
Squared-loss Mutual Information Regularization

Appendix: Supplementary Material

A. Proof of Theorem 1

Proof. Denote the unnormalized graph Laplacian by L = D −K and the normalized graph Laplacian by

L∗ = D−1/2LD−1/2 = In −D−1/2KD−1/2,

where In is the identity matrix of size n. Optimization (5) can be rewritten as

min
α1,...,αc∈Rn

∆(p, q) + γ′
∑

y∈Y
α>yL

∗αy + λ′
∑

y∈Y

1

2
‖αy‖22, (12)

where γ′ = γc/2n > 0 and λ′ = λ− γc/n > 0 are regularization parameters. Notice that ∀y ∈ Y,

α>yL
∗αy =

1

2

n∑
i,j=1

(
αy,i
di
− αy,j

dj

)2

Ki,j ,

and then the second term of (12) is convex since Ki,j ≥ 0.

The loss function ∆(p, q) is convex w.r.t. q(y | x;α), and q(y | x;α) is linear w.r.t. αy, so ∆(p, q) is convex
w.r.t. αy. The `2-norm of αy is strictly convex w.r.t. αy, i.e., it takes zero if and only if αy is identically zero.
Therefore, optimization (12) is strictly convex and there exists a unique globally optimal solution.

B. Derivation of the Error Bounds

B.1. Definitions

To begin with, we state the inductive definition of Rademacher complexity following El-Yaniv & Pechyony (2009).

Definition 1. Suppose that x1, . . . ,xn are independent observations according to p(x). Let F be a class of
functions mapping from X to R, and σ1, . . . , σn be independent uniformly {±1}-valued random variables, i.e.,
Rademacher variables. Subsequently, the empirical Rademacher complexity conditioned on x1, . . . ,xn is defined
as

R̂n(F) := Eσ1,...,σn

{
sup
f∈F

2

n

n∑
i=1

σif(xi)

}
,

and the inductive Rademacher complexity is defined as

Rn(F) := Ex1,...,xn

{
R̂n(F)

}
.

There exist various definitions of R̂n(F): The definition in Bartlett & Mendelson (2002) is

R̂n(F) = Eσ1,...,σn

{
sup
f∈F

2

n

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣
}
,

the definition in Koltchinskii (2001) uses

R̂n(F) = Eσ1,...,σn

{
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣
}
,

while the definition in Meir & Zhang (2003) adopt

R̂n(F) = Eσ1,...,σn

{
sup
f∈F

1

n

n∑
i=1

σif(xi)

}
.

The definition in El-Yaniv & Pechyony (2009) is consistent with Bartlett & Mendelson (2002) for function classes
that are closed under negation, and is always equal to or less than the one in Bartlett & Mendelson (2002).
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Nevertheless, a vital disagreement arises when considering comparison theorems and thus the famous contraction
principle of Rademacher averages. If ψ : R 7→ R is Lipschitz continuous with a Lipschitz constant Lψ and satisfies
ψ(0) = 0, then

R̂n(ψ ◦ F) ≤ LψR̂n(F)

for El-Yaniv & Pechyony (2009) and

R̂n(ψ ◦ F) ≤ 2LψR̂n(F)

for Bartlett & Mendelson (2002). When all involved error bounds are single-sided concentration results, those
definitions without the absolute value in the argument of the supremum (El-Yaniv & Pechyony, 2009; Meir &
Zhang, 2003) are more natural and powerful.

B.2. Proof of Theorem 2

Let βF = K−1/2D−1/2α∗F , then

B2
F = ‖D−1/2α∗F‖22 = β>FKβF ,

B′F = ‖K−1/2D−1/2α∗F‖1 = ‖βF‖1.

Define the class of functions F as

F :=

x 7→
n∑
i=1

βik(x,x′i)

∣∣∣∣ x′i ∈ X , βi ∈ R,
n∑
i=1

|βi| ≤ B′F ,
n∑

i,j=1

βiβjk(x′i,x
′
j) ≤ B2

F

 .

It is easy to verify that f(x) = 〈Φn(x),βF 〉 ∈ F , where f(x) is the decision function defined in Eq. (9). By
Lemma 22 of Bartlett & Mendelson (2002), we get

R̂n(F) ≤ 2BF
n

(
n∑
i=1

k(xi,xi)

)1/2

≤ 2BkBF√
n

. (13)

Applying Lemma 22 of Bartlett & Mendelson (2002) again gives us

R̂l(F) ≤ 2BF
l

(
l∑
i=1

k(xi,xi)

)1/2

≤ 2BkBF√
l

. (14)

where R̂l(F) is the empirical Rademacher complexities of F conditioned only on x1, . . . ,xl.

In the following, we only focus on the proof of inequality (11) based on inequality (13). Inequality (10) can be
derived by the exactly same way based on inequality (14). Let

`η ◦ F := {(x, y) 7→ `η(yf(x)) | f ∈ F},

which is a class of functions mapping from X × Y to the interval [0, 1]. The rest of the proof consists of two
steps. The first step bounds Rn(`η ◦ F) from above, and the second step bounds E`(yf(x)) using Rn(`η ◦ F).

B.2.1. Step 1

The following lemma relates the inductive Rademacher complexity of a class of bounded functions to the corre-
sponding empirical Rademacher complexity.

Lemma 3 (Concentration Lemma). Let FC be a class of functions mapping to the interval [−C,C]. With
probability at least 1− δ/2, we have

Rn(FC) ≤ R̂n(FC) + 4C

√
ln(2/δ)

2n
.

Similarly, let F+
C be a class of functions mapping to the interval [0, C]. With probability at least 1− δ/2, we have

Rn(F+
C ) ≤ R̂n(F+

C ) + 2C

√
ln(2/δ)

2n
.
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Proof. Recall that R̂n(FC) conditioned on x1, . . . ,xn is a random variable defined as

R̂n(FC) = Eσ1,...,σn

{
sup
f∈FC

2

n

n∑
i=1

σif(xi)

}
.

When an observation xi changes to x′i, the change of R̂n(FC) is no more than 4C/n, and thus McDiarmid’s
inequality (McDiarmid, 1989) implies that

Pr
{
Rn(FC)− R̂n(FC) ≥ ε

}
≤ exp

(
− ε

2n

8C2

)
.

The first bound can be obtained by equating the right-hand side of the above inequality to δ/2.

For F+
C , when an observation xi changes to x′i, the change of R̂n(F+

C ) is no more than 2C/n. The lemma follows
by the same argument as above.

The next lemma is a variation of the comparison lemma in Meir & Zhang (2003), where the comparison is done
for two sets of functions under a Bayesian framework, and its validity follows Lemma 5 of El-Yaniv & Pechyony
(2009) by setting p = 1/2.

Lemma 4 (Comparison Lemma). Let

H := {h = (h1, . . . , hn)> | hi = yif(xi), f ∈ F},

and ψ,ψ′ : R 7→ R be real-valued functions. If for all h,h′ ∈ H and i = 1, . . . , n,

|ψ(hi)− ψ(h′i)| ≤ |ψ′(hi)− ψ′(h′i)|,

then

Eσ1,...,σn

{
sup
h∈H

n∑
i=1

σiψ(hi)

}
≤ Eσ1,...,σn

{
sup
h∈H

n∑
i=1

σiψ
′(hi)

}
.

Now R̂n(`η ◦ F) and Rn(`η ◦ F) can be bounded from above by R̂n(F) and Rn(F) based on the comparison
lemma.

Lemma 5 (Contraction Lemma). For any η > 0, we have

R̂n(`η ◦ F) ≤ 1

η
R̂n(F),

Rn(`η ◦ F) ≤ 1

η
Rn(F).

Proof. Note that `η(z) satisfies the Lipschitz condition

|`η(z)− `η(z′)| ≤ 1

η
|z − z′|, ∀z, z′ ∈ R.

Let ψ(hi) = `η(yif(xi)) and ψ′(hi) = yif(xi)/η, then

Eσ1,...,σn

{
sup
f∈F

n∑
i=1

σi`η(yif(xi))

}
≤ 1

η
Eσ1,...,σn

{
sup
f∈F

n∑
i=1

σiyif(xi)

}

=
1

η
Eσ1,...,σn

{
sup
f∈F

n∑
i=1

σif(xi)

}
,

where the first step is a corollary of the comparison lemma, and the second step is due to the same distribution
of each σiyi and σi. This completes the proof.
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As a result, if we contract R̂n(F) and then concentrate R̂n(`η ◦ F), we could know

Rn(`η ◦ F) ≤ R̂n(`η ◦ F) + 2

√
ln(2/δ)

2n

≤ 2BkBF
η
√
n

+ 2

√
ln(2/δ)

2n
, (15)

since `η maps to the interval [0, 1]. On the other hand, for any f ∈ F ,

‖f‖∞ = sup
x∈X

∣∣∣∣∣
n∑
i=1

βik(x,x′i)

∣∣∣∣∣ ≤ B2
kB
′
F ,

which says that F is a class of functions mapping to the interval [−B2
kB
′
F , B

2
kB
′
F ]. Thus, if we concentrate

R̂n(F) before contract Rn(F), we can obtain

Rn(`η ◦ F) ≤ 1

η
Rn(F)

≤ 1

η

(
2BkBF√

n
+ 4B2

kB
′
F

√
ln(2/δ)

2n

)
. (16)

Combining inequalities (15) and (16) finalizes the first step of the proof, that is,

Rn(`η ◦ F) ≤ 2BkBF
η
√
n

+ min

(
2,

4B2
kB
′
F

η

)√
ln(2/δ)

2n
.

B.2.2. Step 2

This step is composed of a single concentration inequality, that is, with probability at least 1− δ/2,

E`(yf(x)) ≤ Ên`η(yf(x)) +Rn(`η ◦ F) +

√
ln(2/δ)

2n
. (17)

Since ∀z ∈ R, `(z) is always equal to or less than `η(z), for any f ∈ F we can write

E`(yf(x)) ≤ E`η(yf(x))

≤ Ên`η(yf(x)) + sup
ψ∈`η◦F

(Eψ − Ênψ).

Any function ψ(x, y) = `η(yf(x)) ∈ `η ◦ F satisfies 0 ≤ ψ(x, y) ≤ 1, so when (xi, yi) changes to (x′i, y
′
i), the

change of supψ∈`η◦F (Eψ − Ênψ) cannot be more than 1/n. Hence, McDiarmid’s inequality implies that

Pr

{
sup

ψ∈`η◦F
(Eψ − Ênψ)− E(x1,y1),...,(xn,yn) sup

ψ∈`η◦F
(Eψ − Ênψ) ≥ ε

}
≤ exp(−2ε2n),

or equivalently, with probability at least 1− δ/2,

sup
ψ∈`η◦F

(Eψ − Ênψ) ≤ E(x1,y1),...,(xn,yn) sup
ψ∈`η◦F

(Eψ − Ênψ) +

√
ln(2/δ)

2n
.

It remains to bound the expectation E(x1,y1),...,(xn,yn) supψ∈`η◦F (Eψ − Ênψ) by the complexity Rn(`η ◦ F).
Suppose that

{(x′1, y′1), . . . , (x′n, y
′
n) | (x′i, y′i) ∼ p(x, y)}
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is a ghost sample for symmetrization, then

E(xi,yi) sup
ψ∈`η◦F

(Eψ − Ênψ) = E(xi,yi) sup
ψ∈`η◦F

(
E(x′

i,y
′
i)

[Ênψ(x′i, y
′
i)]− Ênψ(xi, yi)

)
= E(xi,yi) sup

ψ∈`η◦F

(
E(x′

i,y
′
i)

[Ênψ(x′i, y
′
i)− Ênψ(xi, yi)]

)
≤ E(xi,yi),(x′

i,y
′
i)

sup
ψ∈`η◦F

(
Ênψ(x′i, y

′
i)− Ênψ(xi, yi)

)
(18)

= E(xi,yi),(x′
i,y

′
i)

sup
ψ∈`η◦F

1

n

n∑
i=1

(ψ(x′i, y
′
i)− ψ(xi, yi))

= Eσi,(xi,yi),(x′
i,y

′
i)

sup
ψ∈`η◦F

1

n

n∑
i=1

σi(ψ(x′i, y
′
i)− ψ(xi, yi)) (19)

≤ E(x′
i,y

′
i),σi

sup
ψ∈`η◦F

1

n

n∑
i=1

σiψ(x′i, y
′
i) + E(xi,yi),σi sup

ψ∈`η◦F

1

n

n∑
i=1

(−σi)ψ(xi, yi)

= 2E(xi,yi),σi sup
ψ∈`η◦F

1

n

n∑
i=1

σiψ(xi, yi) (20)

= Rn(`η ◦ F),

where (18) uses the fact that the supremum is a convex function and then we apply Jensen’s inequality, (19) is due
to the symmetry of the ghost sample and the original sample and thus the same distribution of ψ(x′i, y

′
i)−ψ(xi, yi)

and σi(ψ(x′i, y
′
i)−ψ(xi, yi)), and (20) is valid since σi and −σi have the same distribution while the original and

ghost samples also have the same distribution.


