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Abstract

In the theory of compressed sensing (CS), the
sparsity ‖x‖0 of the unknown signal x ∈ Rp
is commonly assumed to be a known parame-
ter. However, it is typically unknown in prac-
tice. Due to the fact that many aspects of
CS depend on knowing ‖x‖0, it is important
to estimate this parameter in a data-driven
way. A second practical concern is that ‖x‖0
is a highly unstable function of x. In partic-
ular, for real signals with entries not exactly
equal to 0, the value ‖x‖0 = p is not a useful
description of the effective number of coordi-
nates. In this paper, we propose to estimate a
stable measure of sparsity s(x) := ‖x‖21/‖x‖22,
which is a sharp lower bound on ‖x‖0. Our
estimation procedure uses only a small num-
ber of linear measurements, does not rely on
any sparsity assumptions, and requires very
little computation. A confidence interval for
s(x) is provided, and its width is shown to
have no dependence on the signal dimension
p. Moreover, this result extends naturally to
the matrix recovery setting, where a soft ver-
sion of matrix rank can be estimated with
analogous guarantees. Finally, we show that
the use of randomized measurements is essen-
tial to estimating s(x). This is accomplished
by proving that the minimax risk for estimat-
ing s(x) with deterministic measurements is
large when n� p.

1. Introduction

The central problem of compressed sensing (CS) is to
estimate an unknown signal x ∈ Rp from n linear mea-
surements y = (y1, . . . , yn) given by

y = Ax+ ε, (1)
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where A ∈ Rn×p is a user-specified measurement ma-
trix, ε ∈ Rn is a random noise vector, and n is much
smaller than the signal dimension p. During the last
several years, the theory of CS has drawn widespread
attention to the fact that this seemingly ill-posed prob-
lem can be solved reliably when x is sparse — in
the sense that the parameter ‖x‖0 := card{j : xj 6= 0}
is much less than p. For instance, if n is approxi-
mately ‖x‖0 log(p/‖x‖0), then accurate recovery can
be achieved with high probability when A is drawn
from a Gaussian ensemble (Donoho, 2006; Candès
et al., 2006). Along these lines, the value of the pa-
rameter ‖x‖0 is commonly assumed to be known in
the analysis of recovery algorithms — even though it
is typically unknown in practice. Due to the funda-
mental role that sparsity plays in CS, this issue has
been recognized as a significant gap between theory
and practice by several authors (Ward, 2009; Eldar,
2009; Malioutov et al., 2008). Nevertheless, the liter-
ature has been relatively quiet about the problems of
estimating this parameter and quantifying its uncer-
tainty.

1.1. Motivations and the role of sparsity

At a conceptual level, the problem of estimating ‖x‖0
is quite different from the more well-studied prob-
lems of estimating the full signal x or its support set
S := {j : xj 6= 0}. The difference arises from sparsity
assumptions. On one hand, a procedure for estimating
‖x‖0 should make very few assumptions about sparsity
(if any). On the other hand, methods for estimating
x or S often assume that a sparsity level is given, and
then impose this value on the solution x̂ or Ŝ. Con-
sequently, a simple plug-in estimate of ‖x‖0, such as

‖x̂‖0 or card(Ŝ), may fail when the sparsity assump-

tions underlying x̂ or Ŝ are invalid.

To emphasize that there are many aspects of CS that
depend on knowing ‖x‖0, we provide several examples
below. Our main point here is that a method for esti-
mating ‖x‖0 is valuable because it can help to address
a broad range of issues.
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• Modeling assumptions. One of the core mod-
eling assumptions invoked in applications of CS
is that the signal of interest has a sparse rep-
resentation. Likewise, the problem of checking
whether or not this assumption is supported by
data has been an active research topic, partic-
ularly in in areas of face recognition and image
classification (Rigamonti et al., 2011; Shi et al.,

2011). In this type of situation, an estimate ‖̂x‖0
that does not rely on any sparsity assumptions is
a natural device for validating the use of sparse
representations.

• The number of measurements. If the choice
of n is too small compared to the “critical” num-
ber n∗(x) := ‖x‖0 log(p/‖x‖0), then there are
known information-theoretic barriers to the ac-
curate reconstruction of x (Arias-Castro et al.,
2011). At the same time, if n is chosen to be much
larger than n∗(x), then the measurement process
is wasteful, as there are known algorithms that
can reliably recover x with approximately n∗(x)
measurements (Davenport et al., 2011).

To deal with the selection of n, a sparsity esti-

mate ‖̂x‖0 may be used in two different ways, de-
pending on whether measurements are collected
sequentially, or in a single batch. In the sequential
case, an estimate of ‖x‖0 can be computed from
a set of “preliminary” measurements, and then

the estimated value ‖̂x‖0 determines how many
additional measurements should be collected to
recover the full signal. Also, it is not always nec-
essary to take additional measurements, since the
preliminary set may be re-used to compute x̂ (as
discussed in Section 5). Alternatively, if all of the
measurements must be taken in one batch, the

value ‖̂x‖0 can be used to certify whether or not
enough measurements were actually taken.

• The measurement matrix. Two of the most
well-known design characteristics of the matrix A
are defined explicitly in terms of sparsity. These
are the restricted isometry property of order k
(RIP-k), and the restricted null-space property of
order k (NSP-k), where k is a presumed upper
bound on the sparsity level of the true signal.
Since many recovery guarantees are closely tied
to RIP-k and NSP-k, a growing body of work has
been devoted to certifying whether or not a given
matrix satisfies these properties (d’Aspremont &
El Ghaoui, 2011; Juditsky & Nemirovski, 2011;
Tang & Nehorai, 2011). When k is treated as
given, this problem is already computationally
difficult. Yet, when the sparsity of x is unknown,

we must also remember that such a “certificate”
is not meaningful unless we can check that k is
consistent with the true signal.

• Recovery algorithms. When recovery al-
gorithms are implemented, the sparsity level
of x is often treated as a tuning parame-
ter. For example, if k is a presumed bound
on ‖x‖0, then the Orthogonal Matching Pur-
suit algorithm (OMP) is typically initialized to
run for k iterations. A second example is
the Lasso algorithm, which computes the so-
lution x̂ ∈ argmin{‖y −Av‖22 + λ‖v‖1 : v ∈ Rp},
for some choice of λ ≥ 0 . The sparsity of x̂ is
determined by the size of λ, and in order to se-
lect the appropriate value, a family of solutions
is examined over a range of λ values. In the case

of either OMP or Lasso, a sparsity estimate ‖̂x‖0
would reduce computation by restricting the pos-
sible choices of λ or k, and it would also ensure
that the chosen values conform to the true signal.

1.2. An alternative measure of sparsity

Despite the important theoretical role of the param-
eter ‖x‖0 in many aspects of CS, it has the practical
drawback of being a highly unstable function of x. In
particular, for real signals x ∈ Rp whose entries are not
exactly equal to 0, the value ‖x‖0 = p is not a useful
description of the effective number of coordinates.

In order to estimate sparsity in a way that accounts
for the instability of ‖x‖0, it is desirable to replace
the `0 norm with a “soft” version. More precisely,
we would like to identify a function of x that can be
interpreted like ‖x‖0, but remains stable under small
perturbations of x. A natural quantity that serves this
purpose is the numerical sparsity

s(x) :=
‖x‖21
‖x‖22

, (2)

which always satisfies 1 ≤ s(x) ≤ p for any non-zero
x. Although the ratio ‖x‖21/‖x‖22 appears sporadically
in different areas (Tang & Nehorai, 2011; Hurley &
Rickard, 2009; Hoyer, 2004; Lopes et al., 2011), it does
not seem to be well known as a sparsity measure in CS.

A key property of s(x) is that it is a sharp lower bound
on ‖x‖0 for all non-zero x,

s(x) ≤ ‖x‖0, (3)

which follows from applying the Cauchy-Schwarz in-
equality to the relation ‖x‖1 = 〈x, sgn(x)〉. (Equality
in (3) is attained iff the non-zero coordinates of x are
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equal in magnitude.) We also note that this inequal-
ity is invariant to scaling of x, since s(x) and ‖x‖0 are
individually scale invariant. In the opposite direction,
it is easy to see that the only continuous upper bound
on ‖x‖0 is the trivial one: If a continuous function f
satisfies ‖x‖0 ≤ f(x) ≤ p for all x in some open subset
of Rp, then f must be identically equal to p. (There is
a dense set of points where ‖x‖0 = p.) Therefore, we
must be content with a continuous lower bound.

The fact that s(x) is a sensible measure of sparsity
for non-idealized signals is illustrated in Figure 1. In
essence, if x has k large coordinates and p − k small
coordinates, then s(x) ≈ k, whereas ‖x‖0 = p. In
the left panel, the sorted coordinates of three different
vectors in R100 are plotted. The value of s(x) for each
vector is marked with a triangle on the x-axis, which
shows that s(x) adapts well to the decay profile. This
idea can be seen in a more geometric way in the mid-
dle and right panels, which plot the the sub-level sets
Sc := {x ∈ Rp : s(x) ≤ c} with c ∈ [1, p]. When c ≈ 1,
the vectors in Sc are closely aligned with the coordi-
nate axes, and hence contain one effective coordinate.
As c ↑ p, the set Sc includes more dense vectors until
Sp = Rp.

1.3. Related work.

Some of the challenges described in Section 1.1 can be
approached with the general tools of cross-validation
(CV) and empirical risk minimization (ERM). This
approach has been used to select various parameters,
such as the number of measurements n (Malioutov
et al., 2008; Ward, 2009), the number of OMP it-
erations k (Ward, 2009), or the Lasso regularization
parameter λ (Eldar, 2009). At a high level, these

methods consider a collection of (say m) solutions
x̂(1), . . . , x̂(m) obtained from different values θ1, . . . , θm
of some tuning parameter of interest. For each so-
lution, an empirical error estimate êrr(x̂(j)) is com-
puted, and the value θj∗ corresponding to the smallest
êrr(x̂(j)) is chosen.

Although methods based on CV/ERM share common
motivations with our work here, these methods dif-
fer from our approach in several ways. In particular,
the problem of estimating a soft measure of sparsity,
such as s(x), has not been considered from that angle.
Also, the cited methods do not give any theoretical
guarantees to ensure that the estimated sparsity level
is close to the true one. Note that even if an estimate
x̂ has small error ‖x̂−x‖2, it is not necessary for ‖x̂‖0
to be close to ‖x‖0. This point is especially relevant
when one is interested in identifying a set of important
variables or interpreting features.

From a computational point view, the CV/ERM ap-
proaches can also be costly — since x̂(j) is typically
computed from a separate optimization problem for
for each choice of the tuning parameter. By contrast,
our method for estimating s(x) requires no optimiza-
tion, and can be computed easily from just a small set
of preliminary measurements.

1.4. Our contributions.

The primary contribution of this paper is our treat-
ment of unknown sparsity as a parameter estimation
problem. Specifically, we identify a stable measure of
sparsity that is relevant to CS, and propose an efficient
estimator with provable guarantees. Secondly, we are
not aware of any other papers that have demonstrated
a distinction between random and deterministic mea-
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Figure 1. Characteristics of s(x). Left panel: Three vectors (red, blue, black) in R100 have been plotted with their
coordinates in order of decreasing size (maximum entry normalized to 1). Two of the vectors have power-law decay
profiles, and one is a dyadic vector with exactly 45 positive coordinates (red: xi ∝ i−1, blue: dyadic, black: xi ∝ i−1/2).
Color-coded triangles on the bottom axis indicate that the s(x) value represents the “effective” number of coordinates.
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surements with regard to unknown sparsity (as in Sec-
tion 4).

The remainder of the paper is organized as follows. In
Section 2, we show that a principled choice of n can
be made if s(x) is known. This is accomplished by
formulating a recovery condition for the Basis Pursuit
algorithm directly in terms of s(x). Next, in Section 3,
we propose an estimator ŝ(x), and derive a dimension-
free confidence interval for s(x). The procedure is also
shown to extend to the problem of estimating a soft
measure of rank for matrix-valued signals. In Section 4
we show that the use of randomized measurements is
essential to estimating s(x). Finally, we present simu-
lations in Section 5 to validate the consequences of our
theoretical results. Due to space constraints, we defer
all of our proofs to the supplement.

Notation. We define ‖x‖qq :=
∑p
j=1 |xj |q for any q >

0 and x ∈ Rp, which only corresponds to a genuine
norm for q ≥ 1. For sequences of numbers an and bn,
we write an . bn or an = O(bn) if there is an absolute
constant c > 0 such that an ≤ cbn for all large n. If
an/bn → 0, we write an = o(bn). For a matrix M , we

define the Frobenius norm ‖M‖F =
√∑

i,jM
2
ij , the

matrix `1-norm ‖M‖1 =
∑
i,j |Mij |. Finally, for two

matrices A and B of the same size, we define the inner
product 〈A,B〉 := tr(A>B).

2. Recovery conditions in terms of s(x)

The purpose of this section is to present a simple
proposition that links s(x) with recovery conditions
for the Basis Pursuit algorithm (BP). This is an im-
portant motivation for studying s(x), since it implies
that if s(x) can be estimated well, then n can be cho-
sen appropriately. In other words, we offer an adaptive
choice of n.

In order to explain the connection between s(x) and
recovery, we first recall a standard result (Candès
et al., 2006) that describes the `2 error rate of the
BP algorithm. Informally, the result assumes that
the noise is bounded as ‖ε‖2 ≤ ε0 for some con-
stant ε0 > 0, the matrix A ∈ Rn×p is drawn from
a suitable ensemble, and n satisfies n & T log(pe/T )
for some T ∈ {1, . . . , p} with e = exp(1). The
conclusion is that with high probability, the solution
x̂ ∈ argmin{‖v‖1 : ‖Av − y‖2 ≤ ε0, v ∈ Rp} satisfies

‖x̂− x‖2 ≤ c1 ε0 + c2
‖x−xT ‖1√

T
, (4)

where xT ∈ Rp is the best T -term approximation1 to

1The vector xT ∈ Rp is obtained by setting to 0 all
coordinates of x except the T largest ones (in magnitude).

x, and c1, c2 > 0 are constants. This bound is a fun-
damental point of reference, since it matches the mini-
max optimal rate under certain conditions (Candès,
2006), and applies to all signals x ∈ Rp (rather
than just k-sparse signals). Additional details may be
found in (Cai et al., 2010) [Theorem 3.3], (Vershynin,
2010) [Theorem 5.65].

We now aim to answer the question, “If s(x) were
known, how large should n be in order for x̂ to be close
to x?” Since the bound (4) assumes n & T log(pe/T ),
our question amounts to choosing T . For this purpose,
it is natural to consider the relative `2 error

‖x̂−x‖2
‖x‖2 ≤ c1 ε0

‖x‖2 + c2
1√
T

‖x−xT ‖1
‖x‖2 , (5)

so that the T -term approximation error 1√
T

‖x−xT ‖1
‖x‖2

does not depend on the scale of x (i.e. invariant under
x 7→ cx with c 6= 0).

Proposition 1 below shows how knowledge of s(x) al-
lows us to control the approximation error. Specifi-
cally, the result shows that the condition T & s(x) is
necessary for the approximation error to be small, and
the condition T & s(x) log(p) is sufficient.

Proposition 1. Let x ∈ Rp \{0}, and T ∈ {1, . . . , p}.
The following statements hold for any c0, ε > 0.

(i) If the T -term approximation error satisfies
1√
T

‖x−xT ‖1
‖x‖2 ≤ ε, then

T ≥ 1
(1+ε)2 · s(x).

(ii) If T ≥ c0 s(x) log(p), then the T -term approxi-
mation error satisfies

1√
T

‖x−xT ‖1
‖x‖2 ≤ 1√

c0 log(p)

(
1− T

p

)
.

In particular, if T ≥ 2s(x) log(p) with p ≥ 100,
then

1√
T

‖x−xT ‖1
‖x‖2 ≤ 1

3 .

Remarks. A notable feature of these bounds is
that they hold for all non-zero signals. In our sim-
ulations in Section 5, we show that choosing n =
2dŝ(x)e log(p/dŝ(x)e) based on an estimate ŝ(x) leads
to accurate reconstruction across many sparsity levels.

3. Estimation results for s(x)

In this section, we give a simple procedure to estimate
s(x) for any x ∈ Rp \ {0}. The procedure uses a small
number of measurements, makes no sparsity assump-
tions, and requires very little computation. The mea-
surements we prescribe may also be re-used to recover
the full signal after s(x) has been estimated.
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The results in this section are based on the measure-
ment model (1), written in scalar notation as

yi = 〈ai, x〉+ εi, i = 1, . . . , n. (6)

We assume only that the noise variables εi are inde-
pendent, and bounded by |εi| ≤ σ0, for some constant
σ0 > 0. No additional structure on the noise is needed.

3.1. Sketching with stable laws

Our estimation procedure derives from a technique
known as sketching in the streaming computation lit-
erature (Indyk, 2006). Although this area deals with
problems that have mathematical connections to CS,
the use of sketching techniques in CS does not seem to
be well known.

For any q ∈ (0, 2], the sketching technique offers a
way to estimate ‖x‖q from a set of randomized lin-
ear measurements. In our approach, we estimate
s(x) = ‖x‖21/‖x‖22 by estimating ‖x‖1 and ‖x‖2 from
separate sets of measurements. The core idea is to
generate the measurement vectors ai ∈ Rp using sta-
ble laws (Zolotarev, 1986).

Definition 1. A random variable V has a symmet-
ric stable distribution if its characteristic function is
of the form E[exp(

√
−1tV )] = exp(−|γt|q) for some

q ∈ (0, 2] and some γ > 0. We denote the distribu-
tion by V ∼ Sq(γ), and γ is referred to as the scale
parameter.

The most well-known examples of symmetric stable
laws are the cases of q = 2, 1, namely the Gaussian
distribution N(0, γ2) = S2(γ), and the Cauchy dis-
tribution C(0, γ) = S1(γ). To fix some notation, if
a vector a1 = (a1,1, . . . , a1,p) ∈ Rp has i.i.d. entries
drawn from Sq(γ), we write a1 ∼ Sq(γ)⊗p. The con-
nection with `q norms hinges on the following property
of stable distributions (Zolotarev, 1986).

Lemma 1. Suppose x ∈ Rp, and a1 ∼ Sq(γ)⊗p with
parameters q ∈ (0, 2] and γ > 0. Then, the random
variable 〈x, a1〉 is distributed according to Sq(γ‖x‖q).

Using this fact, if we generate a set of i.i.d. vectors
a1, . . . , an from Sq(γ)⊗p and let yi = 〈ai, x〉, then
y1, . . . , yn is an i.i.d.sample from Sq(γ‖x‖q). Hence, in
the special case of noiseless linear measurements, the
task of estimating ‖x‖q is equivalent to a well-studied
univariate problem: estimating the scale parameter of
a stable law from an i.i.d. sample.

When the yi are corrupted with noise, our analysis
shows that standard estimators for scale parameters
are only moderately affected. The impact of the noise
can also be reduced via the choice of γ when generating

ai ∼ Sq(γ)⊗p. The γ parameter controls the “energy
level” of the measurement vectors ai. (Note that in the
Gaussian case, if a1 ∼ S2(γ)⊗p, then E‖a1‖22 = γ2p.)
In our results, we leave γ as a free parameter to show
how the effect of noise is reduced as γ is increased.

3.2. Estimation procedure for s(x)

Two sets of measurements are used to estimate s(x),
and we write the total number as n = n1 + n2. The
first set is obtained by generating i.i.d. measurement
vectors from a Cauchy distribution,

ai ∼ C(0, γ)⊗p, i = 1, . . . , n1. (7)

The corresponding values yi are then used to estimate
‖x‖1 via the statistic

T̂1 := 1
γmedian(|y1|, . . . , |yn1

|), (8)

which is a standard estimator of the scale parameter of
the Cauchy distribution (Fama & Roll, 1971; Li et al.,
2007). Next, a second set of i.i.d.measurement vectors
are generated from a Gaussian distribution

ai ∼ N(0, γ2)⊗p, i = n1 + 1, . . . , n1 +n2. (9)

In this case, the associated yi values are used to com-
pute an estimate of ‖x‖22 given by

T̂ 2
2 := 1

γ2n2
(y2n1+1 + · · ·+ y2n1+n2

), (10)

which is a natural estimator of the variance of a Gaus-
sian distribution. Combining these two statistics, our
estimate of s(x) = ‖x‖21/‖x‖22 is defined as

ŝ(x) := T̂ 2
1

/
T̂ 2
2 . (11)

3.3. Confidence interval.

The following theorem describes the relative error∣∣ ŝ(x)
s(x)−1

∣∣ via an asymptotic confidence interval for s(x).

Our result is stated in terms of the noise-to-signal ratio

ρ := σ0

γ‖x‖2 ,

and the standard Gaussian quantile z1−α, which satis-
fies Φ(z1−α) = 1− α for any coverage level α ∈ (0, 1).
In this notation, the following parameters govern the
width of the confidence interval,

ηn(α, ρ) := z1−α√
n

+ ρ and δn(α, ρ) := πz1−α√
2n

+ ρ,

and we write these simply as δn and ηn. As is standard
in high-dimensional statistics, we allow all of the model
parameters p, x, σ0 and γ to vary implicitly as func-
tions of (n1, n2), and let (n1, n2, p)→∞. For simplic-
ity, we choose to take measurement sets of equal sizes,
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n1 = n2 = n/2, and we place a mild constraint on ρ,
namely ηn(α, ρ) < 1. (Note that standard algorithms
such as Basis Pursuit are not expected to perform well
unless ρ � 1, as is clear from the bound (5).) Lastly,
we make no restriction on the growth of p/n, which
makes ŝ(x) well-suited to high-dimensional problems.

Theorem 1. Let α ∈ (0, 1/2) and x ∈ Rp \ {0}. As-
sume that ŝ(x) is constructed as above, and that the
model (6) holds. Suppose also that n1 = n2 = n/2 and
ηn(α, ρ) < 1 for all n. Then as (n, p)→∞, we have

P
(√

ŝ(x)
s(x) ∈

[
1−δn
1+ηn

, 1+δn1−ηn
])
≥ (1− 2α)2 + o(1). (12)

Remarks. The most important feature of this result
is that the width of the confidence interval does not
depend on the dimension or sparsity of the unknown
signal. Concretely, this means that the number of mea-
surements needed to estimate s(x) to a fixed precision
is only O(1) with respect to the size of the problem.
Our simulations in Section 5 also show that the relative
error of ŝ(x) does not depend on dimension or sparsity
of x. Lastly, when δn and ηn are small, we note that
the relative error |ŝ(x)/s(x) − 1| is at most of order
(n−1/2 + ρ) with high probability, which follows from

the simple Taylor expansion (1+ε)2

(1−ε)2 = 1 + 4ε+ o(ε).

3.4. Estimating rank and sparsity of matrices

The framework of CS naturally extends to the problem
of recovering an unknown matrix X ∈ Rp1×p2 on the
basis of the measurement model

y = A(X) + ε, (13)

where y ∈ Rn, A is a user-specified linear operator
from Rp1×p2 to Rn, and ε ∈ Rn is a vector of noise
variables. In recent years, many researchers have ex-
plored the recovery of X when it is assumed to have
sparse or low rank structure. We refer to the pa-
pers (Candès & Plan, 2011; Chandrasekaran et al.,
2010) for descriptions of numerous applications. In
analogy with the previous section, the parameters
rank(X) or ‖X‖0 play important theoretical roles, but
are very sensitive to perturbations of X. Likewise, it
is of basic interest to estimate stable measures of rank
and sparsity for matrices. Since the sparsity analogue
s(X) := ‖X‖21/‖X‖2F can be estimated as a straight-
forward extension of Section 3.2, we restrict our atten-
tion to the more distinct problem of rank estimation.

3.4.1. The rank of semidefinite matrices

In the context of recovering a low-rank positive
semidefinite matrix X ∈ Sp×p+ \{0}, the quantity

rank(X) plays the role of ‖x‖0 in the recovery of a
sparse vector. If we let λ(X) ∈ Rp+ denote the vec-
tor of ordered eigenvalues of X, the connection can
be made explicit by writing rank(X) = ‖λ(X)‖0. As
in Section 3.2, our approach is to consider a robust
alternative to the rank. Motivated by the quantity
s(x) = ‖x‖21

/
‖x‖22 in the vector case, we now consider

r(X) :=
‖λ(X)‖21
‖λ(X)‖22

= tr(X)2

‖X‖2F

as our measure of the effective rank for non-zero X,
which always satisfies 1 ≤ r(X) ≤ p. The quan-
tity r(X) has appeared elsewhere as a measure of
rank (Lopes et al., 2011; Tang & Nehorai, 2010), but
is less well known than other rank relaxations, such as
the numerical rank ‖X‖2F

/
‖X‖2op (Rudelson & Ver-

shynin, 2007). The relationship between r(X) and
rank(X) is completely analogous to s(x) and ‖x‖0.
Namely, we have a sharp, scale-invariant inequality

r(X) ≤ rank(X).

The quantity r(X) is more stable than rank(X) in the
sense that if X has k large eigenvalues, and p−k small
eigenvalues, then r(X) ≈ k, whereas rank(X) = p.

Our procedure for estimating r(X) is based on esti-
mating tr(X) and ‖X‖2F from separate sets of measure-
ments. The semidefinite condition is exploited through
the basic relation 〈Ip×p, X〉 = tr(X) = ‖λ(X)‖1. To
estimate tr(X), we use n1 linear measurements of the
form

yi = 〈γIp×p, X〉+ εi, i = 1, . . . , n1 (14)

and compute the estimator T̆1 := 1
γ

1
n1

∑n1

i=1 yi, where
γ > 0 is again the measurement energy parameter.
Next, to estimate ‖X‖2F , we note that if Z ∈ Rp×p has
i.i.d. N(0, 1) entries, then E〈X,Z〉2 = ‖X‖2F . Hence,
if we collect n2 additional measurements of the form

yi = 〈γZi, X〉+ εi, i = n1 + 1, . . . , n1 + n2, (15)

where the Zi ∈ Rp×p are independent random matrices
with i.i.d. N(0, 1) entries, then a suitable estimator
of ‖X‖2F is T̆ 2

2 := 1
γ2n2

∑n1+n2

i=n1+1 y
2
i . Combining these

statistics, we propose

r̂(X) := T̆ 2
1

/
T̆ 2
2

as our estimate of r(X). In principle, this procedure
can be refined by using the measurements (14) to esti-
mate the noise distribution, but we omit these details.
Also, we retain the assumptions of the previous sec-
tion, and assume only that the εi are independent and
bounded by |εi| ≤ σ0. The next theorem shows that
the estimator r̂(X) mirrors ŝ(X) as in Theorem 1, but
with ρ being replaced by % := σ0

/
(γ‖X‖F ), and with

ηn being replaced by ζn = ζn(%, α) := z1−α/
√
n+ %.
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Theorem 2. Let α ∈ (0, 1/2) and X ∈ Sp×p+ \ {0}.
Assume that r̂(X) is constructed as above, and that the
model (13) holds. Suppose also that n1 = n2 = n/2
and ζn(α, ρ) < 1 for all n. Then as (n, p) → ∞, we
have

P
(√

r̂(X)
r(X) ∈

[
1−%
1+ζn

, 1+%
1−ζn

])
≥ 1− 2α+ o(1). (16)

Remarks. In parallel with Theorem 1, this confi-
dence interval has the valuable property that its width
does not depend on the rank or dimension of X, but
merely on the noise-to-signal ratio % = σ0

/
(γ‖X‖F ).

The relative error |r̂(X)/r(X)− 1| is at most of order
(n−1/2 + %) with high probability when ζn is small.

4. Deterministic measurement matrices

The problem of constructing deterministic matrices A
with good recovery properties (e.g. RIP-k or NSP-k)
has been a longstanding topic within CS. Since our
procedure in Section 3.2 selects A at random, it is
natural to ask if randomization is essential to the esti-
mation of unknown sparsity. In this section, we show
that estimating s(x) with a deterministic matrix A
leads to results that are inherently different from our
randomized procedure.

At an informal level, the difference between random
and deterministic matrices makes sense if we think of
the estimation problem as a game between nature and
a statistician. Namely, the statistician first chooses a
matrix A ∈ Rn×p and an estimation rule δ : Rn → R.
(The function δ takes y ∈ Rn as input and returns
an estimate of s(x).) In turn, nature chooses a sig-
nal x ∈ Rp \ {0}, with the goal of maximizing the
statistician’s error. When the statistician chooses A
deterministically, nature has the freedom to adversar-
ially select an x that is ill-suited to the fixed matrix
A. By contrast, if the statistician draws A at random,
then nature does not know what value A will take, and
therefore has less knowledge to choose a “bad” signal.

In the case of noiseless random measurements,
Theorem 1 implies that our particular estimation
rule ŝ(x) can achieve a relative error of order
|ŝ(x)/s(x)− 1| = O(n−1/2) with high probability for
any non-zero x. (cf. Remarks for Theorem 1.) Our
aim is now to show that for noiseless deterministic
measurements, all estimation rules δ have a worst-case
relative error |δ(Ax)/s(x)−1| that is much larger than
than n−1/2. In other words, there is always a choice of
x that can defeat a deterministic procedure, whereas
ŝ(x) is likely to succeed under any choice of x.

In stating the following result, we note that it involves
no randomness whatsoever — since we assume that

the observed measurements y = Ax are noiseless and
obtained from a deterministic matrix A.

Theorem 3. The minimax relative error for estimat-
ing s(x) from noiseless deterministic measurements
y = Ax satisfies

inf
A∈Rn×p

inf
δ:Rn→R

sup
x∈Rp\{0}

∣∣∣ δ(Ax)s(x) − 1
∣∣∣ ≥ 1−(n+1)/p

2(1+2
√

2 log(2p))2
.

Remarks. Under the typical high-dimensional sce-
nario where there is some κ ∈ (0,∞) for which
p/n→ κ as (n, p) → ∞, we have the lower bound

| δ(Ax)s(x) − 1| & 1
log(n) , which is much larger than n−1/2.

5. Simulations

Relative error of ŝ(x). To validate the conse-
quences of Theorem 1, we study how the relative error
|ŝ(x)/s(x) − 1| depends on the parameters p, ρ, and
s(x). We generated measurements y = Ax + ε under

a broad range of parameter settings, with x ∈ R104 in
most cases. Note that although p = 104 is a very large
dimension, it is not at all extreme from the viewpoint
of applications (e.g. a megapixel image with p = 106).
Details regarding parameter settings are given below.
As anticipated by Theorem 1, the left and right panels
in Figure 2 show that the relative error has no notice-
able dependence on p or s(x). The middle panel shows
that for fixed n1 + n2, the relative error grows moder-
ately with ρ = σ0

γ‖x‖2 . Lastly, our theoretical bounds

on |ŝ(x)/s(x) − 1| conform to the empirical curves in
the case of low noise (ρ = 10−2).

Reconstruction of x based on ŝ(x). For the
problem of choosing n, we considered the choice of
n̂ := 2dŝ(x)e log(p/dŝ(x)e). The simulations show that
n̂ adapts to the structure of the true signal, and
is also sufficiently large for accurate reconstruction.
First, to compute ŝ(x), we followed Section 3.2, and
drew initial measurement sets of Cauchy and Gaus-
sian vectors with n1 = n2 = 500 and γ = 1. If
it happened to be the case that 500 ≥ n̂, then re-
construction was performed using only the initial 500
Gaussian measurements. Alternatively, if n̂ > 500,
then (n̂ − 500) additional measurements vectors ai
were drawn from N(0, n̂−1/2Ip×p) for reconstruction.
Further details are given below. Figure 3 illustrates
the results for three power-law signals in R104 with
x[i] ∝ i−ν , ν = 0.7, 1.0, 1.3 and ‖x‖1 = 1 (corre-
sponding to s(x) = 823, 58, 11). In each panel, the
coordinates of x are plotted in black, and those of x̂
are plotted in red. Clearly, there is good qualitative
agreement in all cases. From left to right, the value of
n̂ = 2dŝ(x)e log(p/dŝ(x)e) was 4108, 590, and 150.
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Settings for relative error of ŝ(x) (Figure 2). For
each parameter setting labeled in the figures, we let
n1 = n2 and averaged |ŝ(x)/s(x)− 1| over 200 prob-
lem instances of y = Ax + ε. In all cases, the matrix
A was chosen according to (7) and (9) with γ = 1 and
εi ∼ Uniform[−σ0, σ0]. We always chose the normal-
ization ‖x‖2 = 1, and γ = 1 so that ρ = σ0. (In the
left and right panels, ρ = 10−2.) For the left and mid-
dle panels, all signals have the decay profile x[i] ∝ i−1.
For the right panel, the values s(x) = 2, 58, 4028, and
9878 were obtained using decay profiles xi ∝ i−ν with
ν = 2, 1, 1/2, 1/10. In the left and right panels, we
chose p = 104 for all curves. A theoretical bound on
|ŝ(x)/s(x)−1| in black was computed from Theorem 1
with α = 1

2 − 1
2
√
2
. (This bound holds with probabil-

ity at least 1/2, and hence may be reasonably plotted
against the average of |ŝ(x)/s(x)− 1|.)
Settings for reconstruction (Figure 3). We com-
puted reconstructions using the SPGL1 solver (van den
Berg & Friedlander, 2007; 2008) for the BP prob-
lem x̂ ∈ argmin{‖v‖1 : ‖Av − y‖2 ≤ ε0, v ∈ Rp}, with

the choice ε0 = σ0
√
n̂ being based on i.i.d. noises

εi ∼ Uniform[−σ0, σ0] and σ0 = 0.001. When re-using
the first 500 Gaussian measurements, we re-scaled the
vectors ai and the values yi by 1/

√
n̂ so that the ma-

trix A ∈ Rn̂×p would be expected to satisfy the RIP
property. For each choice of ν = 0.7, 1.0, 1.3, we gen-
erated 25 problem instances and plotted the vector x̂
corresponding to the median of ‖x̂ − x‖2 over the 25
runs (so that the plots reflect typical performance).
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Figure 2. Performance of ŝ(x) as a function of p, ρ, s(x), and number of measurements.
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Figure 3. Signal recovery after choosing n based on ŝ(x). True signal x in black, and x̂ in red.
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