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Abstract

While convex losses for binary classification
are attractive due to the existence of numer-
ous (provably) efficient methods for finding
their global optima, they are sensitive to out-
liers. On the other hand, while the non-
convex 0–1 loss is robust to outliers, it is
NP-hard to optimize and thus rarely directly
optimized in practice. In this paper, how-
ever, we do just that: we explore a variety
of practical methods for direct (approximate)
optimization of the 0–1 loss based on branch
and bound search, combinatorial search, and
coordinate descent on smooth, differentiable
relaxations of 0–1 loss. Empirically, we com-
pare our proposed algorithms to logistic re-
gression, SVM, and the Bayes point machine
showing that the proposed 0–1 loss optimiza-
tion algorithms perform at least as well and
offer a clear advantage in the presence of out-
liers. To this end, we believe this work reiter-
ates the importance of 0–1 loss and its robust-
ness properties while challenging the notion
that it is difficult to directly optimize.

1. Introduction

The 0–1 loss objective for binary classifiers — mini-
mize the number of misclassifications — is known to
be robust to outliers. Unfortunately, it is NP–hard
to optimize directly (Feldman et al., 2009; Ben-David
et al., 2003) and thus most work has sought alternative
losses with better computational guarantees. While
hinge loss used in SVMs (Cortes & Vapnik, 1995) and
log loss used in logistic regression may be viewed as
convex surrogates of the 0–1 loss that are computa-
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Figure 1. Training data consisting of 300 points of two
classes, 10% of which are outliers. All convex losses (least
squares, logistic regression, SVM) are skewed by the out-
liers and their decision boundaries make ≥ 61 classification
errors, whereas the optimal 0–1 loss solution makes 39 er-
rors with a decision boundary that is robust to the outliers.

tionally efficient to globally optimize (Bartlett et al.,
2003), such convex surrogate losses are not robust to
outliers (Wu & Liu, 2007; Long & Servedio, 2010; Ding
& Vishwanathan, 2010) as shown in Figure 1.

Given the outlier robustness properties of 0–1 loss, we
explore a variety of practical algorithms for directly
optimizing it and contribute the following novel opti-
mization techniques targeted specifically for 0–1 loss:

Branch and bound: We show this staple of search in
the optimization literature proves effective with good
initialization plus informed decision ordering heuristics
and a forward-checking technique for pruning implied
decisions within the convex hull of existing decisions;
this yields an anytime approximation scheme with op-
timal convergence guarantees.

Combinatorial search: We exploit the fact that there
are only a finite number of equivalence classes of sep-
arating hyperplanes that can have different loss values
and propose both prioritized systematic and heuristic



Algorithms for Direct 0–1 Loss Optimization in Binary Classification

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

margin (m)

L
o

s
s
 V

a
lu

e

 

 

0−1 Loss

Hinge Loss

Log Loss

Squared Loss

Figure 2. Different losses as a function of the margin.

search through combinations of data points that define
these equivalence classes. While systematic combina-
torial search yields efficient optimal solutions on low
dimensional problems, heuristic combinatorial search
offers excellent approximations and scalability.

Smooth, differentiable relaxations of 0–1 loss: We re-
lax the 0–1 loss to a smooth, differentiable function
that can arbitrarily approximate the original 0–1 loss
via a smoothness constant. We then provide an itera-
tively unrelaxed coordinate descent approach for gra-
dient optimization of this smoothed loss along with
techniques for escaping local optima. This yields solu-
tions comparable to the combinatorial search approxi-
mation, while running two orders of magnitude faster.

Empirically, we compare our proposed algorithms to
logistic regression, SVM, and the Bayes point machine
(a approximate Bayesian approach with connections
to the 0–1 loss) showing that the proposed 0–1 loss
optimization algorithms perform at least comparably
and offer a clear advantage in the presence of outliers.

2. Linear Binary Classification

We assume a D-dimensional data input vector x ∈ RD
(D for dimension), where the goal of binary classifica-
tion is to predict the target class t̂ ∈ {−1, 1} for a
given x. Linear binary classification which underlies
many popular classification approaches such as SVMs
and logistic regression defines a predictor function:

fw(x) =

D∑
j=1

wjxj + w0 = wTx + w0, (1)

where wj ∈ R and w0 ∈ R is a bias. Then

t̂ =

{
1 fw(x) ≥ 0

−1 fw(x) < 0
(2)

Thus, the equation of the decision boundary that sep-
arates the two classes is fw(x) = wTx+w0 = 0, which
is a D-dimensional hyperplane.

We use two notations for the weight vector w:
in the homogeneous notation, we assume w =
(w0, w1, . . . , wD)T and x = (1, x1, . . . , xD) so that
fw(x) = wTx. In the non-homogeneous notation, we
assume w = (w1, . . . , wD)T and x = (x1, . . . , xD) so
that fw(x) = wTx + w0.

The training dataset contains N data vectors X =
{x1,x2, . . . ,xN} and their corresponding target class
t = {t1, t2, . . . , tN}. To measure the confidence of a
class prediction for an observation xi ∈ X, the so–
called margin is defined as mi(w) = tifw(xi). A
margin mi(w) < 0 indicates xi is misclassified, while
mi(w) ≥ 0 indicates xi is correctly classified and mi

represents the “margin of safety” by which the predic-
tion for xi is correct (McAllester, 2007).

The learning objective in classification is to find the
best (homogenous) w to minimize some loss over the
training data (X, t), i.e.,

w∗ = arg min
w

N∑
i=1

L(mi(w)) + λR(w), (3)

where loss L(mi(w)) is defined as a function of the
margin for each data point xi, R(w) is a regularizer
which prevents overfitting (typically ‖w‖22 or ‖w‖1),
and λ > 0 is the regularization strength parameter.

Some popular losses as a function of the margin are

0–1 loss: L01(mi(w)) = I[mi(w) ≤ 0], (4)

squared loss: L2(mi(w)) =
1

2
[mi(w)− 1]2 (5)

hinge loss: Lhinge(mi(w)) = max(0, 1−mi(w)) (6)

log loss: Llog(mi(w)) = ln(1 + e−mi(w)) (7)

where I[·] is the indicator function taking the value
1 when its argument is true and 0 when false. These
losses are plotted in Figure 2. 0–1 loss is robust to out-
liers since it is not affected by a misclassified point’s
distance from the margin, but this property also makes
it non-convex; the convex squared, hinge, and log
losses are not robust to outliers in this way since their
penalty does scale with the margin of misclassification.
Squared loss is not an ideal loss for classification since
it harshly penalizes a classifier for correct margin pre-
dictions � 1, unlike the other losses. This leaves us
with hinge loss as optimized in the SVM and log loss
as optimized in logistic regression as two convex sur-
rogates of 0–1 loss for later empirical comparison.
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3. Branch and Bound for 0–1 Loss

Branch and bound techniques (BnB) (Land & Doig,
1960) are a staple of the literature on discrete opti-
mization via search methods. This section shows how
to formulate the 0–1 loss problem in a BnB setting
along with heuristics and pruning techniques that al-
low it to efficiently find an optimal 0–1 loss solution.

Following from the definition of the training objective
from (3) w.r.t. 0–1 loss in (4), the 0–1 loss optimization
problem can be written as

L(w) =

N∑
i=1

I[tiwTxi ≤ 0] =

N∑
i=1

li, (8)

where li = I[tiwTxi ≤ 0] denotes the individual 0–1
loss of point xi. Then we have

li = 0⇔ tiw
Txi > 0

li = 1⇔ tiw
Txi ≤ 0.

Furthermore, let l = (l1, l2, . . . , lN ) be the loss vector
consisting of all individual losses. It can be seen that
a specific assignment of the loss vector corresponds to
a system of linear inequalities. For example, the loss
vector l = (0, 1, 0) for training data of N = 3 points
provides {t1wTx1 > 0, t2w

Tx2 ≤ 0, t3w
Tx3 > 0},

where t1, t2, t3,x1,x2,x3 are constants given by the
data, resulting in a system of linear inequalities.

Thus, the 0–1 loss optimization problem is now equiv-
alent to finding a feasible loss vector l∗ with a minimal
sum of its components (which is the sum of 0–1 losses):

l∗ = arg minl: feasible

N∑
i=1

li. (9)

Once we have obtained l∗, we need to recover optimal
hyperplane parameters w∗, which are insensitive to
scaling. Hence, we fix w0 at either 1 or −11 (whichever
yields a feasible solution) and call a linear program

(LP) solver to minimize
∑D
i=1 wi (to obtain a unique

solution) subject to the constraints induced by l∗.

In Algorithm 1 we provide the full BnB algorithm that
searches for the optimal l∗ from (9). The key idea of
the algorithm is to build a search tree of assignments
while tracking the minimum loss solution w∗ and value
lossmin to prune provably suboptimal branches of the
search. To make this algorithm efficient, we propose
the following heuristic improvements:

1w0 = 0 would imply the optimal hyperplane goes
through the origin, which is highly unlikely in practice.
Nonetheless w0 = 0 could also be tested for completeness.

Algorithm 1 Branch and Bound Search (BnB)

input Training data (X, t)
output Weights w∗ minimizing 0–1 loss
1: function Find-Optimal-01Loss-BnB(X, t)
2: w̃ ← w∗SVM from SVM solution for (X, t)

3: l̃← loss vector implied by w̃
4: w∗ ← w̃
5: lossmin ←

∑N
i=1 l̃i {Set initial bound to L(w̃)}

6: l∅ ← all decisions li unassigned
7: Branch-and-Bound(l∅)
8: return w∗

9:
10: function Branch-and-Bound(l)
11: if (all components of l are assigned) then
12: w∗ ← LP solution for l
13: lossmin ← loss
14: else
15: i← arg maxiunassigned∈l |w̃Txi|
16: l′ ← Propagate-Loss (l, i, l̃i)
17: if

∑
i l
′
i < lossmin then

18: Branch-and-Bound(l′)
19: end if
20: l′ ← Propagate-Loss(l, i, 1− l̃i)
21: if

∑
i l
′
i < lossmin then

22: Branch-and-Bound(l′)
23: end if
24: end if
25: end function
26:
27: function Propagate-Loss(l, i, lossV alue)
28: l′ ← l
29: l′i ← lossV alue
30: t′ ← targets prediction vector implied by l′

31: Let Φ = convex hull of {xk | t′k = t′i}
32: if ∃xj ∈ Φ s.t. t′j = −tj then
33: l′i ← +∞ {conflict – infeasible}
34: else
35: for p:=1 to N do
36: if xp ∈ Φ AND lp unassigned then
37: t′p ← t′i {propagate assignment}
38: l′p ← I[t′p 6= tp]
39: end if
40: end for
41: end if
42: return l′ {implied loss vector assignments}
43: end function
44: end function

Initial Bound Approximation: In line 2, we run a fast
SVM solver on the full data to obtain an initial best
solution w∗ and lossmin. Clearly this should prune a
large portion of the search space and guarantees that
BnB will do at least as well as the SVM.

Decision Ordering: It is well-known that the ordering
of decision and value assignments in BnB can dras-
tically affect search efficiency. Fortunately, having
an approximated decision hyperplane from the initial
SVM solution helps to determine the assignment and
value ordering. Under the assumption that the opti-
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mal decision hyperplane is somewhat near the approx-
imated hyperplane, the loss values of points that lie
closer to the approximated hyperplane are more likely
to be changed than those that are far away. Hence in
line 14, the points xi farthest from the initial approx-
imated decision hyperplane w̃ are assigned first, and
their inital value is assigned to be consistent with the
assignment l̃i of the initial SVM solution.

Loss Propagation: In any partial assignment to l,
points within the convex hull defined by the set of
xi assigned true in l are implied to be true and simi-
larly for the false case. Hence at every branch of BnB
we utilize the technique of forward checking by calling
Propagate-Loss (lines 15 and 19) to augment l with
any implied assigments that prune future search steps
or to detect whether an assignment conflict has been
found leading to infeasibility. We also use the sum
of forced and assigned components of the loss vector
as a lower bound for purposes of pruning suboptimal
branches (lines 16 and 19).

To detect whether a point p ∈ RD is an interior
point of the convex hull created by other points
p1,p2, . . . ,pk ∈ RD, we simply check whether the fol-
lowing linear constraints over u are feasible (e.g., by
calling an LP solver):

ui ≥ 0 for i = 1, 2, . . . , k ∧
k∑
i=1

ui = 1 ∧
k∑
i=1

uipi = p.

If a feasible u exists, then point p is a convex
combination of points p1,p2, . . . ,pk (with coefficients
u1, . . . , uk), therefore p lies in the convex hull of points
p1,p2, . . . ,pk, otherwise it does not.

4. Combinatorial Search for 0–1 Loss

This section introduces the idea behind the combi-
natorial search approach, which is illustrated by Fig-
ure 3. In short, we observe that the hyperplane pass-
ing through a set of D points maps to an equivalance
class of hyperplanes all with the same 0–1 loss. This
suggests a simple combinatorial search algorithm to
enumerate all

(
N
D

)
hyperplane equivalence class repre-

sentatives to find the one with minimal 0–1 loss.

To formulate the approach discussed above, we write
the 0–1 loss for xi in non-homogenous notation as:

L(w0,w) =

N∑
i=1

I[w0 + ti(w
Txi) < 0]. (10)

As noted previously, if both w0 and w are scaled by
1/|w0|, the solution is unchanged (assuming w0 6= 0).
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Figure 3. This plot illustrates the idea behind the com-
binatorial search approach. H is the optimal decision hy-
perplane to separate the two classes. H’ is obtained from
H so that it goes through the two nearest points A and B
without changing the class assignments or loss value.

Specifically, there are two cases: first, if w0 > 0, then
the loss function is:

L(w0,w) =

N∑
i=1

I[w0 + ti(w
Txi) < 0]

=

N∑
i=1

I[
w0

w0
+

ti
w0

wTxi < 0]

=

N∑
i=1

I[1 + tiw
′Txi < 0] = L(1,w′)

where we have defined w′ = 1
w0

w.

Second, if w0 < 0, the loss function is

L(w0,w) =

N∑
i=1

I[w0 + ti(w
Txi) < 0]

=

N∑
i=1

I[
w0

−w0
+

ti
−w0

wTxi) < 0]

=

N∑
i=1

I[−1− tiw′Txi) < 0] = L(−1,−w′).

The equation of the decision hyperplane is the same
in both cases (w0 + wTx = 0 ⇔ 1 + w′Tx = 0) and
the loss function is either L(1,w′) or L(−1,−w′), i.e.,
the bias term is now either 1 or −1. As shall be seen
next, this fact is critically important for the purpose
of the combinatorial search approach. As the initial
discussion pointed out, to find the optimal solution,
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it suffices to check all hyperplanes that go through D
points of the training dataset and find the one that has
minimum 0–1 loss. So, assuming x1, . . . ,xD are (any)
D distinct data points from the training dataset, then
for the combinatorial search to work, the two follow-
ing tasks must be solved: (1) Find the weight vector
w′ = (w′1, . . . , w

′
D)T of the decision hyperplane that

goes through these D selected points. (2) Calculate
the 0–1 loss value corresponding to w′.

For the first task, because the hyperplane goes through
the given D data points, at each point the hyperplane
equation must be satisfied. So,

1 + w′Txi = 0, for i = 1, 2, . . . , D,

which is written in matrix form as Aw′ = −1, where
A = (x1 x2 . . . xD)T and 1 is the unit vector in RD.
This linear matrix equation can be easily solved to
get a particular solution w′ using LU decomposition.
Here, one sees that if the bias term w0 was still present,
the above equation would be underdetermined.

Now, with w′ specified, the second task becomes easy,
as the 0–1 loss value is obviously the smaller value
of L(1,w′) and L(−1,−w′). Thus, if L(1,w′) ≤
L(−1,−w′), the 0–1 loss value corresponding to de-
cision hyperplane 1 + w′Tx = 0 is L(1,w′), and the
solution vector (including bias and weights) is (1,w′),
otherwise, the 0–1 loss value is L(−1,−w′), and the
solution vector is (−1,−w′). Note that generally
N >> D, so the class of the D selected points can
be assigned to the most frequent class (one could use
a separating hyperplane method to do better but the
gain is insignificant).

The above discussion represents all necessary knowl-
edge for the combinatorial search approach and it is
now possible to build algorithms based on the foun-
dation presented here. We present two variants: one
provably optimal and one approximate.

Prioritized Combinatorial Search (PCS): This algo-
rithm exploits the fact that combinations of data
points lying closer to an initial approximated decision
hyperplane (e.g., given by an SVM) are more likely to
produce the optimal hyperplane than combinations of
points lying far away. Algorithm 2 captures this idea
by considering combinations of D points in the increas-
ing order of their distance to the approximated deci-
sion hyperplane, where the distance of a set of points
to a hyperplane is the minimal distance of points in the
set. PCS can find an optimal solution in O(D3

(
N
D

)
)

time (
(
N
D

)
iterations, each requires D3 time to solve

the linear matrix equation), which can be much more
efficient than BnB for small D.

Algorithm 2 Prioritized Combinatorial Search (PCS)

input Training data (X, t)
output Weights w∗ minimizing 0–1 loss

function Find-Optimal-01Loss-PCS(X, t)
w∗ ← w∗SVM from SVM solution for (x, t)
lossmin ← 0–1 loss implied by w∗

i← indices of xi ordered by |w∗Txk|, for k = 1..N .
p← [1, 2, . . . , D] {first combination of D points}
while p 6= ∅ do

(w, loss)← Get-Solution(p)
if loss < lossmin then

(w∗, lossmin)← (w, loss)
end if
p← next combination of

(
N
D

)
, or ∅ if no more.

end while
return w∗

function Get-Solution(p)
A← (xi[p1] xi[p2] . . . xi[pD ])

T

w′ ← a particular solution of Aw′ = −1
if L(1,w′) ≤ L(−1,−w′) then

w ← (1,w′)
loss← L(1,w′)

else
w ← (−1,−w′)
loss← L(−1,−w′)

end if
return (w, loss) {corresponding to p}

end function
end function

Combinatorial Search Approximation (CSA): Rather
than systematically enumerating all combinations as
in prioritized search, we start from an initial “best”
combination of D points near an approximated deci-
sion hyperplane (e.g., given by an SVM), then at each
iteration, we swap two points (xk,xj) in/out of the
current combination. The algorithm stops when it can-
not find any more points to swap. We do not present
the full algorithm here due to space limitations but
note that it is a slight variation on Algorithm 2.

5. Smooth 0–1 Loss Approximation

The non-smooth, non-differentiable 0–1 loss can be ap-
proximated by a smooth differentiable loss (a modifi-
cation of sigmoidal loss)

li = I[tiwTxi ≤ 0] ≈ 1

1 + eKtiwTxi
= l̃Ki .

This approximation is illustrated by Figure 4 (top) for
different values of the precision constant K ∈ R+ that
modulates smoothness. Assuming the xi do not lie on
the decision hyperplane, then limK→+∞ l̃Ki = li.

Figure 4 (bottom) illustrates how an objective based

on LK(w∗) =
∑N
i=1 l̃

K
i changes with different values

of the precision constant K w.r.t. the actual 0–1 loss
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Figure 4. (top) Sigmoid approximation l̃Ki of 0–1 loss for
varying K. (bottom) Comparison of

∑N
i=1 l̃

K
i and

∑N
i=1 li

of the 0–1 loss for sample data vs. w1 with other compo-
nents of w held fixed. The plot on the right is a close-up
of the plot on the left around the global minimum.

∑N
i=1 li. Clearly, small K yields smoother objectives

with few local minima but provide only a rough ap-
proximation of the true objective, while the opposite
is true for large K.

This suggests the following iterative unrelaxed opti-
mization approach for zeroing in on the optimum 0–1
loss value: start with a small value of K and iteratively
increase it; at each iteration with a fixed K, initialize
with the solution from the previous iteration and per-
form coordinate descent to locally optimize each wi
(0 ≤ i ≤ D) in turn. This is summarized in the SLA
algorithm (Algorithm 3). Of key importance here is
the local search Grad-Desc-in-Range algorithm de-
fined in Algorithm 4. Because of local optima (that
increase with K) this is a mixture of gradient descent,
pattern search methods (Hooke & Jeeves, 1961), and
a hill-climbing heuristic. In short, this hybrid local
search algorithm iterates between gradient descent to
find a local optima followed by a probed search at uni-
form intervals to find potentially better positions, this
process repeating until an improved solution is found.
Constants that work well in practice for SLA are the
following: rR = 2−1, R0 = 8, rε = 2−1, εS0 = 0.2, rK =
10,KMIN = 2, KMAX = 200.

6. Empirical Results and Analysis

In this section we evaluate the four previously defined
direct 0–1 loss optimization algorithms (BnB, PCS,

Algorithm 3 Smooth 0–1 Loss Approximation (SLA)

input Training data (X, t)
output Weights w∗ (approx.) minimizing 0–1 loss
1: function Find-SLA-Solution(X, t)
2: w∗ ← w∗SVM from SVM solution for (X, t)
3: R← R0
4: εS ← εS0
5: K ← KMIN

6: while K ≤ KMAX do
7: w∗ ← Grad-Desc-in-Range(w∗,K,R, εS)
8: K ← rK .K
9: R← rR.R

10: εS ← rε.εS
11: end while
12: return w∗

13: end function

Algorithm 4 Range Optimization for SLA

input w, K, radius R, step size εS
output Approx. optimal solution w∗

1: function Grad-Desc-in-Range(w,K,R, εS)
2: repeat
3: {Stage 1: Find a local minimum }
4: w∗ ← w
5: repeat
6: r ← maxrate
7: w ← (w∗ − r∇LK(w∗))
8: while (r≥minrate)∧(LK(w∗)−LK(w)<εL) do
9: r ← 0.1r

10: w ← (w∗ − r∇LK(w∗))
11: end while
12: if r ≥ minrate then
13: w∗ ← w
14: end if
15: until (−εG 4 ∇LK(w∗) 4 εG) ∨ (r < minrate)
16: {Stage 2: Probe in radius R to escape minimum}
17: for i = 0 to D do
18: for step∈{εS ,−εS , 2εS ,−2εS , . . . , R,−R} do
19: w ← w∗

20: wi ← wi + step
21: if LK(w∗)− LK(w) ≥ εL then
22: go to step 3
23: end if
24: end for
25: end for
26: until LK(w∗)− LK(w) < εL
27: return w∗

28: end function

CSA, and SLA) on a variety of real and synthetic
data. We compare to SVMs and logistic regression
using LibLinear (Fan et al., 2008)2. We also compare
to the Bayes point machine (Minka, 2001)3 which is a
Bayesian approach with connections to the 0–1 loss.

All tests are implemented in MATLAB 7.12.0 run-
ning on a 1.7GHz dual-core i5 Intel processor and 4GB

2 http://www.csie.ntu.edu.tw/~cjlin/liblinear
3 http://research.microsoft.com/en-us/um/

people/minka/papers/ep/bpm

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://research.microsoft.com/en-us/um/people/minka/papers/ep/bpm
http://research.microsoft.com/en-us/um/people/minka/papers/ep/bpm
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Figure 5. (left) This plot shows the 0–1 loss values by SLA algorithm comparing to other methods over 200 synthetic
datasets of N = 500, D = 5 with optimal 0–1 loss in the range of [30, 100]. (right) Same, but in the presence of 15% noise.

RAM. Each dataset was normalized to have all data
with zero mean and unit variance in each dimension of
x. Some tests use real-world datasets taken from the
UCI machine learning repository (Frank & Asuncion,
2010) and are listed in Table 1 along with the relevant
number of data N and dimensionality D.

Synthetic testing datasets are generated as follows: (1)
A common data range R is randomly selected between
5 and 10. (2) Two center points C1, C2, each cor-
responding to one class, are randomly chosen in the
range ±(R/2) from the origin. (3) Diagonal covari-
ances in each dimension of C1, C2 are specified ran-
domly in range [1, R2]. (4) The desired number of data
points for each class are then generated by a normal
distribution with the generated mean and covariance.

Noise Generation: We added noise to some datasets
to test robustness properties of the classifiers. Noise
is generated randomly and uniformly in the minimum
and maximum range [min − 0.5(max −min),max +
0.5(max−min)] of each dimension of the dataset and
assigned to the first class of the dataset. Since the
range of noise is twice the range of data, this process
produces both background noise and outliers.

Optimality of Solutions on Real-World Datasets: We
evaluated various algorithms on the UCI datasets
given in Table 1. This test compares the optimality
of the returned solutions of all algorithms: BnB, PCS,
CSA, SLA, SVM, Bayes point machine (BPM), and lo-
gistic regression (LR). The size of the testing datasets
do not allow an exhaustive search, hence a time thresh-
old of 300 seconds is set for BnB, PCS.

Table 1 shows the 0–1 loss values returned by compar-
ing algorithms for the original training data. Here we
see that all of the direct 0–1 loss approximation algo-
rithms the BPM and other solutions based on convex
surrogates of 0–1 loss. Table 2 shows results similar
to Table 1 except in the scenario where 10% noise is
added. Here we see an even strong performance from
the direct 0–1 loss optimization algorithms indicating

their robustness to noise. Table 3 shows the running
time (T1) of BPM, SVM, LR, SLA, CSA and the time
to reach the given solution (T0) of BnB and PCS. Since
SLA has performed with the best optimization results
and runs two orders of magnitude faster than other di-
rect 0–1 optimizers, in Table 4 we compare it with the
BMP, SVM, and LR for prediction error on held-out
test data for each UCI dataset augmented with noise.
(Without explicit outlier noise, SLA performed on par
with the BPM, SVM, and LR; not shown due to space
restrictions.) Here, we see that SLA outperforms the
BPM, SVM, and LR on five of the seven data sets
indicating its ability to find good solutions and the
robustness of 0–1 loss in the presence of outliers.

Optimality of Solutions on Synthetic Data: Since
SLA performed best overall, we perform one further
analysis to understand how consistently it outperforms
the baselines. 200 synthetic datasets have been gen-
erated with size N = 500, dimensionality D = 5, and
optimal 0–1 loss in the range from 30 to 100. Figure
5 (left) shows the results of this test and (right) with
15% noise added. Clearly, noise and outliers adversely
affected other algorithms to a greater extent than SLA.

7. Related Work and Conclusions

While other works have investigated classification
methods that are robust to outliers, including t-
logistic regression (Ding & Vishwanathan, 2010), ro-
bust truncated hinge loss (Wu & Liu, 2007), Sav-
ageBoost (Masnadi-Shirazi & Vasconcelos, 2008), and
(Collobert et al., 2006) (which shows that a non-convex
piecewise linear approximation of 0–1 loss can be effi-
ciently optimized), in this work we have chosen to di-
rectly optimize 0–1 loss using search-based techniques
(some with strong finite time guarantees) in contrast to
the randomized descent approach of (Li & Lin, 2007).
Empirical results demonstrate the importance of 0–1
loss for its robustness properties while providing evi-
dence that it can be effectively optimized in practice.
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Dataset N D BPM SVM LR SLA CSA PCS BnB Improvement %
Breast 683 10 19 18 19 13 13 19 10 +44.4%
Liver 345 6 104 99 99 89 91 91 95 +10.1%
Cmc 1473 9 468 464 468 418 429 459 459 +9.9%
Heart 270 13 38 39 39 27 31 33 25 +34.2%
Indian 583 10 153 154 154 146 154 154 148 +4.6%
Pima 768 8 164 166 166 156 157 159 161 +4.9%
Sonar 208 60 16 0 0 0 0 0 0 0%

Table 1. 0–1 loss values of comparing algorithms on original data. Column ‘%’ shows the improvement in percentage of
the best of novel algorithms (SLA, CSA, PCS, BnB) over the best of existing algorithms (BPM, SVM, LR). As can be
seen, novel algorithms represent a significant improvement in 0–1 loss optimization.

Dataset BPM SVM LR SLA CSA PCS BnB Improvement %
Breast 55 52 51 47 39 44 45 23.5%
Bupa 154 154 152 104 111 102 146 32.9%
Cmc 584 585 585 554 504 551 597 13.7%
Heart 56 55 54 45 49 54 42 22.2%
Indian 191 191 188 178 188 188 182 5.32%
Pima 241 235 230 194 195 213 221 15.7%
Sonar 22 18 19 13 19 19 2 88.9%

Table 2. 0–1 loss values when 10% noise is added to original data. Column ‘%’ shows the improvement in percentage of
the best of novel algorithms (SLA, CSA, PCS, BnB) over the best of existing algorithms (BPM, SVM, LR).

Dataset
T1 – Total Running Time T0–ReachSol.

BPM SVM LR SLA CSA PCS BnB
Breast 0.98 0.03 0.05 1.13 161.64 n/a 3.59
Liver 0.28 0.01 0.01 0.39 16.11 97.07 0.17
Cmc 1.35 0.06 0.05 1.02 312.78 252.06 153.4
Heart 0.40 0.02 0.03 0.77 126.52 1.24 63.56
Indian 0.76 0.05 0.04 1.24 166.10 n/a 0.8
Pima 0.65 0.03 0.04 0.89 157.38 63.30 89.89
Sonar 0.37 0.54 0.13 4.32 302.58 n/a n/a

Table 3. This table reports running times corresponding to test results given in Table 1. T1 is the total running time for
BPM, SVM, LR, SLA, CSA (these are fast, so not time limited). T0 is the time to reach the given solutions for PCS, BnB
(their running time is unknown as they are terminated after 300 seconds). T0 = n/a means the corresponding algorithm
could not find any better solution than the initial approximation within the given time limit. Note that SVM and LR
have small, roughly linear running times. Among novel algorithms, it can be seen that SLA is significantly faster.

Dataset BPM SVM LR SLA Improvement %
Breast 8.95± 2.19 8.42± 2.30 8.09± 2.01 6.87± 1.78 +15.1%
Liver 43.01± 4.81 42.62± 4.93 45.31± 5.00 40.86± 5.71 +4.1%
Cmc 35.61± 2.41 35.50± 2.36 36.14± 2.37 36.83± 2.47 -3.7%
Heart 21.14± 4.72 19.35± 4.45 19.42± 4.52 20.14± 4.31 -4.1%
Indian 26.63± 3.52 26.67± 3.80 27.13± 3.43 26.36± 3.24 +2.7%
Pima 28.38± 2.99 28.61± 3.11 28.76± 2.97 25.65± 3.17 +9.6%
Sonar 28.24± 6.60 28.29± 5.90 28.07± 6.26 27.71± 5.67 +1.2%

Table 4. Prediction error rates (given in %) of each classifier for each UCI dataset (with 10% noise). The improvement
column shows the percent improvement of SLA over the best result of other methods (− indicates SLA was worse). It can
be seen that SLA offers lower held-out test error rates in five of the seven datasets indicating the robustness of 0–1 loss
on noisy datasets with outliers and effectiveness of SLA in finding good solutions to the 0–1 loss optimization problem.
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