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Abstract

In this paper, we study optimization meth-
ods consisting of iteratively minimizing sur-
rogates of an objective function. By propos-
ing several algorithmic variants and simple
convergence analyses, we make two main
contributions. First, we provide a unified
viewpoint for several first-order optimization
techniques such as accelerated proximal gra-
dient, block coordinate descent, or Frank-
Wolfe algorithms. Second, we introduce
a new incremental scheme that experimen-
tally matches or outperforms state-of-the-art
solvers for large-scale optimization problems
typically arising in machine learning.

1. Introduction

The principle of iteratively minimizing a majoriz-
ing surrogate of an objective function is often called
majorization-minimization (Lange et al., 2000). Each
iteration drives the objective function downhill, thus
giving the hope of finding a local optimum. A large
number of existing procedures can be interpreted from
this point of view. This is for instance the case of
gradient-based or proximal methods (see Nesterov,
2007; Beck & Teboulle, 2009; Wright et al., 2009), EM
algorithms (see Neal & Hinton, 1998), DC program-
ming (Horst & Thoai, 1999), boosting (Collins et al.,
2002; Della Pietra et al., 2001), and some varia-
tional Bayes techniques (Wainwright & Jordan, 2008;
Seeger & Wipf, 2010). The concept of “surrogate” has
also been used successfully in the signal processing lit-
erature about sparse optimization (Daubechies et al.,
2004; Gasso et al., 2009) and matrix factorization
(Lee & Seung, 2001; Mairal et al., 2010).

In this paper, we are interested in generalizing the
majorization-minimization principle. Our goal is both
to discover new algorithms, and to draw connections
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with existing methods. We focus our study on “first-
order surrogate functions”, which consist of approxi-
mating a possibly non-smooth objective function up
to a smooth error. We present several schemes ex-
ploiting such surrogates, and analyze their convergence
properties: asymptotic stationary point conditions for
non-convex problems, and convergence rates for con-
vex ones. More precisely, we successively study:

• a generic majorization-minimization approach;
• a randomized block coordinate descent algorithm

(see Tseng & Yun, 2009; Shalev-Shwartz & Tewari,
2009; Nesterov, 2012; Richtárik & Takáč, 2012);
• an accelerated variant for convex problems in-

spired by Nesterov (2004); Beck & Teboulle (2009);
• a generalization of the “Frank-Wolfe” conditional

gradient method (see Zhang, 2003; Harchaoui et al.,
2013; Hazan & Kale, 2012; Zhang et al., 2012);
• a new incremental scheme, which we call MISO.1

We present in this work a unified view for analyz-
ing a large family of algorithms with simple con-
vergence proofs and strong guarantees. In par-
ticular, all the above optimization methods except
Frank-Wolfe have linear convergence rates for mini-
mizing strongly convex objective functions. This is
remarkable for MISO, the new incremental scheme
derived from our framework; to the best of our
knowledge, only two recent incremental algorithms
share such a property: the stochastic average gradi-
ent method (SAG) of Le Roux et al. (2012), and the
stochastic dual coordinate ascent method (SDCA) of
Shalev-Schwartz & Zhang (2012). Our scheme MISO
is inspired in part by these two works, but yields dif-
ferent update rules than SAG or SDCA.

After we present and analyze the different optimization
schemes, we conclude the paper with numerical exper-
iments focusing on the scheme MISO. We show that in
most cases MISO matches or outperforms cutting-edge
solvers for large-scale ℓ2- and ℓ1-regularized logistic re-
gression (Bradley et al., 2011; Beck & Teboulle, 2009;
Le Roux et al., 2012; Fan et al., 2008; Bottou, 2010).

1Minimization by Incremental Surrogate Optimization.
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2. Basic Optimization Scheme

Given a convex subset Θ of Rp and a continuous func-
tion f : Rp → R, we are interested in solving

min
θ∈Θ

f(θ),

where we assume, to simplify, that f is bounded below.
Our goal is to study the majorization-minimization
scheme presented in Algorithm 1 and its variants. This
procedure relies on the concept of surrogate functions,
which are minimized instead of f at every iteration.2

Algorithm 1 Basic Scheme

input θ0 ∈ Θ; N (number of iterations).
1: for n = 1, . . . , N do
2: Compute a surrogate function gn of f near θn−1;
3: Update solution: θn ∈ argminθ∈Θ gn(θ).
4: end for
output θN (final estimate);

For this approach to be successful, we intuitively need
surrogates that approximate well the objective f and
that are easy to minimize. In this paper, we focus on
“first-order surrogate functions” defined below, which
will be shown to have “good” theoretical properties.

Definition 2.1 (First-Order Surrogate).
A function g : Rp → R is a first-order surrogate of f
near κ in Θ when the following conditions are satisfied:

• Majorization: we have g(θ′) ≥ f(θ′) for all θ′

in argminθ∈Θ g(θ). When the more general condition
g ≥ f holds, we say that g is a majorant function;

• Smoothness: the approximation error h , g − f
is differentiable, and its gradient is L-Lipschitz contin-
uous. Moreover, we have h(κ) = 0 and ∇h(κ) = 0.

We denote by SL(f, κ) the set of such surrogates, and
by SL,ρ(f, κ) the subset of ρ-strongly convex surrogates.

First-order surrogates have a few simple properties,
which form the building block of our analyses:

Lemma 2.1 (Basic Properties - Key Lemma).
Let g be in SL(f, κ) for some κ in Θ. Define h , g−f
and let θ′ be in argminθ∈Θ g(θ). Then, for all θ in Θ,

• |h(θ)| ≤ L
2 ‖θ − κ‖

2
2;

• f(θ′) ≤ f(θ) + L
2 ‖θ − κ‖

2
2.

Assume that g is in SL,ρ(f, κ), then, for all θ in Θ,

• f(θ′) + ρ
2‖θ

′ − θ‖22 ≤ f(θ) +
L
2 ‖θ − κ‖

2
2.

2Note that this concept differs from the machine learn-
ing terminology, where a “surrogate” often denotes a fixed
convex upper bound of the nonconvex (0−1)-loss.

The proof of this lemma is relatively simple but for
space limitation reasons, all proofs in this paper are
provided as supplemental material. With Lemma 2.1
in hand, we now study the properties of Algorithm 1.

2.1. Convergence Analysis

For general non-convex problems, proving convergence
to a global (or local) minimum is out of reach, and
classical analyses study instead asymptotic stationary
point conditions (see, e.g., Bertsekas, 1999). To do so,
we make the mild assumption that for all θ, θ′ in Θ,
the directional derivative ∇f(θ, θ′− θ) of f at θ in the
direction θ′− θ exists. A classical necessary first-order
condition (see Borwein & Lewis, 2006) for θ to be a lo-
cal minimum of f is to have ∇f(θ, θ′−θ) non-negative
for all θ′ in Θ. This naturally leads us to consider the
following asymptotic condition to assess the quality of
a sequence (θn)n≥0 for non-convex problems:

Definition 2.2 (Asymptotic Stationary Point).
A sequence (θn)n≥0 satisfies an asymptotic stationary
point condition if

lim inf
n→+∞

inf
θ∈Θ

∇f(θn, θ − θn)

‖θ − θn‖2
≥ 0.

In particular, if f is differentiable on R
p and Θ = R

p,
this condition implies limn→+∞ ‖∇f(θn)‖2 = 0.

Building upon this definition, we now give a first con-
vergence result about Algorithm 1.

Proposition 2.1 (Non-Convex Analysis).
Assume that the surrogates gn from Algorithm 1 are
in SL(f, θn−1) and are majorant or strongly convex.
Then, (f(θn))n≥0 monotonically decreases and (θn)n≥0

satisfies an asymptotic stationary point condition.

Convergence results for non-convex problems are by
nature weak. This is not the case when f is convex.
In the next proposition, we obtain convergence rates
by following a proof technique from Nesterov (2007)
originally designed for proximal gradient methods.

Proposition 2.2 (Convex Analysis for SL(f, κ)).
Assume that f is convex and that for some R > 0,

‖θ− θ⋆‖2 ≤ R for all θ ∈ Θ s.t. f(θ) ≤ f(θ0), (1)

where θ⋆ is a minimizer of f on Θ. When the surro-
gate gn in Algorithm 1 are in SL(f, θn−1), we have

f(θn)− f
⋆ ≤

2LR2

n+ 2
for all n ≥ 1,

where f⋆ , f(θ⋆). Assume now that f is µ-strongly
convex. Regardless of condition (1), we have

f(θn)− f
⋆ ≤ βn(f(θ0)− f

⋆) for all n ≥ 1,

where β , L
µ
if µ > 2L or β ,

(

1− µ
4L

)

otherwise.
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The result of Proposition 2.2 is interesting in the sense
that it provides sharp theoretical results without mak-
ing strong assumption on the surrogate functions. The
next proposition shows that slightly better rates can
be obtained when the surrogates are strongly convex.

Proposition 2.3 (Convex Analysis for SL,ρ(f, κ)).
Assume that f is convex and let θ⋆ be a minimizer of f
on Θ. When the surrogates gn of Algorithm 1 are in
SL,ρ(f, θn−1) with ρ ≥ L, we have for all n ≥ 1,

f(θn)− f
⋆ ≤

L‖θ0 − θ
⋆‖22

2n
.

When f is µ-strongly convex, we have for all n ≥ 1,






‖θn − θ
⋆‖22 ≤

(

L
ρ+µ

)n

‖θ0 − θ
⋆‖22

f(θn)− f
⋆ ≤

(

L
ρ+µ

)n−1
L‖θ0−θ⋆‖2

2

2

.

Note that the condition ρ ≥ L is relatively strong;
it can indeed be shown that f is necessarily (ρ−L)-
strongly convex if ρ>L, and convex if ρ=L. The fact
that making stronger assumptions yields better con-
vergence rates suggests that going beyond first-order
surrogates could provide even sharper results. This is
confirmed in the next proposition:

Proposition 2.4 (Second-Order Surrogates).
Make similar assumptions as in Proposition 2.2, and
also assume that the error functions hn , gn−f are
twice differentiable, that their Hessians ∇2hn are M -
Lipschitz, and that ∇2hn(θn−1) = 0 for all n. Then,

f(θn)− f
⋆ ≤

9MR3

2(n+ 3)2
for all n ≥ 1.

If f is µ-strongly convex, the convergence rate is su-
perlinear with order 3/2.

Consistently with this proposition, similar rates were
obtained by Nesterov & Polyak (2006) for the New-
ton method with cubic regularization, which involve
second-order surrogates. In the next section, we fo-
cus again on first-order surrogates, and present simple
mechanisms to build them. The proofs of the different
claims are provided in the supplemental material.

2.2. Examples of Surrogate Functions

Lipschitz Gradient Surrogates.
When f is differentiable and ∇f is L-Lipschitz, f ad-
mits the following majorant surrogate in S2L,L(f, κ):

g : θ 7→ f(κ) +∇f(κ)⊤(θ − κ) +
L

2
‖θ − κ‖22.

In addition, when f is convex, g is in SL,L(f, κ), and
when f is µ-strongly convex, g is in SL−µ,L(f, κ). Note
also that minimizing g amounts to performing a clas-
sical classical gradient descent step θ′ ← κ− 1

L
∇f(κ).

Proximal Gradient Surrogates.
Assume that f splits into f = f1 + f2, where f1 is
differentiable with a L-Lipschitz gradient. Then, f
admits the following majorant surrogate in S2L(f, κ):

g : θ 7→ f1(κ) +∇f1(κ)
⊤(θ − κ) +

L

2
‖θ − κ‖22 + f2(θ).

The approximation error g − f is indeed the same as
in the previous paragraph and thus:

• when f1 is convex, g is in SL(f, κ). If f2 is also
convex, g is in SL,L(f, κ).

• when f1 is µ-strongly convex, g is in SL−µ(f, κ). If
f2 is also convex, g is in SL−µ,L(f, κ).

Minimizing g amounts to performing a proximal gradi-
ent step (see Nesterov, 2007; Beck & Teboulle, 2009).

DC Programming Surrogates.
Assume that f = f1 + f2, where f2 is concave and dif-
ferentiable with a L2-Lipschitz gradient. Then, the fol-
lowing function g is a majorant surrogate in SL2

(f, κ):

g : θ 7→ f1(θ) + f2(κ) +∇f2(κ)
⊤(θ − κ).

Such a surrogate forms the root of DC- (difference of
convex functions)-programming (see Horst & Thoai,
1999). It is also indirectly used in reweighted-ℓ1 algo-
rithms (Candès et al., 2008) for minimizing on R

p
+ a

cost function of the form θ 7→ f1(θ)+λ
∑p

i=1 log(θi+ε).

Variational Surrogates.
Let f be a real-valued function defined on R

p1 × R
p2 .

Let Θ1 ⊆ R
p1 and Θ2 ⊆ R

p2 be two convex sets. De-
fine f̃ as f̃(θ1) , minθ2∈Θ2

f(θ1, θ2) and assume that

• θ1 7→ f(θ1, θ2) is differentiable for all θ2 in Θ2;

• θ2 7→ ∇1f(θ1, θ2) is L-Lipschitz for all θ1 in R
p1 ;3

• θ1 7→ ∇1f(θ1, θ2) is L
′-Lipschitz for all θ2 in Θ2;

• θ2 7→ f(θ1, θ2) is µ-strongly convex for all θ1 in R
p1 .

Let us fix κ1 in Θ1. Then, the following function is a
majorant surrogate in S2L′′(f̃ , κ) for some L′′ > 0:

g : θ1 7→ f(θ1, κ
⋆
2) with κ⋆2 , argmin

θ2∈Θ2

f̃(κ1, θ2).

When f is jointly convex in θ1 and θ2, f̃ is itself convex
and we can choose L′′ = L′. Algorithm 1 becomes a
block-coordinate descent procedure with two blocks.

Saddle Point Surrogates.
Let us make the same assumptions as in the previous
paragraph but with the following differences:

3The notation ∇1 denotes the gradient w.r.t. θ1.
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• θ2 7→f(θ1, θ2) is µ-strongly concave for all θ1 in R
p1 ;

• θ1 7→f(θ1, θ2) is convex for all θ2 in Θ2;

• f̃(θ1) , maxθ2∈Θ2
f(θ1, θ2).

Then, f̃ is convex and the function below is a majorant
surrogate in S2L′′(f̃ , κ1):

g : θ1 7→ f(θ1, κ
⋆
2) +

L′′

2
‖θ1 − κ1‖

2
2,

where L′′ , max(2L2/µ, L′). When θ1 7→ f(θ1, θ2) is
affine, we can instead choose L′′ , L2/µ.

Jensen Surrogates.
Jensen’s inequality provides a natural mechanism to
obtain surrogates for convex functions. Following the
presentation of Lange et al. (2000), we consider a con-
vex function f : R 7→ R, a vector x in R

p, and define
f̃ : Rp → R as f̃(θ) , f(x⊤θ) for all θ. Let w be a
weight vector in R

p
+ such that ‖w‖1 = 1 and wi 6= 0

whenever xi 6=0. Then, we define for any κ in R
p

g : θ 7→

p
∑

i=1

wif

(

xi

wi

(θi − κi) + x⊤κ

)

,

When f is differentiable with an L-Lipschitz gradient,
and wi , |xi|

ν/‖x‖νν , then g is in SL′(f̃ , κ) with

• L′ = L‖x‖2∞‖x‖0 for ν = 0;

• L′ = L‖x‖∞‖x‖1 for ν = 1;

• L′ = L‖x‖22 for ν = 2.

As far as we know, the convergence rates we provide
when using such surrogates are new. We also note that
Jensen surrogates have been successfully used in ma-
chine learning. For instance, Della Pietra et al. (2001)
interpret boosting procedures under this point of view
through the concept of auxiliary functions.

Quadratic Surrogates.
When f is twice differentiable and admits a matrix H
such that H−∇2f is always positive definite, the fol-
lowing function is a first-order majorant surrogate:

g : θ 7→ f(κ) +∇f(κ)⊤(θ − κ) +
1

2
(θ − κ)⊤H(θ − κ).

The Lipschitz constant of ∇(g−f) is the largest eigen-
value of H − ∇2f(θ) over Θ. Such surrogates appear
frequently in the statistics and machine learning liter-
ature (Böhning & Lindsay, 1988; Khan et al., 2010).

We have shown that there are many rules to build
first-order surrogates. Choosing one instead of another
mainly depends on how easy it is to build the surrogate
(do we need to estimate an a priori unknown Lipschitz
constant?), and on how cheaply it can be minimized.

3. Block Coordinate Scheme

In this section, we introduce a block coordinate descent
extension of Algorithm 1 under the assumptions that

• Θ is separable—that is, it can be written as a
Cartesian product Θ = Θ1 ×Θ2 × . . .×Θk;

• the surrogates gn are separable into k components:

gn(θ) =

k
∑

i=1

gin(θ
i) for θ = (θ1, . . . , θk) ∈ Θ.

We present a randomized procedure in Algorithm 2 fol-
lowing Tseng & Yun (2009); Shalev-Shwartz & Tewari
(2009); Nesterov (2012); Richtárik & Takáč (2012).

Algorithm 2 Block Coordinate Descent Scheme

input θ0 = (θ10, . . . , θ
k
0 ) ∈ Θ = (Θ1 × . . .×Θk); N .

1: for n = 1, . . . , N do
2: Choose a separable surrogate gn of f near θn−1;
3: Randomly pick up one block ı̂n and update θı̂nn :

θı̂nn ∈ argmin
θı̂n∈Θı̂n

gı̂nn (θı̂n).

4: end for
output θN = (θ1N , . . . , θ

k
N ) (final estimate);

As before, we first study the convergence for non-
convex problems. The next proposition shows that
similar guarantees as for Algorithm 1 can be obtained.

Proposition 3.1 (Non-Convex Analysis).
Assume that the functions gn are majorant surrogates
in SL(f, θn−1). Assume also that θ0 is the minimizer
of a majorant surrogate function in SL(f, θ−1) for
some θ−1 in Θ. Then, the conclusions of Proposi-
tion 2.1 hold with probability one.

Under convexity assumptions on f , the next two
propositions give us expected convergence rates.

Proposition 3.2 (Convex Analysis for SL(f, κ)).
Make the same assumptions as in Proposition 2.2 and
define δ , 1

k
. When the surrogate functions gn in

Algorithm 2 are majorant and in SL(f, θn−1), the se-
quence (f(θn))n≥0 almost surely converges to f⋆ and

E[f(θn)− f
⋆] ≤

2LR2

2 + δ(n− n0)
for all n ≥ n0,

where n0 ,

⌈

log
(

2(f(θ0)−f⋆)
LR2 − 1

)

/ log
(

1
1−δ

)⌉

if

f(θ0)− f
⋆ > LR2 and n0 , 0 otherwise. Assume now

that f is µ-strongly convex. Then, we have instead an
expected linear convergence rate

E[f(θn)− f
⋆] ≤ ((1− δ) + δβ)n(f(θ0)− f

⋆),

where β , L
µ
if µ > 2L or β ,

(

1− µ
4L

)

otherwise.
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Proposition 3.3 (Convex Analysis for SL,ρ(f, κ)).

Assume that f is convex. Define δ , 1
k
. Choose ma-

jorant surrogates gn in SL,ρ(f, θn−1) with ρ ≥ L, then
(f(θn))n≥0 almost surely converges to f⋆ and we have

E[f(θn)− f
⋆] ≤

C0

(1− δ) + δn
for all n ≥ 1,

with C0 , (1−δ)(f(θ0)−f
⋆)+ (1−δ)ρ+δL

2 ‖θ0−θ
⋆‖22. As-

sume now that f is µ-strongly convex, then we have an
expected linear convergence rate






L
2E[‖θ

⋆ − θn‖
2
2] ≤ C0

(

(1− δ) + δ L
ρ+µ

)n

E[f(θn)− f
⋆] ≤ C0

δ

(

(1− δ) + δ L
ρ+µ

)n−1 .

The quantity δ=1/k represents the probability for a
block to be updated during an iteration. Note that
updating all blocks (δ=1) gives the same results as in
Section 2. Linear convergence for strongly convex ob-
jectives with block coordinate descent is classical since
the works of Tseng & Yun (2009); Nesterov (2012).
Results of the same nature have also been obtained
by Richtárik & Takáč (2012) for composite functions.

4. Frank-Wolfe Scheme

In this section, we show how to use surrogates to gener-
alize the Frank-Wolfe method, an old convex optimiza-
tion technique that has regained some popularity in
machine learning (Zhang, 2003; Harchaoui et al., 2013;
Hazan & Kale, 2012; Zhang et al., 2012). We present
this approach in Algorithm 3.

Algorithm 3 Frank-Wolfe Scheme

input θ0 ∈ Θ; N (number of iterations).
1: for n = 1, . . . , N do
2: Let gn be a majorant surrogate in SL,L(f, θn−1).
3: Compute a search direction:

νn ∈ argmin
θ∈Θ

[

gn(θ)−
L

2
‖θ − θn−1‖

2
2

]

.

4: Line search: α⋆,argmin
α∈[0,1]

gn(ανn+(1−α)θn−1).

5: Update solution: θn , α⋆νn + (1− α⋆)θn−1.
6: end for
output θN (final estimate);

When f is smooth and the “gradient Lipschitz based
surrogates” from Section 2.2 are used, Algorithm 3 be-
comes the classical Frank-Wolfe method.4 Our point
of view is however more general since it allows for ex-
ample to use “proximal gradient surrogates”. The next
proposition gives a convergence rate.

4Note that the classical Frank-Wolfe algorithm performs
in fact the line search over the function f and not gn.

Proposition 4.1 (Convex Analysis).
Assume that f is convex and that Θ is bounded. Call
R , maxθ1,θ2∈Θ ‖θ1 − θ2‖2 the diameter of Θ. Then,
the sequence (f(θn))n≥0 provided by Algorithm 3 con-
verges to the minimum f⋆ of f over Θ and

f(θn)− f
⋆ ≤

2LR2

n+ 2
for all n ≥ 1.

Other extensions of Algorithm 3 can also easily be
designed by using our framework. We present for
instance in the supplemental material a randomized
block Frank-Wolfe algorithm, revisiting the recent
work of Lacoste-Julien et al. (2013).

5. Accelerated Scheme

A popular scheme for convex optimization is the ac-
celerated proximal gradient method (Nesterov, 2007;
Beck & Teboulle, 2009). By using surrogate functions,
we exploit similar ideas in Algorithm 4. When us-
ing the “Lipschitz gradient surrogates” of Section 2.2,
Algorithm 4 is exactly the scheme 2.2.19 of Nesterov
(2004). When using the “proximal gradient surrogate”
and when µ = 0, it is equivalent to the FISTA method
of Beck & Teboulle (2009). Algorithm 4 consists of it-
eratively minimizing a surrogate computed at a point
κn−1 extrapolated from θn−1 and θn−2. It results in
better convergence rates, as shown in the next proposi-
tion by adapting a proof technique of Nesterov (2004).

Algorithm 4 Accelerated Scheme

input θ0 ∈ Θ; N ; µ (strong convexity parameter);
1: Initialization: κ0 , θ0; a0 = 1;
2: for n = 1, . . . , N do
3: Choose a surrogate gn in SL,L+µ(f, κn−1);

4: Update solution: θn , argminθ∈Θ gn(θ);
5: Compute an ≥ 0 such that:

a2n = (1− an)a
2
n−1 +

µ
L+µ

an;

6: Set βn ,
an−1(1−an−1)

a2

n−1
+an

and update κ:

κn , θn + βn(θn − θn−1);

7: end for
output θN (final estimate);

Proposition 5.1 (Convex Analysis).
Assume that f is convex. When µ = 0, the sequence
(θn)n≥0 provided by Algorithm 4 satisfies for all n ≥ 1,

f(θn)− f
⋆ ≤

2L‖θ0 − θ
⋆‖22

(n+ 2)2
.

When f is µ-strongly convex, we have instead a linear
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convergence rate: for n ≥ 1,

f(θn)− f
⋆ ≤

(

1−

√

µ

L+ µ

)n−1
L‖θ0 − θ

⋆‖22
2

.

6. Incremental Scheme

This section is devoted to objective functions f that
split into many components:

f(θ) =
1

T

T
∑

t=1

f t(θ). (2)

The most classical method exploiting such a structure
when f is smooth is probably the stochastic gradient
descent (SGD) and its variants (see Bottou, 2010). It
consists of drawing at iteration n an index t̂n and up-
dating the solution as θn←θn−1−ηn∇f

t̂n(θn−1) with a
scalar ηn. Another popular algorithm is the stochastic
mirror descent (see Juditsky & Nemirovski, 2011) for
general non-smooth convex problems, a setting we do
not consider in this paper since non-smooth functions
do not always admit first-order surrogates.

Recently, it was shown by Shalev-Schwartz & Zhang
(2012) and Le Roux et al. (2012) that linear conver-
gence rates could be obtained for strongly convex func-
tions f t. The SAG algorithm of Le Roux et al. (2012)
for smooth unconstrained optimization is an approx-
imate gradient descent strategy, where an estimate
of ∇f is incrementally updated at each iteration. The
work of Shalev-Schwartz & Zhang (2012) for compos-
ite optimization is a dual coordinate ascent method
called SDCA which performs incremental updates in
the primal (2). Unlike SGD, both SAG and SDCA
require storing information about past iterates.

In a different context, incremental EM algorithms have
been proposed by Neal & Hinton (1998), where surro-
gates of a log-likelihood are incrementally updated. By
using similar ideas, we present in Algorithm 5 a scheme
for solving (2), which we call MISO. In the next propo-
sitions, we study its convergence properties.

Algorithm 5 Incremental Scheme MISO

input θ0 ∈ Θ; N (number of iterations).
1: Choose surrogates gt0 of f t near θ0 for all t;
2: for n = 1, . . . , N do
3: Randomly pick up one index t̂n and choose a

surrogate gt̂nn of f t̂n near θn−1. Set gtn , gtn−1

for t 6= t̂n;
4: Update solution: θn ∈ argmin

θ∈Θ

1
T

∑T
t=1 g

t
n(θ).

5: end for
output θN (final estimate);

Proposition 6.1 (Non-Convex Analysis).

Assume that the surrogates gt̂nn from Algorithm 5 are

majorant and are in SL(f
t̂n , θn−1). Then, the conclu-

sions of Proposition 2.1 hold with probability one.

Proposition 6.2 (Convex Analysis).
Assume that f is convex. Define f⋆ , minθ∈Θ f(θ)
and δ, 1

T
. When the surrogates gtn in Algorithm 5 are

majorant and in SL,ρ(f
t, θn−1) with ρ≥L, we have

E[f(θn)− f
⋆] ≤

L‖θ⋆ − θ0‖
2
2

2δn
for all n ≥ 1.

Assume now that f is µ-strongly convex. For all n≥1,







E[‖θ⋆−θn‖
2
2] ≤

(

(1−δ)+δ L
ρ+µ

)n

‖θ⋆ − θ0‖
2
2

E[f(θn)−f
⋆] ≤

(

(1−δ)+δ L
ρ+µ

)n−1
L‖θ⋆−θ0‖

2

2

2

.

Interestingly, the proof and the convergence rates of
Proposition 6.2 are similar to those of the block co-
ordinate scheme. For both schemes, the current iter-
ate θn can be shown to be the minimizer of an ap-
proximate surrogate function which splits into differ-
ent parts. Each iteration randomly picks up one part,
and updates it. Like SAG or SDCA, we obtain lin-
ear convergence for strongly convex functions f , even
though the upper bounds obtained for SAG and SDCA
are better than ours.

It is also worth noticing that for smooth unconstrained
problems, MISO and SAG yield different, but related,
update rules. Assume for instance that “Lipschitz gra-
dient surrogates” are used. At iteration n of MISO,
each function gtn is a surrogate of f t near some κtn−1.
The update rule of MISO can be shown to be θn ←
1
T

∑T
t=1κ

t
n−1−

1
TL

∑T
t=1∇f

t(κtn−1); in comparison, the

update rule of SAG is θn←θn−1−
1

TL

∑T
t=1∇f

t(κtn−1).

The next section complements the theoretical analysis
of the scheme MISO by numerical experiments and
practical implementation heuristics.

7. Experiments

In this section, we show that MISO is efficient for solv-
ing large-scale machine learning problems.

7.1. Experimental Setting

We consider ℓ2- and ℓ1- logistic regression without in-
tercept, and denote by m the number of samples and
by p the number of features. The corresponding opti-
mization problem can be written

min
θ∈Rp

1

m

m
∑

t=1

log(1 + e−ytx
t⊤θ) + λψ(θ), (3)
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where the regularizer ψ is either the ℓ1- or squared
ℓ2-norm. The yt’s are in {−1,+1} and the xt’s are
vectors in R

p with unit ℓ2-norm. We use four classical
datasets described in the following table:

name m p storage size (GB)
alpha 250 000 500 dense 1
rcv1 781 265 47 152 sparse 0.95
covtype 581 012 54 dense 0.11
ocr 2 500 000 1 155 dense 23.1

Three datasets, alpha, rcv1 and ocr were obtained from
the 2008 Pascal large scale learning challenge.5 The
dataset covtype is available from the LIBSVM web-
site.6 We have chosen to test several software pack-
ages including LIBLINEAR 1.93 (Fan et al., 2008), the
ASGD and SGD implementations of L. Bottou (ver-
sion 2)7, an implementation of SAG kindly provided to
us by the authors of Le Roux et al. (2012), the FISTA
method of Beck & Teboulle (2009) implemented in
the SPAMS toolbox8, and SHOTGUN (Bradley et al.,
2011). All these softwares are coded in C++ and were
compiled using gcc. Experiments were run on a sin-
gle core of a 2.00GHz Intel Xeon CPU E5-2650 using
64GB of RAM, and all computations were done in dou-
ble precision. All the timings reported do not include
data loading into memory. Note that we could not run
the softwares SPAMS, LIBLINEAR and SHOTGUN
on the dataset ocr because of index overflow issues.

7.2. On Implementing MISO

The objective function (3) splits into m components

f t : θ 7→ log(1 + e−ytx
t⊤θ) + λψ(θ). It is thus nat-

ural to consider the incremental scheme of Section 6
together with the proximal gradient surrogates of Sec-
tion 2.2. Concretely, we build at iteration n of MISO
a surrogate gt̂nn of f t̂n as follows: gt̂nn : θ 7→ lt̂n(θn−1)+

∇lt̂n(θn−1)
⊤(θ−θn−1)+

L
2 ‖θ−θn−1‖

2
2+λψ(θ), where l

t

is the logistic function θ 7→ log(1 + e−ytx
t⊤θ).

After removing the dependency over n to simplify
the notation, all the surrogates can be rewritten as
gt : θ 7→ at + zt⊤θ+ L

2 ‖θ‖
2
2 +λψ(θ), where at is a con-

stant and zt is a vector in R
p. Therefore, all surrogates

can be “summarized” by the pair (at, z
t), quantities

which we keep into memory during the optimization.
Then, finding the estimate θn amounts to minimiz-
ing a function of the form θ 7→ z̄⊤n θ +

L
2 ‖θ‖

2
2 + λψ(θ),

where z̄n is the average value of the quantities zt at
iteration n. It is then easy to see that obtaining z̄n+1

5http://largescale.ml.tu-berlin.de.
6http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
7http://leon.bottou.org/projects/sgd.
8http://spams-devel.gforge.inria.fr/.

from z̄n can be done in O(p) operations with the fol-

lowing update: z̄n+1 ← z̄n + (zt̂nnew − zt̂nold)/m.

One issue is that building the surrogates gt requires
choosing some constant L. An upper bound on the
Lipschitz constants of the gradients ∇lt could be used
here. However, we have observed that significantly
faster convergence could be achieved by using a smaller
value, probably because a local Lipschitz constant may
be better adapted than a global one. By studying the
proof of Proposition 6.2, we notice indeed that our con-
vergence rates can be obtained without majorant sur-
rogates, when we simply have: E[f t(θn)] ≤ E[gtn(θn)]
for all t and n. This motivates the following heuristics:
• MISO1: start by performing one pass over η=5%

of the data to select a constant L′ yielding the smallest
decrease of the objective, and set L = L′η;
• MISO2: in addition to MISO1, check the inequal-

ities f t̂n(θn−1)≤ g
t̂n
n−1(θn−1) during the optimization.

After each pass over the data, if the rate of satisfied
inequalities drops below 50%, double the value of L.

Following these strategies, we have implemented the
scheme MISO in C++. The resulting software package
will be publicly released with an open source license.

7.3. ℓ2-Regularized Logistic Regression

We compare LIBLINEAR, FISTA, SAG, ASGD, SGD,
MISO1, MISO2 and MISO2 with T = 1000 blocks
(grouping some observations into minibatches). LIB-
LINEAR was run using the option -s 0 -e 0.000001.
The implementation of SAG includes a heuristic line
search in the same spirit as MISO2, introduced
by Le Roux et al. (2012). Every method was stopped
after 50 passes over the data. We considered three
regularization regimes, high (λ= 10−3), medium (λ=
10−5) and low (λ=10−7). We present in Figure 1 the
values of the objective function during the optimiza-
tion for the regime medium, both in terms of passes
over the data and training time. The regimes low and
high are provided as supplemental material only. Note
that to reduce the memory load, we used a minibatch
strategy for the dataset rcv1 with T = 10 000 blocks.

Overall, there is no clear winner from this experi-
ment, and the preference for an algorithm depends on
the dataset, the required precision, or the regulariza-
tion level. The best methods seem to be consistently
MISO, ASGD and SAG and the slowest one FISTA.
Note that this apparently mixed result is a signifi-
cant achievement. We have indeed focused on state-of-
the-art solvers, which already significantly outperform
a large number of other baselines (see Bottou, 2010;
Fan et al., 2008; Le Roux et al., 2012).

http://largescale.ml.tu-berlin.de
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://leon.bottou.org/projects/sgd
http://spams-devel.gforge.inria.fr/
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Figure 1. Results for ℓ2-logistic regression with λ=10−5.

7.4. ℓ1-Regularized Logistic Regression

Since SAG, SGD and ASGD cannot deal with ℓ1-
regularization, we compare here LIBLINEAR, FISTA,
SHOTGUN and MISO. We use for LIBLINEAR the
option -s 6 -e 0.000001. We proceed as in Section 7.3,
considering three regularization regimes yielding dif-
ferent sparsity levels. We report the results for one of
them in Figure 2 and provide the rest as supplemental
material. In this experiment, our method outperforms
other competitors, except LIBLINEAR on the dataset
rcv1 when a high precision is required (and the regu-
larization is low). We also remark that a low precision
solution is often achieved quickly using the minibatch
scheme (MISO2 b1000), but this strategy is outper-
formed by MISO1 and MISO2 for high precisions.

8. Conclusion

In this paper, we have introduced a flexible optimiza-
tion framework based on the computation of “surro-
gate functions”. We have revisited numerous schemes
and discovered new ones. For each of them, we have
studied convergence guarantees for non-convex prob-
lems and convergence rates for convex ones. Our
methodology led us in particular to the design of an in-
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Figure 2. Benchmarks for ℓ1-logistic regression. λ was cho-
sen to obtain a solution with 10% nonzero coefficients.

cremental algorithm, which has theoretical properties
and empirical performance matching state-of-the-art
solvers for large-scale machine learning problems.

In the future, we are planning to study fully stochas-
tic or memoryless variants of our framework. As in
the incremental setting, it consists of drawing a sin-
gle training point at each iteration, but the algorithm
does not keep track of all past information. This is es-
sentially a strategy followed by Neal & Hinton (1998)
and Mairal et al. (2010) in the respective contexts of
EM and sparse coding algorithms. This would be par-
ticularly important for processing sparse datasets with
a large number of features, where storing (dense) in-
formation about the past surrogates is cumbersome.
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