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Abstract

Learning programs is a timely and interest-
ing challenge. In Programming by Example
(PBE), a system attempts to infer a program
from input and output examples alone, by
searching for a composition of some set of
base functions. We show how machine learn-
ing can be used to speed up this seemingly
hopeless search problem, by learning weights
that relate textual features describing the
provided input-output examples to plausible
sub-components of a program. This generic
learning framework lets us address problems
beyond the scope of earlier PBE systems.
Experiments on a prototype implementation
show that learning improves search and rank-
ing on a variety of text processing tasks found
on help forums.

1. Introduction

An interesting challenge is that of learning programs, a
problem with very different characteristics to the more
well-studied goal of learning real-valued functions (re-
gression). Our practical motivation is Programming
by Example (PBE) (Lieberman, 2001; Cypher et al.,
1993), where an end user provides a machine with
examples of a task she wishes to perform, and the
machine infers a program to accomplish this. The
study of PBE is timely; the latest version of Microsoft
Excel ships with “Flash Fill,” a PBE algorithm for
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simple string manipulation in spreadsheets, such as
splitting and concatenating strings (Gulwani, 2011).
We are interested in using learning for PBE to enable
richer classes of programs such as, for example, text-
processing tasks that might normally be accomplished
in a programming language such as PERL or AWK.

Learning programs poses two key challenges. First,
users give very few examples per task. Hence, one
must impose a strong bias, learned across multiple
tasks. In particular, say for task t the user provides nt
examples of pairs of strings (x̄

(t)
1 , ȳ

(t)
1 ), . . . , (x̄

(t)
nt , ȳ

(t)
nt )

that demonstrate the task (in our application we will
generally take nt = 1). There are infinitely many con-

sistent functions f such that f(x̄
(t)
i ) = ȳ

(t)
i . Hence,

one requires a good ranking over such f , learned across
the multiple tasks. Simply choosing the shortest con-
sistent program can be improved upon using learning.
For one, the shortest program mapping x̄ to ȳ may
very well be the trivial constant function f(x) = ȳ.

Second, and perhaps even more pressing, is searching
over arbitrary compositions of functions for consistent
candidate functions. In many cases, finding any (non-
trivial) consistent function can be a challenge, let alone
the “best” under some ranking. For any sufficiently
rich set of functions, this search problem defies cur-
rent search techniques, such as convex optimization,
dynamic programming, or those used in Flash Fill.
This is because program representations are wildly un-
stable – a small change to a program can completely
change the output. Hence, local heuristics that rely on
progress in terms of some metric such as edit distance,
will be trapped in local minima.

We introduce a learning-based framework to address
both the search and ranking problems. Of particu-
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lar interest, machine learning speeds up search (infer-
ence). This is unlike earlier work on string process-
ing using PBE, which restricted the types of programs
that could be searched through so that efficient search
would be possible using so-called version space alge-
bras (Lau et al., 2000). It is also unlike work in struc-
tured learning that uses dynamic programming for effi-
cient search. The types of programs we can handle are
more general than earlier systems such as SMARTe-
dit (Lau et al., 2000), LAPIS (Miller, 2002), Flash Fill
(Gulwani, 2011), and others (Nix, 1985; Witten & Mo,
1993). In addition, our approach is more extensible
and broadly applicable than earlier approaches.

How can one improve on brute force search for com-
bining functions from a general library? In general,
it seems impossible to speed up search if all one can
tell is whether a program correctly maps example x̄
to ȳ. The key idea in our approach is to augment the
library with certain telling textual features on exam-
ple pairs. These features suggest which functions are
more likely to be involved in the program. As a sim-
ple example beyond the scope of earlier PBE systems,
consider sorting a list of names by last name. Say the
user gives just one example pair: x̄ is a list of a few
names, one per line, where each line is in the form
FirstName LastName, and ȳ is the same list sorted by
last name. One feature of (x̄, ȳ) is that the lines are
permutations of one another, which is a clue that the
desired program may involve sorting. We learn the re-
liability of such clues, and use these to dramatically
speed up search and inference in complex examples.

The contributions of this work are: (i) a framework for
learning general programs that speeds up search (infer-
ence) and is also used for ranking. Previous work ad-
dressed ranking (Liang et al., 2010) and used restricted
classes of programs that could be efficiently searched
but not extended; (ii) the use of features relating in-
put and output examples in PBE. Previous work such
as Liang et al. (2010) use features of the target pro-
grams in the training set; (iii) advancing the state of
the art in PBE by introducing a general, extensible
framework, that can be applied to tasks beyond the
scope of earlier systems (as discussed shortly). While
our discussion is in the context of text processing, the
approach could be adapted for different domains; and
(iv) experiments with a prototype system on data ex-
tracted from help forums. To clarify matters, we step
through a concrete example of our system’s operation.

1.1. Example of our system’s operation

Imagine a user has a long list of names with some re-
peated entries (say, the Oscar winners for Best Actor),

and would like to create a list of the unique names,
each annotated with their number of occurrences. Fol-
lowing the PBE paradigm, in our system, the user il-
lustrates the operation by providing an example, which
is an input-output pair of strings. Figure 1 shows one
possible such pair, which uses a subset of the full list
(in particular, the winners from ’91–’95) the user pos-
sesses.

Anthony Hopkins
Al Pacino
Tom Hanks
Tom Hanks
Nicolas Cage

→
Anthony Hopkins (1)
Al Pacino (1)
Tom Hanks (2)
Nicolas Cage (1)

Figure 1. Input-output example for the desired task.

One way to perform the above transformation is
to first generate an intermediate list where each
element of the input list is appended with its oc-
currence count – which would look like [ "Anthony

Hopkins (1)", "Al Pacino (1)", "Tom Hanks (2)",

"Tom Hanks (2)", "Nicolas Cage (1)"] – and then
remove duplicates. The corresponding program f(·)
may be expressed as the composition

f(x) = dedup(concatLists(x, “ ”,

concatLists(“(”, count(x, x), “)”))).
(1)

The argument x here represents the list of input lines
that the user wishes to process, which may be much
larger than the input provided in the example. We
assume here a base language comprising (among oth-
ers) a function dedup that removes duplicates from a
list, concatLists that concatenates lists of strings el-
ementwise, implicitly expanding singleton arguments,
and count that finds the number of occurrences of the
elements of one list in another.

While conceptually simple, this example is out of scope
for existing text processing PBE systems. Most sys-
tems support a restricted, pre-defined set of functions
that do not include natural tasks like removing du-
plicates; for example (Gulwani, 2011) only supports
functions that operate on a line-by-line basis. These
systems perform inference with search routines that
are hand-coded for their supported functionality, and
are thus not easily extensible. (Even if an exception
could be made for specific examples like the one above,
there are countless other text processing applications
we would like to solve.)

Notice that certain textual features can help bias
our search by providing clues about which functions
may be relevant: in particular, (a) there are dupli-
cate lines in the input but not output, suggesting
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Table 1. Example of grammar rules generated for task in Figure 1.
Production Probability Production Probability
P→join(LIST,DELIM) 1 CAT→LIST 0.7
LIST→split(x,DELIM) 0.3 CAT→DELIM 0.3
LIST→concatList(CAT,CAT,CAT) 0.1 DELIM→"\n" 0.5
LIST→concatList("(",CAT,")") 0.2 DELIM→" " 0.3
LIST→dedup(LIST) 0.2 DELIM→"(" 0.1
LIST→count(LIST,LIST) 0.2 DELIM→")" 0.1

that dedup may be useful, (b) there are parentheses
in the output but not input, suggesting the function
concatLists("(",L,")") for some list L, (c) there are
numbers on each line of the output but none in the in-
put, suggesting that count may be useful, and (d) there
are many more spaces in the output than the input,
suggesting that " " may be useful. Our claim is that
by learning weights that tell us the reliability of these
clues – for example, how confident can we be that du-
plicates in the input but not the output suggests dedup

– we can significantly speed up the inference process
over brute force search.

In more detail, a clue is a function that generates
rules in a probabilistic context free grammar based
on features of the provided example. Dynamic pro-
gramming common in structured learning approaches
with PCFGs (Rush et al., 2011) does not apply here
– it would be relevant if we were given a program and
wanted to parse it. Instead we generate programs ac-
cording to the PCFG and then evaluate them directly.

Each rule corresponds to a function1 (possibly with
bound arguments) or constant in the underlying pro-
gramming language. The rule probabilities are com-
puted from weights on the clues that generate them,
which in turn are learned from a training corpus of
input-output examples. To learn f(·), we now search
through derivations of this grammar in order of de-
creasing probability. Table 1 illustrates what the
grammar may look like for the above example. Note
that the grammar rules and probabilities are example
specific; we do not include a rule such as DELIM→ "$",
say, because there is no instance of "$" in the input
or output. Further, compositions of rules may also be
generated, such as concatList("(",LIST,")").

Table 1 is of course a condensed view of the actual
grammar our prototype system generates, which is
based on a large library of about 100 features and
clues. With the full grammar, a näıve brute force
search over compositions takes 30 seconds to find the
right solution to the example of Figure 1, whereas with
learning the search terminates in just 0.5 seconds.

1When we describe clues as suggesting functions, we
implicitly mean the corresponding grammar rule.

1.2. Comparison to previous learning systems

Most previous PBE systems for text processing han-
dle a relatively small subset of natural text processing
tasks. This is in order to admit efficient representa-
tion and search over consistent programs, e.g. using a
version space (Lau et al., 2003), thus sidestepping the
issue of searching for programs using general classes of
functions. To our knowledge, every system designed
for a library of arbitrary functions searches for appro-
priate compositions of functions either by brute force
search, a similarly intractable operation such as invok-
ing a SAT/SMT solver (Jha et al., 2010), or by using
A*-style heuristics (Gulwani et al., 2011). (Gulwani,
2012) presents a survey of such techniques. Our learn-
ing approach based on textual features is thus more
general and flexible than previous approaches.

This said, our goal in this paper is not to compete
with existing PBE systems in terms of functionality.
Instead, we wish to show that the fundamental PBE
inference problem may be attacked by learning with
textual features. This idea could in fact be applied
in conjunction with prior systems. A specific feature
of the data, such as the input and output having the
same number of lines, may be a clue that a function
corresponding to a system like Flash Fill (Gulwani,
2011) will be useful.

2. Formalism of our approach

We begin a formal discussion of our approach by defin-
ing the learning problem in PBE.

2.1. Programming by example (PBE)

Let S denote the set of strings. Suppose the user has
some text processing operation in mind, in the form of
some target function or program f ∈ SS , from the set
of functions that map strings to strings. For example,
in Figure 1, f could be the function in Equation 1.
To describe this program to a PBE system, at infer-
ence (or execution) time, the user provides a system
input z := (x, x̄, ȳ) ∈ S3, where x represents the data
to be processed, and (x̄, ȳ) is an example input-output
pair that represents the string transformation the user
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wishes to perform, so that ȳ = f(x̄). In the exam-
ple of the previous section, (x̄, ȳ) is the pair of strings
represented in Figure 1, and x is the list of all Os-
car winners. Typically, but not necessarily, x̄ is some
prefix of x.2 Our goal is to recover f(·) based on (x̄, ȳ).

Our goal is complicated by the fact that while the user
has one particular f ∈ SS in mind, there may be an-
other function g that also explains (x̄, ȳ). For example,
the constant function g(·) = ȳ will always explain the
example transformation, but will almost always not be
the function the user has in mind. Let F(z) ⊆ SS be
the set of consistent functions for a given system input,
so that for each f ∈ F(z), ȳ = f(x̄). We would like
to find a way of ranking the elements in F(z) based
on some notion of “plausibility”. For example, in Fig-
ure 1, one consistent function may involve removing
the 4th line of the input. But this is intuitively a less
likely explanation than removing duplicates.

We look to learn such a ranking based on training
data. We do so by defining a probability model
Pr[f |z; θ] over programs, parameterized by some θ.
Given θ, at inference time on input z, we pick the
most likely program under Pr[f |z; θ] which is also con-
sistent with z. We do so by invoking a search function
σθ,τ : S3 → SS that depends on θ and an upper bound
τ on search time. This produces our conjectured pro-
gram f̂ = σθ,τ (z) computing a string-to-string trans-
formation, or a trivial failure function ⊥ if the search
fails in the allotted time.

The θ parameters are learned at training time, where
the system is given a corpus of T training quadru-
ples, {(z(t), y(t))}Tt=1, with z(t) = (x(t), x̄(t), ȳ(t)) ∈ S3
representing the actual data and the example input-
output pair, and y(t) ∈ S the correct output on
x(t). We also assume each training example z(t) is
annotated with a “correct” program f (t) ∈ SS such
that f (t)(x̄(t)) = ȳ(t) and f (t)(x) = y. (In Section
3.1, we describe a workaround when such annotations
are not available.) From these examples, the system
chooses the parameters θ that maximize the likelihood
Pr[f (1), . . . , f (T )|z(1), . . . , z(T ); θ].

Note that each quadruple (z(t), y(t)) represents a dif-
ferent task ; for example, one may represent the Oscar
winners example of the previous section, another an
email processing task, and so on. Put another way, for
t1 6= t2, it is often the case that f (t1) 6= f (t2). Ostensi-
bly then, we have a single example from which to es-
timate the value of Pr[f |z] for some fixed f ! However,
we note that while f (t1) 6= f (t2), it is often the case

2This is more general than the setup of e.g. (Gulwani,
2011), which assumes x̄ and ȳ have the same number of
lines, each of which is treated as a separate example.

that these functions share common subroutines. For
example, many functions may involve splitting the in-
put based on the “\n” character. This tells us that, all
else being equal, we should favour splitting on newline
characters “\n” over splitting on "z", say. Our learn-
ing procedure exploits the shared structure amongst
each of the T tasks to more reliably estimate Pr[f |z; θ].

We now describe how we model the distribution
Pr[f |z; θ] using a probabilistic context-free grammar.

2.2. PCFGs for programs

We maintain a distribution over programs with a Prob-
abilistic Context-Free Grammar (PCFG) G, as dis-
cussed in (Liang et al., 2010). The grammar is defined
by a set of non-terminal symbols V, terminal symbols
Σ (which may include strings s ∈ S and also other
program-specific objects such as lists or functions),
and rules R. Each rule r ∈ R has an associated prob-
ability Pr[r|z; θ] of being generated given the system
input z, where θ represents the unobserved parameters
of the grammar. WLOG, each rule r is also associated
with a function fr : ΣNArgs(r) → Σ, where NArgs(r)
denotes the number of arguments in the RHS of rule r.
A program3 is a derivation of the start symbol Vstart.
The probability of any program f(·) is the probability
of its constituent rules Rf (counting repetitions):

Pr[f |z; θ] = Pr[Rf |z; θ] =
∏
r∈Rf

Pr[r|z; θ]. (2)

We now describe how the distribution Pr[r|z; θ] is pa-
rameterized using clues.

2.3. Features and clues for learning

The learning process exploits the following simple fact:
the chance of a rule being part of an explanation for
a string pair (x̄, ȳ) depends greatly on certain charac-
teristics in the structure of x̄ and ȳ. For example, one
interesting binary feature is whether or not every line
of ȳ is a substring of x̄. If true, it may suggest that the
select field rule should receive higher probability
in the PCFG, and hence will be combined with other
rules more often in the search. Another binary fea-
ture indicates whether or not “Massachusetts” occurs
repeatedly as a substring in ȳ but not in x̄. This sug-
gests that a rule generating the string “Massachusetts”
may be useful. Conceptually, given a training corpus,
we would like to learn the relationship between such

3Two programs from different derivations may compute
exactly the same function f : S → S. However, deter-
mining whether two programs compute the same function
is undecidable in general. Hence, we abuse notation and
consider these to be different functions.
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features and the successful rules. However, there are
an infinitude of such binary features as well as rules
(e.g. a feature and rule corresponding to every possi-
ble constant string), but of course limited data and
computational resources. So, we need a mechanism to
estimate the relationship between the two entities.

We connect features with rules via clues. A clue is
a function c : S3 → 2R that states, for each sys-
tem input z, which subset of rules in R (the infi-
nite set of grammar rules), may be relevant. This
set of rules will be based on certain features of z,
meaning that we search over compositions of instance-
specific rules4. For example, one clue might return
{E → select field(E, Delim, Int)} if each line of ȳ is a
substring of x̄, and ∅ otherwise. Another clue might
recognize the input string is a permutation of the out-
put string, and generate rules {E → sort(E, COMP), E →
reverseSort(E, COMP), COMP → alphaComp, . . .}, i.e., rules
for sorting as well as introducing a nonterminal along
with corresponding rules for various comparison func-
tions. A single clue can suggest a multitude of rules
for different z’s (e.g. E→ s for every substring s in the
input), and “common” functions (e.g. concatenation
of strings) may be suggested by multiple clues.

We now describe our probability model that is based
on the clues formalism.

2.4. Probability model

Suppose the system has n clues c1, c2, . . . , cn. For each
clue ci, we keep an associated parameter θi ∈ R. Let
Rz = ∪ni=1ci(z) be the set of instance-specific rules
(wrt z) in the grammar. While the set of all rules R
will be infinite in general, we assume there are a finite
number of clues suggesting a finite number of rules,
so that Rz is finite. For each rule r /∈ Rz, we take
Pr[r|z] = 0, i.e. a rule that is not suggested by any
clue is disregarded. For each rule r ∈ Rz, we model

Pr[r | z; θ] =
1

ZLHS(r)
exp

 ∑
i:r∈ci(z)

θi

 . (3)

where LHS(r) ∈ V denotes the nonterminal appearing
appearing on the left hand side of rule r, and for each
nonterminal V ∈ V, the normalizer ZV is

ZV =
∑

r∈Rz :LHS(r)=V

exp

 ∑
i:r∈ci(z)

θi

 .

4As long as the functions generated by our clues library
include a Turing-complete subset, the class of functions
being searched amongst is always the Turing-computable
functions, though having a good bias is probably more use-
ful than being Turing complete.

This is a log-linear model for the probabilities, where
each clue has a weight eθi , which is intuitively its relia-
bility5, and the probability of each rule is proportional
to the product of the weights generating that rule. An
alternative model would be to make the probabilities
be the (normalized) sums of corresponding weights,
but we favor products for two reasons. First, as de-
scribed shortly, maximizing the log-likelihood is a con-
vex optimization problem in θ for products, but not
for sums. Second, this formalism allows clues to have
positive, neutral, or even negative influence on the like-
lihood of a rule, based upon the sign of θi.

Our framework overcomes difficulties faced by classical
approaches for this problem. Consider for example K-
class logistic regression, which for input x ∈ Rd and
label y ∈ {0, 1}K such that 1T y = 1 models

Pr[y | x;w] =
1

Zx
exp

(
wTφ(x, y)

)
for φ(x, y) = x ⊗ y. In our problem, assuming
R is countable we can represent r by the bitvector
er ∈ {0, 1}|R|, and z by a bitvector fz ∈ {0, 1}F indi-
cating which of F features it possesses (e.g. whether
it has numbers, or not). Using the representation
φ(r, z) = er⊗fz would require the estimation of |R|·F
parameters, i.e. a parameter measuring the relation-
ship between every pair of rule and feature. This
means that we would for example end up learning sep-
arate parameters for all constant strings that occur in
a training set. This is not scalable, and also does not
exploit the fact that all else being equal, we expect the
probabilities for two constant strings to be similar. By
contrast, the model of Equation 3 is

Pr[r | z; θ] =
1

ZLHS(r)
exp

(
θTφ(z, r)

)
,

where φ(r, z) ∈ Rn is such that φ(z, r)i = 1[r ∈ ci(z)].
If R is enumerable, this may further be thought of as
φ(z, r) = C(z) · er, where C(z) ∈ {0, 1}n×|R| is a bi-
nary matrix whose (i, r)th element indicates whether
the clue i suggests rule r on input z. The key is that
C(z) is sparse, as each clue suggests only a small sub-
set of all rules. This injects prior knowledge to the
problem: a human looking at the example of Figure 1
would not think of performing date operations as part
of the transformation, and so we encode this fact in our
clues. Further, we can keep a single (data-dependent)
clue that suggests every constant string that appears
in the input or output, which encodes our belief that
the probabilities for these rules are tied together.

5With these weights, if a clue is too lax in how it sug-
gests rules – for example, suggesting a date to string op-
eration every time there is a number in the input – its
suggestions will be discounted.



A Machine Learning Framework for Programming by Example

3. System training and usage

We are now ready to describe in full the operation of
the training and inference phases.

3.1. Training phase: learning θ

At training time, we wish to learn the parameter θ that
characterizes the conditional probability of a program
given the input, Pr[f |z; θ]. Recall that we assume each
training example z(t) is also annotated with the “cor-
rect” program f (t) that explains both the example and
actual data pairs. In this case, we choose θ so as to
minimize the negative log-likelihood of the data, plus
a regularization term:

θ = argmin
θ′∈Rn

− log Pr[f (t)|z(t); θ′] + λΩ(θ′),

where Pr[f (t)|z(t); θ] is defined by equations (2) and
(3), the regularizer Ω(θ) is the `2 norm 1

2 ||θ||
2
2, and

λ > 0 is the regularization strength which may be
chosen by cross-validation. If f (t) consists of rules

r
(t)
1 , r

(t)
2 , . . . , r

(t)

k(t)
(possibly with repetition), then

log Pr[f (t)|z(t); θ] =

k=k(t)∑
k=1

log
(
Z
LHS(r

(t)
k )

)
−

∑
i:r

(t)
k ∈ci(z(t))

θi

The convexity of the objective follows from the con-
vexity of the regularizer and the log-sum-exp function.
The parameters θ are optimized by gradient descent.

The assumption that every training example has the
annotated “correct” program may be unrealistic, as
annotation requires human effort. However, we may
attempt to discover the correct annotations automat-
ically by bootstrapping: the reason is that the trans-
formation by definition must explain both (x(t), y(t))
and (x̄(t), ȳ(t)). We start with a uniform parameter
estimate θ(0) = 0. In iteration j = 1, 2, 3, . . ., we select
f (j,t) to be the most likely program, based on θ(j−1),
consistent with the system data. (If no program is
found within the timeout, the example is ignored.)
Then, parameters θ(j) are learned, as described above.
This is run until convergence.

3.2. Inference phase: evaluating on new input

At inference time, we are given system input z =
(x, x̄, ȳ), n clues c1, c2, . . . , cn, and parameters θ ∈ Rn
learned from the training phase. We are also given a
timeout τ . The goal is to infer the most likely program
f̂ that explains the data under a certain PCFG. This
is done as follows:

(i) We evaluate each clue6 on the system input z.

6Since a clue c is just a function that outputs a list of

The underlying PCFG Gz consists of the union of
all suggested rules, Rz =

⋃n
i=1 ci(z).

(ii) Probabilities are assigned to these rules via Equa-
tion 3, using the learned parameters θ.

(iii) We enumerate over Gz in order of decreasing prob-

ability, and return the first discovered f̂ that ex-
plains the (x̄, ȳ) string transformation, or ⊥ if we
exceed the timeout.

To find the most likely consistent program, we enumer-
ate all programs of probability at least η > 0, for any
given η. We begin with a large η, gradually decreas-
ing it and testing all programs until we find one which
outputs ȳ on x̄ (or we exceed the timeout τ). (If more
than one consistent program is found, we just select
the most likely one.) Due to the exponentially increas-
ing nature of the number of programs, this approach
imposes a negligible overhead due to redundancy – the
vast majority of programs are executed just once.

To compute all programs of probability at least η, a dy-
namic program first computes the maximal probability
of a full trace from each nonterminal. Given these val-
ues, it is simple to compute the maximal probability
completion of any partial trace. We then iterate over
each nonterminal expansion, checking whether apply-
ing it can lead to any programs above the threshold;
if so, we recurse.

4. Results on prototype system

To test the efficacy of our framework, we report results
on a prototype web app implemented using client-side
JavaScript and executed in a web browser on an Intel
Core i7 920 processor. Our aim is to test whether
learning weights using textual features – which has not
been studied in any prior system, to our knowledge –
can speed up inference. It is not to claim that our
prototype is “better” than existing systems in terms
of functionality or richness. Nonetheless, we attempt
to construct a reasonably functional system so that
our results can be indicative of what we might expect
to see in a real-world text processing system.

4.1. Details of base functions and clues

As discussed in Section 2.2, we associated the rules in
our PCFG with a set of base functions. In total we cre-
ated around 100 functions, such as dedup, concatLists,
and count, as described in Section 1.1. For clues to
connect these functions to features of the examples,
we had one set of base clues that suggested functions
we believed to be common, regardless of the system in-

rules, evaluating c(z) amounts to a single function call.
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Table 2. Examples of clues and examples used in our prototype.
(a) Sample of clues used. LIST denotes a list-, E a string-
nonterminal in the grammar.

Feature Suggested rule(s)
Substring s appears in out-
put but not input?

E → “s”, LIST → {E}

Duplicates in input but not
output?

LIST → dedup(LIST)

Numbers on each input line
but not output line?

LIST → count(LIST)

(b) Sample of test-cases used to evaluate the system.

Input Output
Adam Ant\n1 Ray
Rd.\nMA\n90113

90113

28/6/2010 June the 28th 2010
612 Australia case 612: return

Australia;

put z (e.g. string concatenation). Other clues were de-
signed to support common formats that we expected,
such as dates, tabular and delimited data. Table 2(a)
gives a sample of some of the clues in our system, in
the form of grammar rules that certain textual features
are connected to; in total we had approximately 100
clues. The full list of functions and clues is available
at http://cseweb.ucsd.edu/~akmenon/pbe.

4.2. Training set for learning

To evaluate the system, we compiled a set of 280 ex-
amples with both an example pair (x̄, ȳ) and evalua-
tion pair (x, y) specified. These examples were partly
hand-crafted, based on various common usage scenar-
ios the authors have encountered, and partly based on
examples used in (Gulwani, 2011). The latter exam-
ples were derived from manual crawling of Microsoft
Excel help forums, and distilling common text pro-
cessing questions that arise on these forums. Table
2(b) gives a sample of some of the scenarios we tested
the system on. To encourage future research on this
problem, our suite of training examples is available at
http://cseweb.ucsd.edu/~akmenon/pbe/.

All examples are expressible as (possibly deep) com-
positions of our base functions; the median depth of
composition on most examples is 4. Like any classical
learning model, we assume these are iid samples from
the distribution of interest, namely over “natural’ text
processing examples. It is hard to justify this indepen-
dence assumption in our case, but we are not aware of
a good solution to this problem in general; even exam-
ples collected from a user study, say, will tend to be
biased in some way.

4.3. Does learning help?

The learning procedure aims to allow us to find the
correct program in the shortest amount of time. We
compare this method to a baseline, hoping to see quan-
tifiable improvements in performance.

Baseline. Our baseline is to search through the gram-

mar in order of increasing program size, attempting to
find the shortest grammar derivation that explains the
transformation. The grammar does use clues to win-
now down the set of relevant rules, but does not use
learned weights: we let θi = 0 for all i, i.e. all rules that
are suggested by a clue have the same constant proba-
bility. This method’s performance lets us measure the
impact of learning. Note that pure brute force search
would not even use clues to narrow down the set of
feasible grammar rules, and so would perform strictly
worse. Such a method is infeasible for the tasks we
consider, because some of them involve e.g. constant
strings, which cannot be enumerated.

Measuring performance. To assess a method, we
look at its accuracy, as measured by the fraction of
correctly discovered programs, and efficiency, as mea-
sured by the time required for inference. As every
target program in the training set is expressible as a
composition of our base functions, there are two ways
in which we might fail to infer the correct program: (a)
the program is not discoverable within the timeout set
for the search, or (b) another program (one which also
explains the example transformation) is wrongly given
a higher probability. We call errors of type (a) timeout
errors, and errors of type (b) ranking errors. Larger
timeouts lead to fewer timeout errors.

Evaluation scheme. To ensure that the system is
capable of making useful predictions on new data, we
report the test error after creating 10 random 80–20
splits of the training set. For each split, we com-
pare the various methods as the inference timeout τ
varies from {1/16, 1/8, . . . , 16} seconds. For the learn-
ing method, we performed 3 bootstrap iterations (see
Section 3.1) with a timeout of 8 seconds to get anno-
tations for each training example.

Results. Figures 2(a) and 2(b) plot the timeout and
ranking error rates respectively. As expected, for both
methods, most errors arise due to timeout when the τ
is small. To achieve the same timeout error rate, learn-
ing saves about two orders of magnitude in τ compared
to the baseline. Learning also achieves lower mean

http://cseweb.ucsd.edu/~akmenon/pbe
http://cseweb.ucsd.edu/~akmenon/pbe/
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(a) Timeout errors.

0

2

4

6

8

10

12

14

Inference timeout (secs)

T
e

s
t 

ty
p

e
 2

 e
rr

o
r 

ra
te

 (
%

)

 

 

2
−4

 2
−3

 2
−2

 2
−1

 2
0
 2

1
 2

2
 2

3
 2

4
 

Baseline
Learning

(b) Ranking errors.
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(c) Mean speedup due to learning.
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(d) Scatterplot of prediction times.
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(e) Learnt program depths, τ = 16s.
“N/A” denotes that no program found.

Figure 2. Comparison of baseline versus learning approach.

ranking error, but this difference is not as pronounced
as for timeout errors. This is not surprising, because
the baseline generally finds few candidates in the first
place (recall that the ranking error is only measured on
examples that do not timeout); by contrast, the learn-
ing method opens the space of plausible candidates,
but introduces a risk of some of them being incorrect.

Figure 2(c) shows the relative speedup due to learning
as τ varies. We see that learning manages to cut down
the prediction time by a factor of almost 40 over the
baseline with τ = 16 seconds. (The system would be
even faster if implemented in a low-level programming
language such as C instead of Javascript.) The trend
of the curve suggests there are examples that the base-
line is unable to discover with 16 seconds, but learning
discovers with far fewer. Figure 2(d) is a scatterplot
of the times taken for both methods with τ = 16 over
all 10 train-test splits, confirms this: in the majority
of cases, learning finds a solution in much less time
than the baseline, and solves many examples the base-
line fails on within a fraction of a second. (In some
cases, learning slightly increases inference time. Here,
the test example involves functions insufficiently rep-
resented in the training set.)

Finally, Figure 2(e) compares the depths of programs
(i.e. number of constituent grammar rules) discovered

by learning and the baseline over all 10 train-test
splits, with an inference timeout of τ = 16 seconds.
As expected, the learning procedure discovers many
more programs that involve deep (depth ≥ 4) compo-
sitions of rules, since the rules that are relevant are
given higher probability.

5. Conclusion and future work

We propose a PBE system for repetitive text process-
ing based on exploiting certain clues in the input data.
We show how one can learn the utility of clues, which
relate textual features to rules in a context free gram-
mar. This allows us to speed up the search process,
and obtain a meaningful ranking over programs. Ex-
periments on a prototype system show that learning
with clues brings significant savings over näıve brute
force search. As future work, it would be interesting to
learn correlations between rules and clues that did not
suggest them, although this would necessitate enforc-
ing some strong parameter sparsity. It would also be
interesting to incorporate ideas like adaptor grammars
(Johnson et al., 2006) and learning program structure
as in (Liang et al., 2010). Finally, (Gulwani, 2012; Gul-
wani et al., 2012) describe several application domains
for PBE where it would be interesting to consider ap-
plying the techniques proposed in this paper.
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