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A. Proof of Theorem 1

Before proceeding, we recall a general form of McDi-
armid’s inequality.

Theorem 7 (McDiarmid, 1989, Corollary 6.10). Let
f: Z™ = R be a measurable function for which there
exist constants {o;}7 =1 such that, for any i € [n],
Z1.i-1 € 271 and ziy 2 € Z,

- E[f(Z) | Z1:i—1, Z;H < Q.

[E[f(Z) | Z1:i-1, 2]

Then, for any e > 0,
—2¢2
PU@) - Bl > <o (o).
i=1 %

Note that the above does not require independence.
To prove Theorem 1, it therefore suffices to bound
> a?. Kontorovich & Ramanan (2008, Remark
2.1) showed that, if f is c-Lipschitz with respect to
the Hamming metric, then >  a? < nc? H(-')ZHiO
(Though the published results only prove this for
countable spaces, Kontorovich later extended this
analysis to continuous spaces in his thesis (2007).) If
f is c-Lipschitz with respect to the normalized Ham-
ming metric, then > ;" a? < 2 H@Z”io /n, which
completes the proof.

B. Proof of Corollary 1

We Dbegin by establishing that E[L(h,Z')] =
E[L(h,Z)]. We use | € [m] to iterate over examples.
Accordingly, let Z l’ ; denote the i*® variable in example
Z). Recall that each Z] is independent and identically
distributed according to P(Z). By linearity of expec-
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tation, we have that

1 m n
E[L(h,Z') 72 Y, hi ))]
mn =1 1=1
1 & 1 & , ,
= EZE EZE(YM,hi(XZ))
=1 =1
1 & 1 &
E;E HZE (Yi, hi(X ]
= E[L(h, Z)].

To complete the proof, we simply apply Theorem 2

to E[L(h, Z')], using the fact that [|©], .| = O]
because the dependency matrix @7 . is block diagonal.

C. Proof of Lemma 1

By definition, for any z,z’ € Z™ that differ only at the
i*® coordinate,

D 1w by (x)) = €y ()]

= [€(yi, hi(x)) = L(y;, hi(x'))]
> 16ys g (x)) — Ly by ()]

J#i

Focusing on the first term, we have via the first ad-
missibility condition that

[€(yi, hi(x)) = £(y;, hi(xX))]
< |l(yi, hi(x)) — €(yi, hi(x'))]
+ [0y hi(x)) = €(yi, hi(x))]
< (yi, hi(x)) = €(yi, hi(x"))| + M.



Collective Stability in Structured Prediction: Appendix

Combining this with the second term, we have that

sup Z |€ yi, h

he?—t

— Uy, hi(x)]

< M+supZ|€ (Y5, hj (x)) = £(y;, hi (X))

heh

j=1
<M+ Asup Y || (x) — hi(x')]],
heh =
= M + Asup ||h(x) — h(x')]],
heh

<M+ A8,

where we have used the second admissibility condition
and uniform collective stability.

D. Proof of Lemma 2

Let z,z' € Z"™ be two realizations that differ only
at a single coordinate. Without loss of generality,
since |®(F,z) — ®(F,2')| = |®(F,z') — O(F,z)|, as-
sume that ®(F,z) > ®(F,2z’). By definition, we have
that

|<I)(]:’Z) - (I)(]:7Z/)|

= |sup{F — F(z)} — sup {F/ - F/(Z/)}‘
feF f'er

IN

sup F' — F(z)
fer

= |Sup — va 1

fE]-'
sup L 7() - F@)l, < 2

fer n n

—~F+F(2)

IN

The last inequality follows from uniform collective sta-
bility. We now have that ®(F,Z) satisfies the pre-
conditions of Theorem 1, with ¢ = . Recalling that
®(F) = E[®(F,Z)], we therefore have that

_ —2ne
P{®(F,Z)— P(F) >e; <ex
{®(F,Z) - B(F) > ¢} < p<ﬂ2||@|| )

Assigning ¢ probability to this event and solving for €
completes the proof.

E. Proof of Lemma 3

For the following, we use variables Z and Z’ to distin-
guish between realizations of the training and testing
sets respectively. Using the definition of ®(F) and

Jensen’s inequality, we have that

(F)=E ]sctelg]E[F(Z')] - F(Z)
<E |sup F(Z') — F(Z)
fer

Now define a set of Rademacher variables {c;} , and

let
Z ifo;,=1,
(ESER S
7' ifo; =—1,
and
T(oy2 2 Hoi=1
Z if g; = —1.

Because Z 1l Z’ and P(Z P(Z'), it follows that
i)l

) =
P(T"(o

P(2,7) = B(T(0:) | o) 5:)1 50, by symme.
try,
B(F)<E ;1611; Z £i(2Z) = fi( ]
_E E ;gg;ifﬂ’(am ST aH
" ?EE’W;JZ (@) - 1.(2)
<2E |sup o Zalfb ] = 2% (F),

which completes the proof.

F. Proof of Lemma 4

We begin with a technical lemma, which is a general-
ization of Talagrand’s contraction lemma (Ledoux &
Talagrand, 1991) to vector-valued functions and arbi-
trary norms.

Lemma 10. Let F be a class of functions from a do-
main Z to RE. Let {o;}", be a set of Rademacher
variables. If ¢ : R¥ — R is A-Lipschitz under ||- s for
any p > 1, then, for any z € Z",

n k
E s o(fi(z)| <A)Y E
;gg;ff o(f(z ))] ;

;gg; Uifj(zi)‘| .

Proof. Define a function S, (f) £ i, oio(f(2:)).
Conditioned on &1.,,_1, we know that there must exist



Collective Stability in Structured Prediction: Appendix

two functions f+, f~ € H such that

E lsup Sn(f) ] Ul:n—l]

fer

=E |sup Sp-1(f) + onp(f(2n)) [ 101

fer

Sn1(f) + @(fF(2n))]
[Sn1(f7) = o(f~(2n))]

[Snfl(f—s_) + Snfl(f_)
+ o(f T (z0)) — (f (20))]

< S [Sna () + Sun(f)

A ) = £

where the last line follows from the Lipschitz condition.
For each j € [k], define a variable s,, ; = sgn(f;' (zn) —
f; (2n)), and note that

Hf+(zn) - f_(zn)Hp < Hf+(zn) - f_(zn)Hl

| —

—

DN =

TS S I

k
= " sui (i () = f7 (20))-
Jj=1
This yields

E

sup Sn(f) | 0'1:n—1‘|
feF

k
<3 S () F AN susf ()

Jj=1

k
g Sl - A3 sl (e

k

S ]E sup Snfl(f) + )\Zgnsn,jfj(zn) | O1:n—1

feF =

By induction on n, we therefore have that

k n
E [Sup Su(f)| <E SUP)\ZZUiSi,jfj(Zi)
feF - °

where s; ; disappears because of symmetry. O

The proof of Lemma 4 follows directly from this
lemma, since the second admissibility condition en-
sures that ¢ is A-Lipschitz under the 1-norm. The fact

that A : X" — JA)" is irrelevant. Because Lemma 10
holds for any realization z € Z™, we obtain the (non-
empirical) Rademacher complexity by taking the ex-
pectation over Z.

G. Proof of Lemma 5

Let Aa £ a — a. By Definition 5, for any 7 € [0, 1],
K . . .
T(1-7)5 A} +p(a+7Aa)—p(a) < T(p(a)—¢(a)).

Since @ is, by definition, the unique minimizer of ¢, it
follows that ¢(a + 7Aa) — ¢(a) > 0, so the above in-
equality is preserved when this term is dropped. Thus,
dividing both sides by 7k/2, we have that

[\)

2 2 .
1Aally < (1 =) [|Aally < —~(¢(a) = ¢(a)),
where the left inequality follows from the fact that

(1 — 7) is maximized at 7 = 0.

H. Proof of Lemma 6

Let a £  argming,¢(w,a) and a
argming . 4 p(w’,a’). Without loss of generality, as-
sume that p(w,a) > (W', d’). (If (', d') > p(w,a),
we could state this in terms of w’.) Using Lemma 5,
we have that

/ A

1~ all? < 2 (p(w, ) — ol )
< 2l ) — 9, )
<2

Taking the square root completes the proof.

I. Proof of Lemma 7

Using Cauchy-Schwarz, we have that

|Ew(x,a) — Ew(x',a)]
= [{w,f(x,a)) — ¥(a) — (w,f(x',a)) + ¥(a)|
= |<Wa f(X, a) - f(xla a)>|
< wlly If(x,2) — £(x", )],
< R|f(x,a) — £(x',a)]l,,

because, by definition, |[wl, is uniformly upper-
bounded by R. Note that the features of (x,a) and
(x',a) only differ at any clique involving node i. The
number of such cliques is Q);, which is uniformly upper-
bounded by Q¢, so at most Q¢ features will change.
Further, since the norm of any feature function is, by
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definition, uniformly upper-bounded by B, we have
that

[f(x,a) — £(x',a)l,

= 20| X tli € a) (fulxgnag) = fulx)a,)

teT ||get(G)

2

IN

Z Z ]l{iE(I}Hft(xqaaq)_ft(xfpaq)uz

teT \q€t(G)

<. (> > 11{Z € q} || fe(xq,29)

teT qet(G

ft(xfl’aQ)Hz

which completes the proof.

J. Proof of Lemma 8

We will partition [0, A] into & hypercube cells with
edge length (2¢/v/d). Using multidimensional geom-
etry, one can show the hypercube [0,2¢/v/d]? is in-
scribed in a ball of radius €; therefore, the Euclidean
distance from any point in [0, A]? to the center of the
nearest cell is at most €. To find the value of k that
e-covers [0, A]?, we let k(2¢/v/d)? > A% and solve for
k.

K. Discretization Theorem
The following is a consequence of Massart’s finite class
lemma.

Theorem 8. Let F be a class of functions from Z™
to R™. Foranyn>1andp>1,

R(F,Z) < inf - +e,
and Ty (F) < inf ) 22 Ne(&Fm)
€ n

L. Proof of Lemma 9

The ramp function is defined as

1 for a <0,
ry(a) =1 —a/y for0<a<~,
0 for a > 7.

By definition, r., (hence, ¢,) is bounded by [0,1]; so

for any y,y' € Y and § € Y, |a(y,9) — 1y, §)] < 1,
which establishes the first admissibility condition.

For §,9' € Y, let u £ arg max,,cy., . (¥, ) and v’ =
argmax,cy., ., (y',9'). Without loss of generality,

assume that (y,9) — (u,9) > (y,9') — (v, ¢'). For any
ye€ Y and §,4 €Y, we have that
|(<y7g> - <u,g}>) - (<y7y/> - <ulvg,>)‘
= <y7yA7QI>+< I’gl>7< y>

u, 9)|
<y’@_y>+ <u/ :l)/> < /73)>|

|

<|

=y —u',9-19"
<y =l g -7,
<llg—191

Further, for any a,a’ € R,

l—-a 1-4d 1
Iry(a) —ry(a’)] < ’ - =—la—d|.
v Y Y
Combining these inequalities, we have that
10, 9) = (w91 < (/) 19— 9lly, which es-

tablishes the second admissibility condition.

L.1. Collective Regression

In collective regression, the codomain is a bounded
interval on the real number line. Since the output can
always be shifted and scaled by a constant, we can
assume without loss of generality that ), Yy C [0,1]. A
standard loss function for regression is the quadratic
loss, typically defined as £,(y,9) = (y — 9)2.

Lemma 11. The quadratic loss £ is (1,2)-admissible.

Proof. First, since both ) and J> are upper-bounded

by 1, we have the first admissibility condition. Sec-

ond, note that ¢; is smooth with respect to its sec-

ond argument. Therefore, by the mean value theorem,

there exists a 7 € [0 1] such that, for any y € Y and
9,7 €Y, with Ag 2§ — g,

[6q(y, 9) = La(y, 9] =

[ W, 5+ TAD(AY)
- _2(y— (@ + 7A9)) (A7)
<2y — (7 +7A9)| |AY]
<2|Ag|=2]lg -7,

which establishes the second condition. O

We can thus obtain bounds on the quadratic risk for
the class of TSM regressors with strongly convex reg-
ularizers, similar to how we obtained Theorem 6.
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