Global Consistency (Zhou et al., 2003) © 4 © ×
Spectral Graph Transducer (Joachims, 2003) © × × ×
Harmonic Energy Minimization (Zhu et al., 2003) © × × ©
Sparse Eigenfunction Bases (Sinha & Belkin, 2009) × © × ×

Information-theoretic

Information Regularization (Szummer & Jaakkola, 2002) × © © ©
Entropy Regularization (Grandvalet & Bengio, 2004) × © © ©
Expectation Regularization (Mann & McCallum, 2007) × © © ©
Regularized Information Maximization (Gomes et al., 2010) × © © ©
Squared-loss Mutual Information Regularization © © © ©

AS: analytical solution OC: out-of-sample classification MC: multi-class classification PO: probabilistic output
©: Yes ×: No 4: Extension has been proposed

as a list of representative methods. Note that all ge-
ometric methods in Table 1 are in the style of either
large margins or similarity graphs. According to Ta-
ble 1, we could know that many methods based on
similarity graphs (Szummer & Jaakkola, 2001; Zhou
et al., 2003; Joachims, 2003; Zhu et al., 2003) are trans-
ductive, while the information-theoretic methods are
all inductive; only two geometric methods (Szummer
& Jaakkola, 2001; Zhou et al., 2003) could deal with
multi-class data directly, while it is an inherent prop-
erty of all information-theoretic methods. However,
none of previous information-theoretic methods have
analytical solutions, due to the logarithms in the en-
tropy, MI or KL-divergence. Thanks to SMI, the pro-
posed SMIR involves a strictly convex optimization
problem with no logarithm inside and consequently it
has the analytic expression of the unique globally op-
timal solution.

The similarity between ER and SMIR is intriguing.
RIM followed ER historically. Nonetheless, if we start
from MI maximization with the uniform p(y), we will
get ER as

max
α

∫
X

∑
y∈Y

q(y | x;α) ln q(y | x;α)p(x)dx.

Recall that SMI maximization under the assumption
of the uniform p(y) is expressed by

max
α

∫
X

∑
y∈Y

q(y | x;α)q(y | x;α)p(x)dx.

As a consequence, they have the similar preference as
the logarithm is strictly monotonically increasing. The

vital difference is the convexity and the analytical so-
lution: SMIR is convex and the globally optimal solu-
tion can be obtained analytically, whereas ER is non-
convex so any locally optimal solution has to be found
numerically.3

5. Experiments

In this section, we numerically evaluate SMIR. The
specification of benchmark data sets is summarized in
Table 2. Besides the four well-tried benchmarks in the
first block (i.e., USPS, MNIST, 20Newsgroups and Iso-
let), there are eight benchmarks from a book entitled
Semi-Supervised Learning (Chapelle et al., 2006)4 in
the second block, and eight benchmarks from the UCI
machine learning repository5 in the third block except
that Senseval-2 is from a workshop for word sense dis-
ambiguation6. Detailed explanation of benchmarks is
omitted due to lack of space. Our experiments consist
of three parts:

Firstly, we compare SMIR with entropy regularization
(ER; Grandvalet & Bengio, 2004) and expectation reg-
ularization (XR; Mann & McCallum, 2007). The prob-
abilistic models are the logistic regression

q(y | x;α) ∝ exp〈x,αy〉,αy ∈ Rd,

and the kernel logistic regression (Ker)

q(y | x;α) ∝ exp〈Φn(x),αy〉,αy ∈ Rn,
3SMIR may also be solved numerically in consideration

of the computational efficiency for large n in practice.
4http://olivier.chapelle.cc/ssl-book/benchmarks.html.
5http://archive.ics.uci.edu/ml/.
6http://www.senseval.org/.
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Table 2. Specification of benchmark data sets.

# Classes # Dimensions # Data Balance of classes (in %)

USPS 10 256 11000 10 per class
MNIST 10 784 70000 11.3 / 10.0 / 10.2 / 9.8 / 9.0 / 9.8 / 10.4 / 9.8 / 9.9 / 9.9
20Newsgroups 7 53975 11269 4.3 / 25.8 / 5.2 / 21.1 / 21.0 / 5.3 / 17.3
Isolet 26 617 7797 3.85 per class

g241c 2 241 1500 50.0 / 50.0
g241n 2 241 1500 50.1 / 49.9
Digit1 2 241 1500 51.1 / 48.9
USPS 2 241 1500 80.0 / 20.0
COIL 6 241 1500 16.7 per class
COIL2 2 241 1500 50.0 / 50.0
BCI 2 117 400 50.0 / 50.0
Text 2 11960 1500 50.0 / 50.0

Diabetes 2 8 768 65.1 / 34.9
Wine 3 13 178 33.1 / 39.9 / 27.0
Vowel 11 13 990 9.1 per class
Image 2 18 1155 42.9 / 57.1
Vehicle 4 18 846 25.1 / 25.7 / 25.8 / 23.5
German 2 20 1000 70.0 / 30.0
Satimage 6 36 6435 23.8 / 10.9 / 21.1 / 9.7 / 11.0 / 23.4
Senseval-2 3 50 534 33.3 per class

where 〈·, ·〉 is the inner product, Φn is the empirical
kernel map for the Gaussian kernel. SMIR also ap-
plies the Gaussian kernel, so there are three kernel
methods which allow nonlinear decision boundaries in
Rd. The two-fold cross-validation is performed to se-
lect the hyperparameters. The kernel width is the
median of all pairwise distances times the best value
among {1/15, 1/10, 1/5, 1/2, 1}. A Gaussian prior of
parameters, which is same as the third term of opti-
mization (5), is included for XR and KerXR (Mann
& McCallum, 2007). No extra prior is added to ER
or KerER, since ER itself is a prior from a viewpoint
of maximum a posteriori estimation (Grandvalet &
Bengio, 2004). Therefore, ER/KerER has one regu-
larization parameter whereas XR/KerXR and SMIR
have two. The candidate list of regularization param-
eters is 10∧{−7,−3,−1, 1, 3}, except that λ is chosen
from γc/n+10∧{−10,−8,−6,−4,−2} for SMIR to en-
sure the convexity. The minFunc7 package for uncon-
strained optimization using line-search methods (the
quasi-Newton limited-memory BFGS updates, by de-
fault) is utilized to solve ER/KerER and XR/KerXR.
Since minimizing the entropy is non-convex, we ini-
tialize ER/KerER with the globally optimal solution
of its supervised part.

We evaluated them on USPS, MNIST, 20Newsgroups
and Isolet. Pearson’s correlation (Hall, 2000) was used
to select 1000 most informative features for 20News-
groups. For each data set, we prepared a multi-class
task, namely, the tasks using 10 classes of USPS and

7http://www.di.ens.fr/˜mschmidt/Software/minFunc/.

MNIST, 7 classes of 20Newsgroups, and 26 classes of
Isolet. In addition, extensive experiments of simple
classification tasks were conducted, including 45 bi-
nary tasks of USPS, 45 binary tasks of MNIST and 21
binary tasks of 20Newsgroups. Isolet may lead to too
many binary tasks and these tasks are often too easy,
and thus we combined 26 letters into 13 groups (e.g.,
‘a’ with ‘b’, ‘c’ with ‘d’ etc.) and treated each group as
a single class resulting in 78 simple classification tasks.
For each task, we repeatedly ran all methods on 100
random samplings, where the sample size was fixed to
500. Each random sampling was partitioned into a
training set and a test set with 80% and 20% data,
and 10% class labels of training data were revealed to
construct labeled data.

Figure 1 reports the experimental results of the multi-
class tasks, Figure 2 reports the experimental results
of the simple tasks, and Table 3 summarizes the ex-
perimental results. We can see from Figure 1 that
SMIR outperformed others on the multi-class tasks of
USPS, MNIST and Isolet. Likewise Figure 1 indicates
that SMIR was the most computationally-efficient al-
gorithm on all four multi-class tasks. According to
Figure 2, SMIR was the best on the simple tasks of
USPS, 20Newsgroups and Isolet, but was slightly in-
ferior to plain ER on MNIST. Note that there were
12 highly imbalanced tasks among 21 simple tasks of
20Newsgroups, which implies that the uniform class-
prior assumption will not affect the performance of
SMIR essentially, if the tasks are not so complicated.
The experiments of Isolet further imply that SMIR is
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(a) USPS (45 tasks)
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(b) MNIST (45 tasks)
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(b) Training time
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(c) 20News (21 tasks)
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(d) Isolet (78 tasks)

Figure 1. Experimental results of the
multi-class classification tasks. Means
with standard errors are shown by bar
charts.

Figure 2. Experimental results of the simple classification tasks. The
cumulative classification error at the k-th task is the sum of classification
errors from the first to k-th tasks. Non-cumulative standard deviations
are shown along the curves.

Table 3. Summary of all experimental results on USPS, MNIST, 20Newsgroups and Isolet. For each method,
we measure how frequently it is the best or a comparable method based on the unpaired t-test at the signifi-
cance level 5%, and the training time is averaged over all samplings of all tasks. The most accurate method
and the most computationally-efficient method are highlighted in boldface.

ER KerER XR KerXR SMIR

USPS, best or comparable (%) 45.65 15.22 21.74 17.39 73.91
MNIST, best or comparable (%) 86.95 0.00 19.57 2.17 80.43
20News, best or comparable (%) 36.36 18.18 36.36 18.18 63.64
Isolet, best or comparable (%) 60.76 62.03 68.35 48.10 81.01

USPS, training time (sec) 1.545 1.906 1.149 1.770 1.608
MNIST, training time (sec) 2.367 1.676 2.060 1.536 1.575
20News, training time (sec) 3.987 2.023 4.144 1.917 1.654
Isolet, training time (sec) 2.377 1.842 2.194 1.728 1.723

fairly good at multi-modal data, since all classes there
had two clusters. Compared with KerER and KerXR,
the plain ER and XR were better on USPS, MNIST
and Isolet, but worse on 20Newsgroups. Nonetheless,
ER/XR always outperformed KerER/KerXR in Ta-
ble 3. Even though other algorithms often converged
quite quickly on the simple tasks, SMIR was still a
computationally-efficient algorithm after taking these
simple tasks into account.

Secondly, we compare SMIR with two well-known ge-
ometric methods: Laplacian regularized least squares
(LapRLS; Belkin et al., 2006) with a multi-class exten-

Table 4. Comparisons of LapRLS, LGC and SMIR, by
means with standard errors of the classification error
(in %) on the multi-class tasks. The best method and
comparable ones based on the 5% unpaired t-test are
highlighted in boldface.

LapRLS LGC SMIR

USPS 39.64± 0.55 36.53± 0.53 35.87± 0.59
MNIST 42.34± 0.67 42.70± 0.60 38.56± 0.59
20News 64.85± 0.61 73.03± 0.24 56.90± 0.68
Isolet 39.98± 0.56 40.62± 0.47 38.43± 0.51
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Table 5. Means with standard errors of the classification error (in %) on benchmarks from Chapelle et al. (2006). The
best method and comparable ones based on the unpaired t-test at the significance level 5% are highlighted in boldface.

ER KerER XR KerXR LapRLS LGC SMIR

g241c 30.14± 0.55 24.86± 0.66 31.66± 0.81 24.42± 0.69 34.12± 0.69 36.53± 0.74 31.69± 0.66
g241n 33.07± 0.58 35.65± 0.98 33.90± 0.83 36.67± 0.99 35.07± 0.65 38.15± 0.72 33.76± 0.65
Digit1 12.12± 0.41 9.31± 0.32 12.47± 0.49 9.68± 0.62 11.44± 0.43 11.87± 0.46 10.23± 0.40
USPS 26.60± 0.59 17.58± 0.33 27.07± 0.90 18.02± 0.72 12.45± 0.34 10.27± 0.33 12.23± 0.40
COIL 46.16± 0.78 38.58± 0.98 50.55± 1.20 39.81± 1.06 37.03± 0.81 32.95± 0.88 33.62± 0.82
COIL2 28.83± 0.72 25.81± 0.75 31.54± 1.02 27.73± 0.98 26.52± 0.65 23.39± 0.71 24.12± 0.69
BCI 40.58± 0.67 47.76± 0.45 43.21± 0.70 48.35± 0.46 43.46± 0.63 48.70± 0.44 47.27± 0.57
Text 34.92± 0.56 44.36± 0.58 35.38± 0.54 43.79± 0.65 44.50± 0.54 49.53± 0.18 38.80± 0.64

Table 6. Means with standard errors of the classification error (in %) on seven UCI benchmarks and Senseval-2. The best
method and comparable ones based on the unpaired t-test at the significance level 5% are highlighted in boldface.

ER KerER XR KerXR LapRLS LGC SMIR

Diabetes 27.26± 0.41 29.70± 0.50 28.41± 0.53 30.16± 0.72 32.01± 0.62 32.32± 0.42 29.87± 0.57
Wine 8.09± 0.44 4.21± 0.44 10.56± 1.21 6.56± 0.95 8.21± 0.45 7.71± 0.44 6.91± 0.54
Vowel 70.65± 0.78 63.03± 0.78 69.70± 0.77 61.32± 0.68 63.90± 0.65 64.13± 0.66 62.77± 0.65
Image 27.32± 0.64 22.38± 0.67 26.91± 0.75 23.07± 0.90 18.80± 0.66 19.45± 0.65 19.82± 0.67
Vehicle 39.43± 0.90 45.61± 0.78 48.44± 1.10 46.86± 0.91 38.22± 0.79 43.01± 0.54 37.48± 0.74
German 32.30± 0.55 29.31± 0.31 32.76± 0.65 29.45± 0.35 30.96± 0.42 30.94± 0.33 30.62± 0.43
Satimage 31.01± 0.73 22.59± 0.58 34.79± 0.68 25.12± 1.43 20.15± 0.40 18.75± 0.34 18.96± 0.39
Senseval-2 32.72± 0.62 35.56± 0.73 37.14± 1.10 36.37± 0.83 34.66± 0.71 37.77± 0.67 33.11± 0.74

sion, as well as learning with local and global consis-
tency (LGC; Zhou et al., 2003) with an out-of-sample
extension. They represent the state-of-the-art mani-
fold regularization and similarity graph transduction
respectively. Similarly to SMIR, their optimizations
are convex and can be solved analytically. LapRLS is
extended using the one-vs-rest trick, and LGC is ex-
tended via the Nadaraya-Watson estimator (Delalleau
et al., 2005). The experimental setup and the candi-
dates of hyperparameters for LapRLS and LGC are
same as SMIR, except that the regularization param-
eter α of LGC is chosen from {0.2, 0.4, 0.6, 0.8, 0.99}.
SMIR was always best or tie in Table 4, and thus it is
fairly competitive with those pure geometric methods
on these benchmarks.

Finally, we take all seven methods and compare their
performance on the sixteen benchmarks listed in Ta-
ble 2. The experimental results are reported in Ta-
bles 5 and 6, where the experimental setup and the
candidates of hyperparameters are same as previous
experiments. To be clear, there are two benchmarks,
BCI and Wine, whose sample size is less than 500. As
a result, each of their random samplings included the
whole set, and the randomness or the difference of the
classification error was actually from how the training,
test and cross-validation data were split and also how
labeled data were selected. We can see from Table 5
that ER, LGC and SMIR were best or comparable on
three benchmarks, and KerER, XR and KerXR were
best or comparable on two benchmarks. Moreover, in

Table 6, SMIR won or tied five times, while all other
methods except XR won or tied twice. Therefore, it
is reasonable and practical to maximize SMI following
the information maximization principe, and SMIR is
a promising information-theoretic approach to semi-
supervised learning.

6. Conclusions

In this paper, we proposed squared-loss mutual infor-
mation regularization (SMIR). Compared with other
information-theoretic regularization, SMIR is convex
with no logarithm in the involved optimization prob-
lem, and thus enables the analytic expression of the
globally optimal solution. We established novel data-
dependent generalization error bounds that even in-
corporate the information of unlabeled data. We then
evaluated SMIR on twenty benchmark data sets, and
the results demonstrated that SMIR compared favor-
ably with entropy regularization, expectation regular-
ization, manifold regularization, and similarity graph
transduction.
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