Squared-loss Mutual Information Regularization

Appendix: Supplementary Material

A. Proof of Theorem 1

Proof. Denote the unnormalized graph Laplacian by L = D — K and the normalized graph Laplacian by
L' =D YV2LD Y2 —1, - D V2KD 2

where I, is the identity matrix of size n. Optimization (5) can be rewritten as
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min _ A(p,q) +7 Zyey a—er ay, + N Zyey §Hay||§, (12)
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where 7/ = y¢/2n > 0 and X = X\ — y¢/n > 0 are regularization parameters. Notice that Vy € Y,
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and then the second term of (12) is convex since K, ; > 0.

The loss function A(p, q) is convex w.r.t. ¢(y | «; o), and ¢(y | =; a) is linear w.r.t. oy, so A(p,q) is convex
w.r.t. ay. The f2-norm of o, is strictly convex w.r.t. ay, i.e., it takes zero if and only if o, is identically zero.
Therefore, optimization (12) is strictly convex and there exists a unique globally optimal solution. O

B. Derivation of the Error Bounds
B.1. Definitions

To begin with, we state the inductive definition of Rademacher complexity following El-Yaniv & Pechyony (2009).

Definition 1. Suppose that x1,...,x, are independent observations according to p(x). Let F be a class of
functions mapping from X to R, and o1,...,0, be independent uniformly {£1}-valued random variables, i.e.,
Rademacher variables. Subsequently, the empirical Rademacher complezity conditioned on x1, ..., x, is defined
as

7,én(]:) =Eoy,...0n {SUP 2 Zaif(xi)} )

S

and the inductive Rademacher complexity is defined as

Rn(‘/—:) = Ewl,.“,wn {ﬁn(‘r)} .
There exist various definitions of R,,(F): The definition in Bartlett & Mendelson (2002) is

~ 2 | &
Rn F) = Eo’ yeeyOn  SUP — Uif T )
(F) =Ea, {fef 2 (C e }
the definition in Koltchinskii (2001) uses
~ 1|
Rn(-/r) - Eal,...,an {Sup — Za7f(m7) } )
i=1

fern

while the definition in Meir & Zhang (2003) adopt

The definition in El-Yaniv & Pechyony (2009) is consistent with Bartlett & Mendelson (2002) for function classes
that are closed under negation, and is always equal to or less than the one in Bartlett & Mendelson (2002).
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Nevertheless, a vital disagreement arises when considering comparison theorems and thus the famous contraction
principle of Rademacher averages. If ¢ : R — R is Lipschitz continuous with a Lipschitz constant L,, and satisfies
1(0) = 0, then

~

Rt 0 F) < LyRn(F)
for El-Yaniv & Pechyony (2009) and
Ru(oF) <2LyRu(F)

for Bartlett & Mendelson (2002). When all involved error bounds are single-sided concentration results, those
definitions without the absolute value in the argument of the supremum (El-Yaniv & Pechyony, 2009; Meir &
Zhang, 2003) are more natural and powerful.

B.2. Proof of Theorem 2
Let Br = K '?D'2q %, then

= D™ a3 = BrKB,
=KD 2ok = 1B

Define the class of functions F as

F=Kz— Zﬂzk(m,m;)
i=1

It is easy to verify that f(x) = (®,(x),Br) € F, where f(x) is the decision function defined in Eq. (9). By
Lemma 22 of Bartlett & Mendelson (2002), we get

1/2
~ 2B 2B, B
R (F 22F <Zk T, T; ) < k2T (13)

o€ X, B €RD B < Br, > BiBk(x, x}) < B:
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Applying Lemma 22 of Bartlett & Mendelson (2002) again gives us

1/2
~ 2B 2B, B
RF f(zmz,mj < 2Dr. (1)
where ﬁl (F) is the empirical Rademacher complexities of F conditioned only on @1, ...,z;.

In the following, we only focus on the proof of inequality (11) based on inequality (13). Inequality (10) can be
derived by the exactly same way based on inequality (14). Let

byoF = {(z,y) = ly(yf(x)) | f € F},

which is a class of functions mapping from X x ) to the interval [0,1]. The rest of the proof consists of two
steps. The first step bounds R,, (¢, o F) from above, and the second step bounds El(y f(x)) using R, (¢, o F).

B.2.1. STEP 1

The following lemma relates the inductive Rademacher complexity of a class of bounded functions to the corre-
sponding empirical Rademacher complexity.

Lemma 3 (Concentration Lemma). Let Fo be a class of functions mapping to the interval [—C,C]. With
probability at least 1 — §/2, we have

In(2/8)

Ru(Fo) < Ru(Fo) +4C o

Similarly, let ]-Et be a class of functions mapping to the interval [0, C]. With probability at least 1 — /2, we have

~ In(2/6
R (7)< Rl + 20y [ M2
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Proof. Recall that 7%"(}“0) conditioned on xy,...,x, is a random variable defined as

~ 2 <
Rn(]:C - Eo’ eeesOn sup — aif xT; .
)=E., {Hz (@)

When an observation z; changes to @/, the change of R, (F¢) is no more than 4C/n, and thus McDiarmid’s
inequality (McDiarmid, 1989) implies that

Pr {Rn(]-"c) — Ru(Fo) > e} < exp (-j(/f;) .

The first bound can be obtained by equating the right-hand side of the above inequality to §/2.

For F, when an observation z; changes to @/, the change of R, (FZ) is no more than 2C/n. The lemma follows
by the same argument as above. O

The next lemma is a variation of the comparison lemma in Meir & Zhang (2003), where the comparison is done
for two sets of functions under a Bayesian framework, and its validity follows Lemma 5 of El-Yaniv & Pechyony
(2009) by setting p = 1/2.

Lemma 4 (Comparison Lemma). Let
Hi={h = (b, ha) " [ by = yif (@), f € F,
and 1,9 : R — R be real-valued functions. If for all h,h' € H andi=1,...,n,
[W(hi) = (Ry)] < [ (hi) = ¥ (h3)],
then

Eosy,.om {Sup Zai¢(hi)} <Eq,...0n {sup Zaﬂp’(hi)} )
hem

heH =7

Now ﬁn(&, o F) and R, (£, o F) can be bounded from above by R, (F) and R,,(F) based on the comparison
lemma.

Lemma 5 (Contraction Lemma). For any n > 0, we have

Ron(ly 0 F) < =R (F),

S

Rp(ly o F) < =Rn(F).

3

Proof. Note that ¢, (z) satisfies the Lipschitz condition
!/ 1 / /
[€,(2) = £,(2")] < =]z = 2|, Vz,2 €R.
n

Let ¥(h;) = £,(yi f(x;)) and ' (h;) = yi f(x:)/n, then

n 1 n
Eol,...,an sup Uig yzf T; S 7]E(71,....(77,, sup Ulylf ZT;
{fg; a(yif (@) p < S Eo... fg; ()
g S o f(a)
= —Lgy,...,0,, | SUP 0 J\Lq )
n feri

where the first step is a corollary of the comparison lemma, and the second step is due to the same distribution
of each o;y; and o;. This completes the proof. O
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As a result, if we contract R, (F) and then concentrate R, (¢, o F), we could know

~ In(2
Ro(ty0 F) < Ro(ty 0 F) + 2 L)
2BkB]: 111(2/5)
< — 42 1
<= - oy (15)

since £, maps to the interval [0,1]. On the other hand, for any f € F,

< BiB%,

=1

[flloc = sup
xeX

which says that F is a class of functions mapping to the interval [—BiB%, BfB']. Thus, if we concentrate
R, (F) before contract R, (F), we can obtain

Rd%of7§%RMF)

<! <2Bka +4B2B) ln(2/5)> . (16)

7 Vn 2n

Combining inequalities (15) and (16) finalizes the first step of the proof, that is,

QBkB]: . 4BQB/ 111(2/(5)
Rnp(lyoF) < o —|—mln(27 k—F o

B.2.2. STEP 2

This step is composed of a single concentration inequality, that is, with probability at least 1 —§/2,

By (@) < Baly (0 (@) + Ra(ty 0 F) 4| 221, (")

Since Vz € R, {(z) is always equal to or less than £,(z), for any f € F we can write

El(yf(x)) <ELy(yf(x))
< Enly(yf()) + sup_(Ey) — E.v).

Any function ¢ (x,y) = £,(yf(z)) € £, o F satisfies 0 < ¢(x,y) < 1, so when (x;,y;) changes to (x},y}), the
change of sup¢/, . £(E¢p — E,¢p) cannot be more than 1/n. Hence, McDiarmid’s inequality implies that

Pr{ sup (B — Bpt)) — By ), (@ng) SUP (B — Byt > } < exp(—2€°n),
YEL o F PYeL,oF

or equivalently, with probability at least 1 — /2,

. . In(2/6
sup (Ew - Endj) < E(ml,yl) ..... (Znyyn) sup (E¢ - Enw) + (2 / )
PpelyoF YelyoF n

It remains to bound the expectation ]E(rcl,yl),...,(mn,yn)Squeeno}‘(Ew - I@,ﬂ/}) by the complexity R, (¢, o F).
Suppose that

{(®,91) s (@) | (25,97) ~ p(2,y)}
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is a ghost sample for symmetrization, then

E(w“yz) sup (Ew - Enw) = E(zl,yl) sup (E( [ n’(/}( z?yl>] - Enw(wwyl))
pelyoF PeLlyoF
= E(whyi) sup (E( [ n'(/)( 'L’yz) nw(muyz)D
PpelyoF
< Beow) @ SUP (Enw(wéyyé)—ﬁnw(wi,yi))
£yo
=B,y () SUP li(w(wé,yé)—w(whyﬂ)
' pelyoF M i
= ]Ea'i7(wi)yi)7(m;)y ) 1,[)81[;1 oF n ZU'L z’yz - 770(3317%))
1 n
< E z’ y)),oc; Sup Uﬂb wyz) +E z;yi),oc; SUp  — _Uz)w(wzyyz
(x},97) ve g}ofnz (x4,9:) weé,,ofn;( )
=2E Zi,Yi),0i sup 027/} wzayz
(wu:31) PeLly o]—'n Z
= Rn(fn o F),

(19)

(20)

where (18) uses the fact that the supremum is a convex function and then we apply Jensen’s inequality, (19) is due
to the symmetry of the ghost sample and the original sample and thus the same distribution of 1 (x}, y}) — ¢ (x;, y;)
and o; (Y(x}, yi) — (s, yi)), and (20) is valid since o; and —o; have the same distribution while the original and

ghost samples also have the same distribution.

O



