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Abstract

The goal of predictive sparse coding is to
learn a representation of examples as sparse
linear combinations of elements from a dic-
tionary, such that a learned hypothesis linear
in the new representation performs well on
a predictive task. Predictive sparse coding
has demonstrated impressive performance on
a variety of supervised tasks, but its general-
ization properties have not been studied. We
establish the first generalization error bounds
for predictive sparse coding, in the overcom-
plete setting, where the number of features k
exceeds the original dimensionality d. The
learning bound decays as Õ(

√
dk/m) with

respect to d, k, and the size m of the train-
ing sample. It depends intimately on stabil-
ity properties of the learned sparse encoder,
as measured on the training sample. Conse-
quently, we also present a fundamental stabil-
ity result for the LASSO, a result that char-
acterizes the stability of the sparse codes with
respect to dictionary perturbations.

1. Introduction

Learning architectures such as the support vector ma-
chine and other linear predictors enjoy strong theoreti-
cal properties (Steinwart & Christmann, 2008; Kakade
et al., 2009), but a learning-theoretic view of many
more complex learning architectures is lacking. Pre-
dictive methods based on sparse coding recently have
emerged which simultaneously learn a data representa-
tion via a nonlinear encoding scheme and an estimator
linear in that representation (Bradley & Bagnell, 2009;
Mairal et al., 2009; 2012). A sparse coding representa-
tion z ∈ Rk of a data point x ∈ Rd is learned by rep-
resenting x as a sparse linear combination of k atoms
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Dj ∈ Rd of a dictionary D = (D1, . . . , Dk) ∈ Rd×k. In
the coding x ≈

∑k
j=1 zjDj , all but a few zj are zero.

Predictive sparse coding methods such as Mairal
et al.’s (2012) task-driven dictionary learning recently
have achieved state-of-the-art results on many tasks,
including the MNIST digits task. Whereas standard
sparse coding minimizes an unsupervised, reconstruc-
tive `2 loss, predictive sparse coding seeks to mini-
mize a supervised loss by learning a dictionary and
a linear predictor in the space of codes induced by
that dictionary. There is much empirical evidence that
sparse coding can provide good abstraction by finding
higher-level representations which are useful in predic-
tive tasks (Yu et al., 2009). Intuitively, the power of
prediction-driven dictionaries is that they pack more
atoms in parts of the representational space where the
prediction task is more difficult. However, despite the
empirical successes of predictive sparse coding, it is
unknown how well it generalizes in a theoretical sense.

In this work, we develop what to our knowledge are
the first generalization error bounds for predictive
sparse coding algorithms; in particular, we focus on `1-
regularized sparse coding. Maurer & Pontil (2010) and
Vainsencher et al. (2011) previously established gener-
alization bounds for the classical, reconstructive sparse
coding setting. Extending their analysis to the predic-
tive setting introduces certain difficulties related to the
complexity of the class of sparse encoders. Whereas in
the reconstructive setting, this complexity can be con-
trolled directly by exploiting the stability of the recon-
struction error to dictionary perturbations, in the pre-
dictive setting it appears that the complexity hinges
upon the stability of the sparse codes themselves to dic-
tionary perturbations. This latter notion of stability is
much harder to prove; moreover, it can be realized only
with additional assumptions which depend on the dic-
tionary, the data, and their interaction (see Theorem
4). Furthermore, when the assumptions hold for the
learned dictionary and data, we also need to guarantee
that the assumptions hold on a newly drawn sample.
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Contributions We provide a learning bound for the
overcomplete setting in predictive sparse coding, where
the dictionary size, or number of learned features, k
exceeds the ambient dimension d. The bound holds
provided the size m of the training sample is large
enough, where the critical size for the bound to kick in
depends on a certain notion of stability of the learned
representation. This work’s core contributions are:

• Under mild conditions, a stability bound for the
LASSO (Tibshirani, 1996) under dictionary per-
turbations (Theorem 4).

• In the overcomplete setting, a learning bound that

is essentially of order
√

dk
m +

√
s

λµs(D) , where each
sparse code has at most s non-zero components
(Theorem 5). The term 1

µs(D) is the inverse s-
incoherence (see Definition 1) and is roughly the
worst condition number among all linear systems
induced by taking s columns of D.

The stability of the sparse codes are absolutely cru-
cial to this work. Proving that the notion of stability
of contribution 1 holds is highly nontrivial because the
LASSO objective (see (1) below) is not strongly convex
in general. Consequently, much of the technical diffi-
culty of this work is owed to finding conditions under
which the LASSO is stable under dictionary pertur-
bations and proving that when these conditions hold
with respect to the learned hypothesis and the training
sample, they also hold with respect to a future sample.

1.1. The predictive sparse coding problem

Let P be a probability measure over BRd × Y, the
product of an input space BRd (the unit ball of Rd) and
a space Y of univariate labels; examples of Y include
a bounded subset of R for regression and {−1, 1} for
classification. Let z = (z1, . . . , zm) be a sample of
m points drawn iid from P , where each labeled point
zi equals (xi, yi) for xi ∈ BRd and yi ∈ Y. In the
reconstructive setting, labels are not of interest and
we can just as well consider an unlabeled sample x
of m points drawn iid from the marginal probability
measure Π on BRd .

The sparse coding problem is to represent each point
xi as a sparse linear combination of k basis vectors,
or atoms D1, . . . , Dk. The atoms form the columns of
a dictionary D living in a space of dictionaries D :=
(BRd)k, for Di = (D1

i , . . . , D
d
i )T in the unit `2 ball. An

encoder ϕD can be used to express `1 sparse coding:

ϕD(x) := arg min
z

1
2
‖x−Dz‖22 + λ‖z‖1; (1)

hence, encoding x as ϕD(x) amounts to solving a
LASSO problem. The reconstructive `1 sparse coding
objective is then

min
D∈D

Ex∼Π‖x−DϕD(x)‖22 + λ‖ϕD(x)‖1.

Generalization bounds for the empirical risk minimiza-
tion (ERM) variant of this objective have been estab-
lished. In the infinite-dimensional setting, Maurer &
Pontil (2010) showed1 that with probability 1− δ over
the training sample x = (x1, . . . , xm):

sup
D∈D

Ex∼ΠfD(x)− 1

m

mX
i=1

fD(xi)

≤ k√
m

„
14

λ
+

1

2

p
log (16m/λ2)

«
+

r
log(1/δ)

2m
, (2)

where fD(x) := minz∈Rk ‖x − Dz‖22 + λ‖z‖1. This
bound is independent of the dimension d and hence
useful when d� k, as in general Hilbert spaces. They
also showed a similar bound in the overcomplete set-
ting where the k is replaced by

√
dk. Vainsencher et al.

(2011) handled the overcomplete setting, producing
a bound that is O

(√
dk/m

)
as well as fast rates of

O(dk/m), with only logarithmic dependence on 1
λ .

Predictive sparse coding (Mairal et al., 2012), mini-
mizes a supervised loss with respect to a representation
and an estimator linear in the representation. Let W
be a space of linear hypotheses with W := rBRk , the
ball in Rk scaled to radius r. A predictive sparse cod-
ing hypothesis function f is identified by f = (D,w) ∈
D×W and defined as f(x) = 〈w,ϕD(x)〉. The function
class F is the set of such hypotheses. The loss will be
measured via l : Y × R→ [0, b], b > 0, a bounded loss
function that is L-Lipschitz in its second argument.

The predictive sparse coding objective is2

min
D∈D,w∈W

E(x,y)∼P l(y, 〈w,ϕD(x)〉) +
1
r
‖w‖22; (3)

In this work, we analyze the ERM variant of (3):

min
D∈D,w∈W

1
m

m∑
i=1

l(yi, 〈w,ϕD(xi)〉) +
1
r
‖w‖22. (4)

This objective is not convex, and it is unclear how to
find global minima, so a priori we cannot say whether
an optimal or nearly optimal hypothesis will be re-
turned by any learning algorithm. However, we can

1To see this, take Theorem 1.2 of Maurer & Pontil
(2010) with Y = {y ∈ Rk : ‖y‖1 < 1

λ
} and T = {T :

Rk → Rd : ‖Tej‖ ≤ 1, j ∈ [k]}, so that ‖T ‖Y ≤ 1
λ
.

2While the focus of this work is (3), formally the pre-
dictive sparse coding framework admits swapping out the
squared `2 norm regularizer on w for any other regularizer.
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and will bet on certain sparsity-related stability prop-
erties holding with respect to the learned hypothesis
and the training sample. Consequently, the presented
learning bound will hold uniformly not over the set of
all hypotheses but rather potentially much smaller ran-
dom subclasses of hypotheses. The presented bound
will be algorithm-independent3, but algorithm design
can influence the learned hypothesis’s stability and
hence the best a posteriori learning bound.

Encoder stability Defining the encoder (1) via the
`1 sparsity-inducing regularizer (or sparsifier) is just
one choice for the encoder. The choice of sparsifier
seems to be pivotal both from an empirical perspec-
tive and a theoretical one. Bradley & Bagnell (2009)
used a differentiable approximate sparsifier based on
the Kullback-Leibler divergence (true sparsity may not
result). The `1 sparsifier ‖ ·‖1 is the most popular and
notably is the tightest convex lower bound for the `0
“norm”: ‖x‖0 := |{i : xi 6= 0}| (Fazel, 2002). Regret-
tably, from a stability perspective the `1 sparsifier is
not well-behaved in general. Indeed, due to the lack of
strict convexity, each x need not have a unique image
under ϕD. It also is unclear how to analyze the class of
mappings ϕD, parameterized by D, if the map changes
drastically under small perturbations to D. Hence, we
will begin by establishing sufficient conditions under
which ϕD is stable under perturbations to D.

2. Conditions and main result

In this section, we develop several quantities that are
central to the statement of the main result. Through-
out this paper, let [n] := {1, . . . , n} for n ∈ N. Also,
for t ∈ Rk, define supp(t) := {i ∈ [k] : ti 6= 0}.

Definition 1 (s-incoherence) For s ∈ [k] and D ∈
D, the s-incoherence µs(D) is defined as the square
of the minimum singular value among s-atom subdic-
tionaries of D. Formally,

µs(D) =
(
min {ςs(DΛ) : Λ ⊆ [k], |Λ| = s}

)2
,

where ςs(A) is the s th singular value of A.

The s-incoherence can used to guarantee that sparse
codes are stable in a certain sense. We also intro-
duce some key parameter-and-data-dependent proper-
ties. The first property regards the sparsity of the
encoder on a sample x = (x1, . . . , xm).

Definition 2 (s-sparsity) If every point xi in the set
of points x satisfies ‖ϕD(xi)‖0 ≤ s, then ϕD is s-

3Empirically, stochastic gradient approaches such as the
one of Mairal et al. (2012) perform quite well.

sparse on x. More concisely, the boolean expression
s-sparse(ϕD(x)) is true.

This property is critical as the learning bound will ex-
ploit the observed sparsity level over the training sam-
ple. Finally, we require some margin properties.

Definition 3 (s-margin) Given a dictionary D and
a point xi ∈ BRd , the s-margin of D on xi is

margins(D,xi):= max
I⊆[k]
|I|=k−s

min
j∈I

{
λ−

∣∣〈Dj , xi −DϕD(xi)〉
∣∣}.

The sample s-margin is the maximum s-margin that
holds for all points in x, or the s-margin of D on x:

margins(D,x) := min
xi∈x

margins(D,xi).

The importance of the s-margin properties flows di-
rectly from the upcoming Sparse Coding Stability The-
orem (Theorem 4). Intuitively, if the s-margin of D on
x is high, there is a set of (k − s) inactive atoms that
correlate poorly with the optimal residual x−DϕD(x);
hence these k− s atoms are far from being included in
the set of active atoms. More formally, margins(D,xi)
is equal to the (s+1) th smallest element of the set of k
elements {λ− |〈Dj , xi −DϕD(xi)〉|}j∈[k]. Note that if
‖ϕD(xi)‖0 = s, we can use the (s+ ρ)-margin for any
integer ρ ≥ 0. Indeed, ρ > 0 is justified when ϕD(xi)
has only s non-zero dimensions but for precisely one
index j∗ outside the support set |〈Dj∗ , xi−DϕD(xi)〉|
is arbitrarily close to λ. In this scenario, the s-margin
ofD on xi is trivially small; however, the (s+1)-margin
is non-trivial because the max in the definition of the
margin will remove j∗ from the min’s choices I. Em-
pirical evidence shown in Section 5 suggests that even
when ρ is small, the (s+ ρ)-margin is not too small.

Sparse coding stability Our first result is a funda-
mental stability result for the LASSO. In addition to
being critical in motivating the presented conditions,
the result may be of interest in its own right.

Theorem 4 (Sparse Coding Stability) Let
D, D̃ ∈ D satisfy µs(D), µs(D̃) ≥ µ and ‖D−D̃‖2 ≤ ε,
and let x ∈ BRd . Suppose that there exists an index
set I ⊆ [k] of k − s indices such that for all i ∈ I:

|〈Di, x−DϕD(x)〉| < λ− τ, (5)

with ε ≤ τ2λ
27 . (6)

Then the following stability bound holds:

‖ϕD(x)− ϕD̃(x)‖2 ≤
3
2
ε
√
s

λµ
.
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Moreover, if ε = τ ′2λ
27 for τ ′ < τ , then for all i ∈ I:∣∣∣〈D̃i, x− D̃ϕD̃(x)〉

∣∣∣ ≤ λ− (τ − τ ′).

Thus, some margin, and hence sparsity, is retained
after perturbation.

Condition (5) means that at least k−s inactive atoms
in the coding ϕD(x) do not have too high absolute cor-
relation with the residual x−DϕD(x). We refer to the
right-hand side of (6) as the permissible radius of per-
turbation (PRP) because it is the largest perturbation
for which the theorem can guarantee encoder stability.
In short, the theorem says that if problem (1) admits
a stable sparse solution, then a small perturbation to
the dictionary will not change the fact that a certain
set of k−s atoms remains inactive in the new solution.

The proof of Theorem 4 is quite long; we leave all but
the following high-level sketch to Appendix A.

Proof sketch First, we show that the solution ϕD̃(x)
is s-sparse and, in particular, has support contained in
the complement of I. Second, we reframe the LASSO
as a quadratic program (QP). By exploiting the con-
vexity of the QP and the fact that both solutions have
their support contained in a set of s atoms, simple
linear algebra yields the desired stability bound. The
first step appears much more difficult than the second.
The quartet below is our strategy for the first step:

1. optimal value stability: The two problems’ op-
timal objective values are close; this is an easy con-
sequence of the closeness of D and D̃.

2. stability of norm of reconstructor: The
norms of the optimal reconstructors (DϕD(x) and
D̃ϕD̃(x)) of the two problems are close. We show
this using optimal value stability and

(x−DϕD(x))TDϕD(x) = λ‖ϕD(x)‖1, (7)

the latter of which holds due to the subgradient of
(1) with respect to z (Osborne et al., 2000).

3. reconstructor stability: The optimal recon-
structors of the two problems are close. This fact is
a consequence of stability of norm of recon-
structor, using the `1 norm’s convexity and the
equality (7).

4. preservation of sparsity: The solution to
the perturbed problem also is supported on the
complement of I. To show this, it is sufficient to
show that the absolute correlation of each atom D̃i

(i ∈ I) with the residual in the perturbed problem
is less than λ. This last claim is a relatively easy
consequence of reconstructor stability.

2.1. Main result

Some notation will aid the result below and the sub-
sequent analysis. Recall that the loss l is bounded by
b and L-Lipschitz in its second argument. Also recall
that F is the set of predictive sparse coding hypothesis
functions f(x) = 〈w,ϕD(x)〉 indexed by D ∈ D and
w ∈ W. For f ∈ F , define l(·, f) : Y × Rd → [0, b]
as the loss-composed function (y, x) 7→ l(y, f(x)). Let
l ◦ F be the class of such functions induced by the
choice of F and l. A probability measure P operates
on functions and loss-composed functions as:

Pf = E(x,y)∼P f(x) Pl(·, f) = E(x,y)∼P l(y, f(x)).

Similarly, an empirical measure Pz associated with
sample z operates on functions and loss-composed
functions as:

Pzf =
1
m

m∑
i=1

f(xi) Pzl(·, f) =
1
m

m∑
i=1

l(yi, f(xi)).

Classically speaking, the overcomplete setting is the
modus operandi in sparse coding. In this setting, an
overcomplete basis is learned which will be used parsi-
moniously in coding individual points. The next result
bounds the generalization error in the overcomplete
setting. The Õ(·) notation hides log(log(·)) terms and
assumes that r ≤ mmin{d,k}.

Theorem 5 With probability at least 1− δ over
z ∼ Pm, for any s ∈ [k] and any f = (D,w) ∈ F
satisfying s-sparse(ϕD(x)) and m > 243

margins(D,x)2λ ,the
generalization error (P − Pz)l(·, f) is

Õ

 b

√
dk logm+log 1

δ

m

+ b
m

(
dk log 1

margin2
s(D,x)·λ

)
+ L

m

(
r
√
s

λµs(D)

)  .

(8)

Note that this bound also applies to the particular
hypothesis learned from the training sample.

Discussion of Theorem 5 The theorem highlights
the central role of the stability of the sparse encoder.
The bound is data-dependent and exploits properties
related to the training sample and the learned hypoth-
esis. Since k ≥ d in the overcomplete setting, an ideal
learning bound has minimal dependence on k. The 1

m
term of the learning bound (8) exhibits square root
dependence on both the size of the dictionary k and
the ambient dimension d. It is unclear whether further
improvement is possible, even in the reconstructive set-
ting. The two known results in the reconstructive set-
ting were established by Maurer & Pontil (2010) and
later by Vainsencher et al. (2011).
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Contrasting the predictive setting with the reconstruc-
tive setting, the first term of (8) matches the slower
of the rates shown by Vainsencher et al. (2011) for the
unsupervised case. Vainsencher et al. also showed fast
rates of dk

m (plus a small fraction of the observed em-
pirical risk), but in the predictive setting it is an open
question whether similar fast rates are possible. The
second term of (8) represents the error in approximat-
ing the estimator via an (ε = 1

m )-cover of the space
of dictionaries. This term reflects the stability of the
sparse codes with respect to dictionary perturbations,
as quantified by the Sparse Coding Stability Theorem
(Theorem 4). The reason for the lower bound on m is
that the ε-net used to approximate the space of dic-
tionaries needs to be fine enough to satisfy the PRP
condition (6) of the Sparse Coding Stability Theorem.
Hence, both this lower bound and the second term are
determined primarily by the Sparse Coding Stability
Theorem, and so with this proof strategy the extent to
which the Sparse Coding Stability Theorem cannot be
improved also indicates the extent to which Theorem
5 cannot be improved.

Critically, encoder stability is not necessary in the re-
constructive setting because stability in loss (recon-
struction error) requires only stability in the norm of
the residual of the LASSO problem rather than stabil-
ity in the value of the solution to the problem. Sta-
bility of the norm of the residual is readily obtainable
without any of the incoherence, sparsity, and margin
conditions used here.

Remarks on conditions One may wonder about
typical values for the various hypothesis-and-data-
dependent properties in Theorem 5. In practical appli-
cations of reconstructive and predictive sparse coding,
the regularization parameter λ is set to ensure that
s is small relative to the dimension d. As a result,
the incoherence µs(D) of the learned dictionary can
be expected to be bounded away from zero. A suf-
ficiently large s-incoherence certainly is necessary if
one hopes for any amount of stability of the class of
sparse coders with respect to dictionary perturbations.
Since our path to reaching Theorem 5 passes through
the Sparse Coding Stability Theorem (Theorem 4), it
seems that a drastically different strategy needs to be
used if it is possible to avoid dependence on µs(D) in
the learning bounds.

A curious aspect of the learning bound is its depen-
dence on the s-margin margins(D,x). Suppose a dic-
tionary is learned which is s-sparse on the training
sample x, and s is the lowest such integer for which this
holds. It may not always be the case that the s-margin
is bounded away from zero because for some points a

small collection of inactive atoms may be very close
to being brought into the optimal solution (the code);
however, we can instead use the (s+ρ)-margin for some
small positive integer ρ for which the (s+ρ)-margin is
non-trivial. In Section 5 we show empirical evidence
that such a non-trivial (s+ ρ)-margin does exist, with
ρ small, when learning predictive sparse codes on real
data. Hence, there is evidence that predictive sparse
coding learns a dictionary with high s-incoherence
µs(D) and non-trivial s-margin margins(D,x) on the
training sample for low s.

3. Tools

As before, let z be a labeled sample of m points (an m-
sample) drawn iid from P and z′ be a second (ghost)
labeled m-sample drawn iid from P . All epsilon-nets
of spaces of dictionaries will use the metric induced by
the operator norm ‖ · ‖2.

The next result is essentially due to Mendelson &
Philips (2004); it applies symmetrization by a ghost
sample for random subclasses.

Lemma 6 (Symmetrization by Ghost Sample)
Let F(z) ⊂ F be a random subclass which can depend
on a labeled sample z. Recall that z′ is a ghost sample
of m points. If m ≥

(
b
t

)2
, then

Prz {∃f ∈ F(z), (P − Pz)l(·, f) ≥ t}

≤ 2Prz z′

{
∃f ∈ F(z), (Pz′ − Pz)l(·, f) ≥ t

2

}
.

For completeness, this lemma is proved in Appendix B.
This symmetrization lemma will shift the analysis of
the next section from large deviations of the empirical
risk from the expected risk to large deviations of two
independent empirical risks.

For a Banach space E of dimension d, the ε-covering
numbers of the radius r ball of E are bounded as
N (rBE , ε) ≤ (4r/ε)d (Carl & Stephani, 1990, equation
(1.1.10)). For spaces of dictionaries obeying some de-
terministic property, such as Dµ = {D ∈ D : µs(D) ≥
µ}, one must be careful to use a proper ε-cover so that
the representative elements of the cover also obey the
desired property. The following bound relates proper
covering numbers to covering numbers (a simple proof
is in Vidyasagar 2002, Lemma 2.1):
If E is a Banach space and T ⊆ E is a bounded subset,
then N (E, ε, T ) ≤ Nproper(E, ε/2, T ).

Let d, k ∈ N. Define Eµ := {E ∈ (BRd)k : µs(D) ≥ µ}
and W := rBRd . From the above, we have:
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Proposition 7 The proper ε-covering number of Eµ
is bounded by (8/ε)dk.

Proposition 8 The product of the proper ε-covering
number of Eµ and the ε-covering number of W is

bounded by
(

8(r/2)1/(d+1)

ε

)(d+1)k

.

4. Proof of the learning bound

At a high level, our strategy for proving Theorem 5 is
to construct an epsilon-net over a subclass of the space
of functions F := {f = (D,w) : D ∈ D, w ∈ W} and
to show that the metric entropy of this subclass is of
order dk. The main difficulty is that an epsilon-net
over D need not approximate F to any degree, unless
one has a notion of encoder stability. Our analysis
effectively will be concerned with only a training sam-
ple and a ghost sample, and it is similar in style to the
luckiness framework of Shawe-Taylor et al. (1998). If
we observe that the sufficient conditions for encoder
stability hold true on the training sample, then it is
enough to guarantee that most points in a ghost sam-
ple also satisfy these conditions (at a weaker level).

4.1. Useful conditions and subclasses

Let x̃ ⊆η x indicate that x̃ is a subset of x with at
most η elements of x removed. This notation is iden-
tical to Shawe-Taylor et al. (1998)’s notation from the
luckiness framework.

Our bound uses a PRP-based condition depending on
both the learned dictionary and the training sample:

margins(D,x) ≥ ι(λ, ε) for ι(λ, ε) =

√
243ε
λ

.

For brevity we will refer to ι with its parameters im-
plicit; the dependence on ε and λ will not be an issue
because we first develop bounds with these quantities
fixed a priori. Lastly, for µ > 0 define a restricted
dictionary class Dµ := {D ∈ D : µs(D) ≥ µ} and a
function class Fµ := {f = (D,w) ∈ F : D ∈ Dµ}.

4.2. Proof of the learning bound

The following proposition is a specialization of Lemma
6 with F(z) := {f ∈ Fµ :

[
margins(D,x) > ι

]
}.

Proposition 9 If m ≥
(
b
t

)2
, then

Prz


∃f ∈ Fµ,

ˆ
margins(D,x)) > ι

˜
and ((P − Pz)l(·, f) > t)

ff
≤ 2Prz z′


∃f ∈ Fµ,

ˆ
margins(D,x) > ι

˜
and ((Pz′ − Pz)l(·, f) > t/2)

ff
.

In the RHS of the above, let the event whose proba-
bility is being measured be

J :=


z z′ : ∃f ∈ Fµ,

ˆ
margins(D,x) > ι

˜
and (Pz′ − Pz)l(·, f) > t/2)

ff
.

Define Z as the event that there exists a hypothesis
with stable codes on the original sample, in the sense
of the Sparse Coding Stability Theorem (Theorem 4),
but more than η = η(m, d, k,D,x, δ) points4 of the
ghost sample have codes that are not guaranteed stable
by the Sparse Coding Stability Theorem:

Z:=


z z′ :

∃f ∈ Fµ,
ˆ
margins(D,x) > ι

˜
and`

@ x̃ ⊆η x′
ˆ
margins(D, x̃) > 1

3
margins(D,x)

˜´ff .
Our strategy will be to show that Pr(J) is small by
use of the fact that5

Pr(J) = Pr(J ∩ Z̄) + Pr(J ∩ Z) ≤ Pr(J ∩ Z̄) + Pr(Z).

We show that Pr(Z) and Pr(J ∩ Z̄) are small in turn.

The imminent Good Ghost Lemma shadows Shawe-
Taylor et al.’s (1998) notion of probable smoothness
and provides a bound on Pr(Z).

Lemma 10 (Good Ghost) Fix µ, λ > 0 and s ∈
[k]. With probability at least 1 − δ over an m-
sample x ∼ Pm and a second m-sample x′ ∼ Pm,
for any D ∈ Dµ for which ϕD is s-sparse on x,
at least m − η(m, d, k,D,x, δ) points x̃ ⊆ x′ satisfy[
margins(D, x̃) > 1

3margins(D,x)
]
, for

η := dk log
1944

margin2
s(D,x) · λ

+log(2m+1)+log
1
δ
.

Proof By the assumptions of the lemma, consider
an arbitrary dictionary D satisfying µs(D) ≥ µ and
s-sparse(ϕD(x)). The goal is to guarantee with high
probability that all but η points of the ghost sample are
coded by ϕD with s-margin of at least 1

3margins(D,x).

Let ε = ( 1
3 margins(D,x))2·λ

27 , and consider a minimum-
cardinality proper ε-cover D′ of Dµ. Let D′ be a
candidate element of D′ satisfying ‖D − D′‖2 ≤ ε.
Then the Sparse Coding Stability Theorem (Theorem
4) implies that the coding margin of D′ on x retains
over two-thirds the coding margin of D on x; that is,[
margins(D′,x) > 2

3margins(D,x)
]
.

Furthermore, most points from the ghost sample sat-
isfy

[
margins(D′, ·) > 2

3margins(D,x)
]
. To see this,

4We use the shorthand η = η(m, d, k,D,x, δ).
5Our strategy thus far is similar to the beginning of

Shawe-Taylor et al.’s proof of the main luckiness framework
learning bound (Shawe-Taylor et al., 1998, Theorem 5.22).
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let Fmarg
D := {fmarg

D,τ |τ ∈ R+} be the class of threshold
functions defined via

fmarg
D,τ (x) :=

{
1; if margins(D,x) > τ,

0; otherwise.

The VC dimension of the one-dimensional threshold
functions is 1, and so VC(Fmarg

D ) = 1. By using the
VC dimension of Fmarg

D and the standard permutation
argument of Vapnik & Chervonenkis (1968, Proof of
Theorem 2), it follows that for a single, fixed element
of D′, with probability at least 1− δ at most log(2m+
1) + log 1

δ points from a ghost sample will violate the
margin inequality in question. Hence, by the bound on
the proper covering numbers provided by Proposition
7, we can we can guarantee for all candidate members
D′ ∈ D′ that with probability 1− δ at most

η = dk log
1944

margin2
s(D,x) · λ

+ log(2m+ 1) + log
1
δ

points from the ghost sample violate the s-margin in-
equality. Thus, for arbitrary D′ ∈ D′ satisfying the
conditions of the lemma, with probability 1−δ at most
η(m, d, k,D,x, δ) points from the ghost sample violate[
margins(D′, ·) > 2

3margins(D,x)
]
.

Finally, consider the at least m−η points in the ghost
sample satisfying

[
margins(D′, ·) > 2

3margins(D,x)
]
.

Since ‖D′ −D‖2 ≤
( 1
3 margins(D,x))2·λ

27 , the Sparse Cod-
ing Stability Theorem (Theorem 4) implies that these
points satisfy

[
margins(D, ·) > 1

3margins(D,x)
]
.

It remains to bound Pr(J ∩ Z̄).

Lemma 11 (Large Deviation on Good Ghost)

Let $ := t/2 −
(

2Lβ + bη
m

)
, β := ε

2λ

(
1 + 3r

√
s

µ

)
.

Then

Pr(J ∩ Z̄) ≤
(

8(r/2)1/(d+1)

ε

)(d+1)k

exp(−m$2/(2b2)).

Proof First, note that the event J ∩ Z̄ is a subset of

R:=

8<:zz′ :
∃f ∈ Fµ,

ˆ
margins(D,x) > ι

˜
and`

∃x̃ ⊆η x′,
ˆ
margins(D, x̃) > 1

3
margins(D,x)

˜´
and ((Pz′ − Pz)l(·, f) > t/2)

9=; .

Bounding the probability of the event R is equivalent
to bounding the probability of a large deviation (i.e.
((Pz′ − Pz)l(·, f) > t/2)) for the random subclass:

F̃(x,x′):=


f ∈ Fµ :

ˆ
margins(D,x) > ι

˜
and`

∃x̃ ⊆η x′,
ˆ
margins(D, x̃) > 1

3
margins(D,x)

˜´ff .
Let Fε = Dε×Wε, where Dε is a minimum-cardinality
proper ε-cover of Dµ andWε is a minimum-cardinality

ε-cover of W. It is sufficient to bound the prob-
ability of a large deviation for all of Fε and to
then consider the maximum difference between an el-
ement of F̃(x,x′) and its closest representative in Fε.
Clearly, for each f = (D,w) ∈ F̃(x,x′), there is
a f ′ = (D′, w′) ∈ Fε satisfying ‖D − D′‖2 ≤ ε and
‖w − w′‖2 ≤ ε. If ε is sufficiently small, then for all
but η of the points xi in the ghost sample (and for all
points xi of the original sample) it is guaranteed that

|〈w,ϕD(xi)〉 − 〈w′, ϕD′(xi)〉|
≤
˛̨
〈w − w′, ϕD(xi)〉

˛̨
+
˛̨
〈w′, ϕD(xi)− ϕD′(xi)〉

˛̨
≤ ε

2λ
+ r

3

2

ε
√
s

λµ
=

ε

2λ

„
1 +

3r
√
s

µ

«
= β,

where the second inequality follows from the Sparse
Coding Stability Theorem (Theorem 4). Trivially, for
the rest of the points xi in the ghost sample each loss
is bounded by b. Hence, on the original sample:

1

m

mX
i=1

˛̨
l(yi, 〈w,ϕD(xi)〉)− l(yi, 〈w′, ϕD′(xi)〉)

˛̨
≤ Lβ,

and on the ghost sample:

1

m

mX
i=1

˛̨
l(y′i, 〈w,ϕD(x′i)〉)− l(y′i, 〈w′, ϕD′(x′i)〉)

˛̨
≤ L

m

X
i good

˛̨
〈w,ϕD(xi)〉 − 〈w′, ϕD′(xi)〉

˛̨
+

1

m

X
i bad

˛̨
l(y′i, 〈w,ϕD(x′i)〉)− l(y′i, 〈w′, ϕD′(x′i)〉)

˛̨
≤ Lβ +

bη

m
,

where good denotes the (at least m− η) points of the
ghost sample for which the Sparse Coding Stability
Theorem applies, and bad is the complement thereof.

Concluding the above argument, the difference be-
tween the losses of f and f ′ on the double sample is at
most 2Lβ+ bη

m . Consequently, if (Pz′−Pz)l(·, f) > t/2,
then the deviation between the loss of f ′ on the origi-
nal sample and the loss of f ′ on the ghost sample must
be at least t/2−

(
2Lβ + bη

m

)
. To bound the probability

of R it therefore is sufficient to control

Prz z′

{
∃f = (D′, w′) ∈ Dε ×Wε

(Pz′ − Pz)l(·, f) > t/2−
(

2Lβ + bη
m

) }
.

For the case of a fixed f = (D′, w′) ∈ Dε × Wε, ap-
plying Hoeffding’s inequality to the random variable
l(yi, f(xi))− l(y′i, f(x′i)), with range in [−b, b], yields:

Prz z′ {(Pz′ − Pz)l(·, f) > $} ≤ exp(−m$2/(2b2)),

for $ := t/2 −
(

2Lβ + bη
m

)
. Via a proper covering

number bound of Dε × Wε (Proposition 8) and the
union bound, this result extends over all of Dε ×Wε:
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Prz z′
˘
∃f = (D′, w′) ∈ Dε ×Wε, (Pz′ − Pz)l(·, f) > $

¯
≤
„

8(r/2)1/(d+1)

ε

«(d+1)k

exp(−m$2/(2b2)).

The bound on Pr(J ∩ Z̄) now follows.

We now prove Theorem 5 (full proof in Appendix C).

Proof sketch (of Theorem 5) Proposition 9 and Lem-
mas 10 and 11 imply that

Prz


∃f ∈ Fµ,

ˆ
margins(D,x) > ι

˜
and ((P − Pz)l(·, f) > t)

ff
≤ 2

 „
8(r/2)1/(d+1)

ε

«(d+1)k

exp(−m$2/(2b2)) + δ

!
.

Fix s ∈ [k] and µ > 0 a priori. Let ε = 1
m ; elementary

manipulations show that provided m > 243
margins(D,x)2λ ,

then with probability at least 1 − δ over z ∼ Pm,
for any f = (D,w) ∈ F satisfying µs(D) ≥ µ
and

[
margins(D,x) > ι

]
, the generalization error

(P − Pz)l(·, f) is bounded by:

2b

s
2((d+ 1)k log(8m) + k log r

2
+ log 4

δ
)

m

+
2L

m

„
1

λ

„
1 +

3r
√
s

µ

««
+

2b

m

„
dk log

1944

margin2
s(D,x) · λ

+ log(2m+ 1) + log
4

δ

«
.

The theorem follows after suitably distributing a prior
across the bounds for each choice of s and µ.

5. An empirical study of the s-margin

Empirical evidence suggests that the s-margin is well
above zero even when s is only slightly larger than
the observed sparsity level. We performed experiments
on the MNIST digit classification task (LeCun et al.,
1998), specifically the single binary task of the digit 4
vs all the other digits. All the training data was used,
and each data point was normalized to unit norm. The
results in Figure 1 show that when the minimum spar-
sity level is s (indicated by the colored dots on the s-
axis of the plots), there is a non-trivial (s+ ρ)-margin
for ρ a small positive integer. Using the 2s-margin
when s-sparsity holds may ensure that there is a mod-
erate margin for only a constant factor increase to s.

6. Discussion and open problems

We have shown the first generalization error bound
for predictive sparse coding. The learning bound in
Theorem 5 is intimately related to the stability of the
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Figure 1. The s-margin for predictive sparse coding with
400 atoms trained on the MNIST training set, digit 4 versus
all, for three settings of λ. The sparsity level (maximum
number of non-zeros per code, taken across all codes of
the training points) is indicated by the dots on the s-axis.
Predictive sparse coding was trained as per the stochastic
gradient descent approach of Mairal et al. (2012).

sparse encoder, and the bound consequently depends
on properties of both the learned dictionary and the
training sample. The PRP condition in the Sparse
Coding Stability Theorem (Theorem 4) appears to be
much stronger than necessary; we conjecture that the
PRP actually is O(ε) rather than O(

√
ε). If the con-

jecture is true, the number of samples required before
Theorem 5 kicks in would be greatly reduced, as would
be the size of many of the constants in the results.

In machine learning, we often first map the data im-
plicitly to a space of very high or even infinite dimen-
sion and use kernels for computability. In these cases
where d� k or d is infinite, any learning bound must
be independent of d. We in fact have obtained a bound
in the infinite-dimensional setting using considerably
more sophisticated techniques (Rademacher complex-
ities over “mostly good” random subclasses), but for
space we leave this result to the long version.

Though we established an upper bound on the gener-
alization error for predictive sparse coding, two things
remain unclear. How close to optimal is the bound
of Theorem 5, and what lower bounds can be estab-
lished? If the conditions on which the bound relies
are of fundamental importance, then the presented
data-dependent bound provides motivation for an al-
gorithm to prefer dictionaries for which small subdic-
tionaries are well-conditioned and to additionally en-
courage large coding margin on the training sample.
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and Bottou, Léon (eds.), Advances in Neural Infor-
mation Processing Systems 21, pp. 793–800. MIT
Press, 2009.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and
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