Appendix: Supplementary Material

A. Proof of Theorem 1

Proof. Denote the unnormalized graph Laplacian by L = D - K and the normalized graph Laplacian by

$$L^* = D^{-1/2}LD^{-1/2} = I_n - D^{-1/2}KD^{-1/2},$$

where I_n is the identity matrix of size n. Optimization (5) can be rewritten as

$$\min_{\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_r \in \mathbb{R}^n} \Delta(p, q) + \gamma' \sum_{y \in \mathcal{Y}} \boldsymbol{\alpha}_y^{\top} \boldsymbol{L}^* \boldsymbol{\alpha}_y + \lambda' \sum_{y \in \mathcal{Y}} \frac{1}{2} \|\boldsymbol{\alpha}_y\|_2^2, \tag{12}$$

where $\gamma' = \gamma c/2n > 0$ and $\lambda' = \lambda - \gamma c/n > 0$ are regularization parameters. Notice that $\forall y \in \mathcal{Y}$,

$$oldsymbol{lpha}_y^ op oldsymbol{L}^* oldsymbol{lpha}_y = rac{1}{2} \sum_{i,j=1}^n \left(rac{lpha_{y,i}}{d_i} - rac{lpha_{y,j}}{d_j}
ight)^2 oldsymbol{K}_{i,j},$$

and then the second term of (12) is convex since $K_{i,j} \geq 0$.

The loss function $\Delta(p,q)$ is convex w.r.t. $q(y \mid \boldsymbol{x}; \boldsymbol{\alpha})$, and $q(y \mid \boldsymbol{x}; \boldsymbol{\alpha})$ is linear w.r.t. $\boldsymbol{\alpha}_y$, so $\Delta(p,q)$ is convex w.r.t. $\boldsymbol{\alpha}_y$. The ℓ_2 -norm of $\boldsymbol{\alpha}_y$ is strictly convex w.r.t. $\boldsymbol{\alpha}_y$, i.e., it takes zero if and only if $\boldsymbol{\alpha}_y$ is identically zero. Therefore, optimization (12) is strictly convex and there exists a unique globally optimal solution.

B. Derivation of the Error Bounds

B.1. Definitions

To begin with, we state the inductive definition of Rademacher complexity following El-Yaniv & Pechyony (2009).

Definition 1. Suppose that $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are independent observations according to $p(\mathbf{x})$. Let \mathcal{F} be a class of functions mapping from \mathcal{X} to \mathbb{R} , and $\sigma_1, \ldots, \sigma_n$ be independent uniformly $\{\pm 1\}$ -valued random variables, i.e., Rademacher variables. Subsequently, the empirical Rademacher complexity conditioned on $\mathbf{x}_1, \ldots, \mathbf{x}_n$ is defined as

$$\widehat{\mathcal{R}}_n(\mathcal{F}) := \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left\{ \sup_{f \in \mathcal{F}} \frac{2}{n} \sum_{i=1}^n \sigma_i f(\boldsymbol{x}_i) \right\},\,$$

and the inductive Rademacher complexity is defined as

$$\mathcal{R}_n(\mathcal{F}) := \mathbb{E}_{\boldsymbol{x}_1,...,\boldsymbol{x}_n} \left\{ \widehat{\mathcal{R}}_n(\mathcal{F}) \right\}.$$

There exist various definitions of $\widehat{\mathcal{R}}_n(\mathcal{F})$: The definition in Bartlett & Mendelson (2002) is

$$\widehat{\mathcal{R}}_n(\mathcal{F}) = \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left\{ \sup_{f \in \mathcal{F}} \frac{2}{n} \left| \sum_{i=1}^n \sigma_i f(\boldsymbol{x}_i) \right| \right\},\,$$

the definition in Koltchinskii (2001) uses

$$\widehat{\mathcal{R}}_n(\mathcal{F}) = \mathbb{E}_{\sigma_1,\dots,\sigma_n} \left\{ \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \sigma_i f(\boldsymbol{x}_i) \right| \right\},$$

while the definition in Meir & Zhang (2003) adopt

$$\widehat{\mathcal{R}}_n(\mathcal{F}) = \mathbb{E}_{\sigma_1,...,\sigma_n} \left\{ \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(\boldsymbol{x}_i) \right\}.$$

The definition in El-Yaniv & Pechyony (2009) is consistent with Bartlett & Mendelson (2002) for function classes that are closed under negation, and is always equal to or less than the one in Bartlett & Mendelson (2002).

Nevertheless, a vital disagreement arises when considering comparison theorems and thus the famous contraction principle of Rademacher averages. If $\psi : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous with a Lipschitz constant L_{ψ} and satisfies $\psi(0) = 0$, then

$$\widehat{\mathcal{R}}_n(\psi \circ \mathcal{F}) \le L_{\psi} \widehat{\mathcal{R}}_n(\mathcal{F})$$

for El-Yaniv & Pechyony (2009) and

$$\widehat{\mathcal{R}}_n(\psi \circ \mathcal{F}) \le 2L_{\psi}\widehat{\mathcal{R}}_n(\mathcal{F})$$

for Bartlett & Mendelson (2002). When all involved error bounds are single-sided concentration results, those definitions without the absolute value in the argument of the supremum (El-Yaniv & Pechyony, 2009; Meir & Zhang, 2003) are more natural and powerful.

B.2. Proof of Theorem 2

Let $\boldsymbol{\beta}_{\mathcal{F}} = \boldsymbol{K}^{-1/2} \boldsymbol{D}^{-1/2} \boldsymbol{\alpha}_{\mathcal{F}}^*$, then

$$B_{\mathcal{F}}^2 = \|\boldsymbol{D}^{-1/2}\boldsymbol{\alpha}_{\mathcal{F}}^*\|_2^2 = \boldsymbol{\beta}_{\mathcal{F}}^{\top}\boldsymbol{K}\boldsymbol{\beta}_{\mathcal{F}},$$

$$B_{\mathcal{F}}' = \|\boldsymbol{K}^{-1/2}\boldsymbol{D}^{-1/2}\boldsymbol{\alpha}_{\mathcal{F}}^*\|_1 = \|\boldsymbol{\beta}_{\mathcal{F}}\|_1$$

Define the class of functions \mathcal{F} as

$$\mathcal{F} := \left\{ \boldsymbol{x} \mapsto \sum_{i=1}^n \beta_i k(\boldsymbol{x}, \boldsymbol{x}_i') \mid \boldsymbol{x}_i' \in \mathcal{X}, \beta_i \in \mathbb{R}, \sum_{i=1}^n |\beta_i| \leq B_{\mathcal{F}}', \sum_{i,j=1}^n \beta_i \beta_j k(\boldsymbol{x}_i', \boldsymbol{x}_j') \leq B_{\mathcal{F}}^2 \right\}.$$

It is easy to verify that $f(\mathbf{x}) = \langle \Phi_n(\mathbf{x}), \boldsymbol{\beta}_{\mathcal{F}} \rangle \in \mathcal{F}$, where $f(\mathbf{x})$ is the decision function defined in Eq. (9). By Lemma 22 of Bartlett & Mendelson (2002), we get

$$\widehat{\mathcal{R}}_n(\mathcal{F}) \le \frac{2B_{\mathcal{F}}}{n} \left(\sum_{i=1}^n k(\boldsymbol{x}_i, \boldsymbol{x}_i) \right)^{1/2} \le \frac{2B_k B_{\mathcal{F}}}{\sqrt{n}}.$$
 (13)

Applying Lemma 22 of Bartlett & Mendelson (2002) again gives us

$$\widehat{\mathcal{R}}_{l}(\mathcal{F}) \leq \frac{2B_{\mathcal{F}}}{l} \left(\sum_{i=1}^{l} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}) \right)^{1/2} \leq \frac{2B_{k}B_{\mathcal{F}}}{\sqrt{l}}.$$
(14)

where $\widehat{\mathcal{R}}_l(\mathcal{F})$ is the empirical Rademacher complexities of \mathcal{F} conditioned only on x_1, \ldots, x_l .

In the following, we only focus on the proof of inequality (11) based on inequality (13). Inequality (10) can be derived by the exactly same way based on inequality (14). Let

$$\ell_{\eta} \circ \mathcal{F} := \{ (\boldsymbol{x}, y) \mapsto \ell_{\eta}(y f(\boldsymbol{x})) \mid f \in \mathcal{F} \},$$

which is a class of functions mapping from $\mathcal{X} \times \mathcal{Y}$ to the interval [0,1]. The rest of the proof consists of two steps. The first step bounds $\mathcal{R}_n(\ell_{\eta} \circ \mathcal{F})$ from above, and the second step bounds $\mathbb{E}\ell(yf(\boldsymbol{x}))$ using $\mathcal{R}_n(\ell_{\eta} \circ \mathcal{F})$.

B.2.1. Step 1

The following lemma relates the inductive Rademacher complexity of a class of bounded functions to the corresponding empirical Rademacher complexity.

Lemma 3 (Concentration Lemma). Let \mathcal{F}_C be a class of functions mapping to the interval [-C, C]. With probability at least $1 - \delta/2$, we have

$$\mathcal{R}_n(\mathcal{F}_C) \le \widehat{\mathcal{R}}_n(\mathcal{F}_C) + 4C\sqrt{\frac{\ln(2/\delta)}{2n}}.$$

Similarly, let \mathcal{F}_{C}^{+} be a class of functions mapping to the interval [0,C]. With probability at least $1-\delta/2$, we have

$$\mathcal{R}_n(\mathcal{F}_C^+) \le \widehat{\mathcal{R}}_n(\mathcal{F}_C^+) + 2C\sqrt{\frac{\ln(2/\delta)}{2n}}.$$

Proof. Recall that $\widehat{\mathcal{R}}_n(\mathcal{F}_C)$ conditioned on x_1, \ldots, x_n is a random variable defined as

$$\widehat{\mathcal{R}}_n(\mathcal{F}_C) = \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left\{ \sup_{f \in \mathcal{F}_C} \frac{2}{n} \sum_{i=1}^n \sigma_i f(\boldsymbol{x}_i) \right\}.$$

When an observation x_i changes to x_i' , the change of $\widehat{\mathcal{R}}_n(\mathcal{F}_C)$ is no more than 4C/n, and thus McDiarmid's inequality (McDiarmid, 1989) implies that

$$\Pr\left\{\mathcal{R}_n(\mathcal{F}_C) - \widehat{\mathcal{R}}_n(\mathcal{F}_C) \ge \epsilon\right\} \le \exp\left(-\frac{\epsilon^2 n}{8C^2}\right).$$

The first bound can be obtained by equating the right-hand side of the above inequality to $\delta/2$.

For \mathcal{F}_C^+ , when an observation \boldsymbol{x}_i changes to \boldsymbol{x}_i' , the change of $\widehat{\mathcal{R}}_n(\mathcal{F}_C^+)$ is no more than 2C/n. The lemma follows by the same argument as above.

The next lemma is a variation of the comparison lemma in Meir & Zhang (2003), where the comparison is done for two sets of functions under a Bayesian framework, and its validity follows Lemma 5 of El-Yaniv & Pechyony (2009) by setting p = 1/2.

Lemma 4 (Comparison Lemma). Let

$$\mathcal{H} := \{ \boldsymbol{h} = (h_1, \dots, h_n)^{\top} \mid h_i = y_i f(\boldsymbol{x}_i), f \in \mathcal{F} \},$$

and $\psi, \psi' : \mathbb{R} \to \mathbb{R}$ be real-valued functions. If for all $h, h' \in \mathcal{H}$ and i = 1, ..., n,

$$|\psi(h_i) - \psi(h'_i)| \le |\psi'(h_i) - \psi'(h'_i)|,$$

then

$$\mathbb{E}_{\sigma_1,\dots,\sigma_n} \left\{ \sup_{h \in \mathcal{H}} \sum_{i=1}^n \sigma_i \psi(h_i) \right\} \leq \mathbb{E}_{\sigma_1,\dots,\sigma_n} \left\{ \sup_{h \in \mathcal{H}} \sum_{i=1}^n \sigma_i \psi'(h_i) \right\}.$$

Now $\widehat{\mathcal{R}}_n(\ell_\eta \circ \mathcal{F})$ and $\mathcal{R}_n(\ell_\eta \circ \mathcal{F})$ can be bounded from above by $\widehat{\mathcal{R}}_n(\mathcal{F})$ and $\mathcal{R}_n(\mathcal{F})$ based on the comparison lemma.

Lemma 5 (Contraction Lemma). For any $\eta > 0$, we have

$$\widehat{\mathcal{R}}_n(\ell_\eta \circ \mathcal{F}) \le \frac{1}{\eta} \widehat{\mathcal{R}}_n(\mathcal{F}),$$

$$\mathcal{R}_n(\ell_\eta \circ \mathcal{F}) \le \frac{1}{\eta} \mathcal{R}_n(\mathcal{F}).$$

Proof. Note that $\ell_{\eta}(z)$ satisfies the Lipschitz condition

$$|\ell_{\eta}(z) - \ell_{\eta}(z')| \le \frac{1}{\eta}|z - z'|, \quad \forall z, z' \in \mathbb{R}.$$

Let $\psi(h_i) = \ell_n(y_i f(\boldsymbol{x}_i))$ and $\psi'(h_i) = y_i f(\boldsymbol{x}_i)/\eta$, then

$$\mathbb{E}_{\sigma_{1},...,\sigma_{n}} \left\{ \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} \ell_{\eta}(y_{i} f(\boldsymbol{x}_{i})) \right\} \leq \frac{1}{\eta} \mathbb{E}_{\sigma_{1},...,\sigma_{n}} \left\{ \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} y_{i} f(\boldsymbol{x}_{i}) \right\}$$
$$= \frac{1}{\eta} \mathbb{E}_{\sigma_{1},...,\sigma_{n}} \left\{ \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}) \right\},$$

where the first step is a corollary of the comparison lemma, and the second step is due to the same distribution of each $\sigma_i y_i$ and σ_i . This completes the proof.

As a result, if we contract $\widehat{\mathcal{R}}_n(\mathcal{F})$ and then concentrate $\widehat{\mathcal{R}}_n(\ell_\eta \circ \mathcal{F})$, we could know

$$\mathcal{R}_{n}(\ell_{\eta} \circ \mathcal{F}) \leq \widehat{\mathcal{R}}_{n}(\ell_{\eta} \circ \mathcal{F}) + 2\sqrt{\frac{\ln(2/\delta)}{2n}} \\
\leq \frac{2B_{k}B_{\mathcal{F}}}{\eta\sqrt{n}} + 2\sqrt{\frac{\ln(2/\delta)}{2n}}, \tag{15}$$

since ℓ_{η} maps to the interval [0, 1]. On the other hand, for any $f \in \mathcal{F}$,

$$||f||_{\infty} = \sup_{\boldsymbol{x} \in \mathcal{X}} \left| \sum_{i=1}^{n} \beta_i k(\boldsymbol{x}, \boldsymbol{x}_i') \right| \le B_k^2 B_{\mathcal{F}}',$$

which says that \mathcal{F} is a class of functions mapping to the interval $[-B_k^2 B_{\mathcal{F}}', B_k^2 B_{\mathcal{F}}']$. Thus, if we concentrate $\widehat{\mathcal{R}}_n(\mathcal{F})$ before contract $\mathcal{R}_n(\mathcal{F})$, we can obtain

$$\mathcal{R}_{n}(\ell_{\eta} \circ \mathcal{F}) \leq \frac{1}{\eta} \mathcal{R}_{n}(\mathcal{F})
\leq \frac{1}{\eta} \left(\frac{2B_{k}B_{\mathcal{F}}}{\sqrt{n}} + 4B_{k}^{2}B_{\mathcal{F}}'\sqrt{\frac{\ln(2/\delta)}{2n}} \right).$$
(16)

Combining inequalities (15) and (16) finalizes the first step of the proof, that is,

$$\mathcal{R}_n(\ell_{\eta} \circ \mathcal{F}) \leq \frac{2B_k B_{\mathcal{F}}}{\eta \sqrt{n}} + \min\left(2, \frac{4B_k^2 B_{\mathcal{F}}'}{\eta}\right) \sqrt{\frac{\ln(2/\delta)}{2n}}.$$

B.2.2. Step 2

This step is composed of a single concentration inequality, that is, with probability at least $1 - \delta/2$,

$$\mathbb{E}\ell(yf(\boldsymbol{x})) \leq \hat{\mathbb{E}}_n\ell_{\eta}(yf(\boldsymbol{x})) + \mathcal{R}_n(\ell_{\eta} \circ \mathcal{F}) + \sqrt{\frac{\ln(2/\delta)}{2n}}.$$
 (17)

Since $\forall z \in \mathbb{R}, \ell(z)$ is always equal to or less than $\ell_{\eta}(z)$, for any $f \in \mathcal{F}$ we can write

$$\mathbb{E}\ell(yf(\boldsymbol{x})) \leq \mathbb{E}\ell_{\eta}(yf(\boldsymbol{x}))$$

$$\leq \hat{\mathbb{E}}_{n}\ell_{\eta}(yf(\boldsymbol{x})) + \sup_{\psi \in \ell_{\eta} \circ \mathcal{F}} (\mathbb{E}\psi - \hat{\mathbb{E}}_{n}\psi).$$

Any function $\psi(\boldsymbol{x},y) = \ell_{\eta}(yf(x)) \in \ell_{\eta} \circ \mathcal{F}$ satisfies $0 \leq \psi(\boldsymbol{x},y) \leq 1$, so when (\boldsymbol{x}_i,y_i) changes to (\boldsymbol{x}_i',y_i') , the change of $\sup_{\psi \in \ell_{\eta} \circ \mathcal{F}} (\mathbb{E}\psi - \hat{\mathbb{E}}_n \psi)$ cannot be more than 1/n. Hence, McDiarmid's inequality implies that

$$\Pr\left\{\sup_{\psi\in\ell_n\circ\mathcal{F}}(\mathbb{E}\psi-\hat{\mathbb{E}}_n\psi)-\mathbb{E}_{(\boldsymbol{x}_1,y_1),...,(\boldsymbol{x}_n,y_n)}\sup_{\psi\in\ell_n\circ\mathcal{F}}(\mathbb{E}\psi-\hat{\mathbb{E}}_n\psi)\geq\epsilon\right\}\leq\exp(-2\epsilon^2n),$$

or equivalently, with probability at least $1 - \delta/2$,

$$\sup_{\psi \in \ell_{\eta} \circ \mathcal{F}} (\mathbb{E}\psi - \hat{\mathbb{E}}_n \psi) \leq \mathbb{E}_{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)} \sup_{\psi \in \ell_{\eta} \circ \mathcal{F}} (\mathbb{E}\psi - \hat{\mathbb{E}}_n \psi) + \sqrt{\frac{\ln(2/\delta)}{2n}}.$$

It remains to bound the expectation $\mathbb{E}_{(\boldsymbol{x}_1,y_1),...,(\boldsymbol{x}_n,y_n)} \sup_{\psi \in \ell_{\eta} \circ \mathcal{F}} (\mathbb{E}\psi - \hat{\mathbb{E}}_n \psi)$ by the complexity $\mathcal{R}_n(\ell_{\eta} \circ \mathcal{F})$. Suppose that

$$\{(x'_1, y'_1), \dots, (x'_n, y'_n) \mid (x'_i, y'_i) \sim p(x, y)\}$$

is a ghost sample for symmetrization, then

$$\mathbb{E}_{(\boldsymbol{x}_{i},y_{i})} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} (\mathbb{E}\boldsymbol{\psi} - \hat{\mathbb{E}}_{n}\boldsymbol{\psi}) = \mathbb{E}_{(\boldsymbol{x}_{i},y_{i})} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \left(\mathbb{E}_{(\boldsymbol{x}'_{i},y'_{i})} [\hat{\mathbb{E}}_{n}\boldsymbol{\psi}(\boldsymbol{x}'_{i},y'_{i})] - \hat{\mathbb{E}}_{n}\boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i}) \right) \\
= \mathbb{E}_{(\boldsymbol{x}_{i},y_{i})} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \left(\mathbb{E}_{(\boldsymbol{x}'_{i},y'_{i})} [\hat{\mathbb{E}}_{n}\boldsymbol{\psi}(\boldsymbol{x}'_{i},y'_{i}) - \hat{\mathbb{E}}_{n}\boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i})] \right) \\
\leq \mathbb{E}_{(\boldsymbol{x}_{i},y_{i}),(\boldsymbol{x}'_{i},y'_{i})} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \left(\hat{\mathbb{E}}_{n}\boldsymbol{\psi}(\boldsymbol{x}'_{i},y'_{i}) - \hat{\mathbb{E}}_{n}\boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i}) \right) \\
= \mathbb{E}_{(\boldsymbol{x}_{i},y_{i}),(\boldsymbol{x}'_{i},y'_{i})} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{\psi}(\boldsymbol{x}'_{i},y'_{i}) - \boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i})) \\
= \mathbb{E}_{\sigma_{i},(\boldsymbol{x}_{i},y_{i}),(\boldsymbol{x}'_{i},y'_{i})} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(\boldsymbol{\psi}(\boldsymbol{x}'_{i},y'_{i}) - \boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i})) \\
\leq \mathbb{E}_{(\boldsymbol{x}'_{i},y'_{i}),\sigma_{i}} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\boldsymbol{\psi}(\boldsymbol{x}'_{i},y'_{i}) + \mathbb{E}_{(\boldsymbol{x}_{i},y_{i}),\sigma_{i}} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (-\sigma_{i})\boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i}) \\
= 2\mathbb{E}_{(\boldsymbol{x}_{i},y_{i}),\sigma_{i}} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i}) \\
= 2\mathbb{E}_{(\boldsymbol{x}_{i},y_{i}),\sigma_{i}} \sup_{\boldsymbol{\psi} \in \ell_{\eta} \circ \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\boldsymbol{\psi}(\boldsymbol{x}_{i},y_{i}) \\
= \mathcal{R}_{n}(\ell_{\eta} \circ \mathcal{F}), \tag{20}$$

where (18) uses the fact that the supremum is a convex function and then we apply Jensen's inequality, (19) is due to the symmetry of the ghost sample and the original sample and thus the same distribution of $\psi(\mathbf{x}'_i, y'_i) - \psi(\mathbf{x}_i, y_i)$ and $\sigma_i(\psi(\mathbf{x}'_i, y'_i) - \psi(\mathbf{x}_i, y_i))$, and (20) is valid since σ_i and $-\sigma_i$ have the same distribution while the original and ghost samples also have the same distribution.