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A. Proof of Theorem 1

Before proceeding, we recall a general form of McDi-
armid’s inequality.

Theorem 7 (McDiarmid, 1989, Corollary 6.10). Let
f : Zn → R be a measurable function for which there
exist constants {αi}ni=1 such that, for any i ∈ [n],
z1:i−1 ∈ Zi−1 and zi, z

′
i ∈ Z,

|E[f(Z) | z1:i−1, zi]− E[f(Z) | z1:i−1, z′i]| ≤ αi.

Then, for any ε > 0,

P {f(Z)− E[f(Z)] ≥ ε} ≤ exp

(
−2ε2∑n
i=1 α

2
i

)
.

Note that the above does not require independence.
To prove Theorem 1, it therefore suffices to bound∑n
i=1 α

2
i . Kontorovich & Ramanan (2008, Remark

2.1) showed that, if f is c-Lipschitz with respect to

the Hamming metric, then
∑n
i=1 α

2
i ≤ nc2 ‖Θπ

n‖
2
∞.

(Though the published results only prove this for
countable spaces, Kontorovich later extended this
analysis to continuous spaces in his thesis (2007).) If
f is c-Lipschitz with respect to the normalized Ham-
ming metric, then

∑n
i=1 α

2
i ≤ c2 ‖Θπ

n‖
2
∞ /n, which

completes the proof.

B. Proof of Corollary 1

We begin by establishing that E[L(h,Z′)] =
E[L(h,Z)]. We use l ∈ [m] to iterate over examples.
Accordingly, let Z ′l,i denote the ith variable in example
Z′l. Recall that each Z′l is independent and identically
distributed according to P(Z). By linearity of expec-

tation, we have that

E[L(h,Z′)] = E

[
1

mn

m∑
l=1

n∑
i=1

`(Y ′l,i, hi(X
′
l))

]

=
1

m

m∑
l=1

E

[
1

n

n∑
i=1

`(Y ′l,i, hi(X
′
l))

]

=
1

m

m∑
l=1

E

[
1

n

n∑
i=1

`(Yi, hi(X))

]
= E[L(h,Z)].

To complete the proof, we simply apply Theorem 2
to E[L(h,Z′)], using the fact that ‖Θπ

mn‖∞ = ‖Θπ
n‖∞

because the dependency matrix Θπ
mn is block diagonal.

C. Proof of Lemma 1

By definition, for any z, z′ ∈ Zn that differ only at the
ith coordinate,

n∑
j=1

∣∣`(yj , hj(x))− `(y′j , hj(x′))
∣∣

= |`(yi, hi(x))− `(y′i, hi(x′))|

+
∑
j 6=i

|`(yj , hj(x))− `(yj , hj(x′))| .

Focusing on the first term, we have via the first ad-
missibility condition that

|`(yi, hi(x))− `(y′i, hi(x′))|
≤ |`(yi, hi(x))− `(yi, hi(x′))|
+ |`(yi, hi(x′))− `(y′i, hi(x′))|
≤ |`(yi, hi(x))− `(yi, hi(x′))|+M.
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Combining this with the second term, we have that

sup
h∈H

n∑
j=1

∣∣`(yj , hj(x))− `(y′j , hj(x′))
∣∣

≤M + sup
h∈h

n∑
j=1

|`(yj , hj(x))− `(yj , hj(x′))|

≤M + λ sup
h∈h

n∑
j=1

‖hj(x)− hj(x′)‖1

= M + λ sup
h∈h
‖h(x)− h(x′)‖1

≤M + λβ,

where we have used the second admissibility condition
and uniform collective stability.

D. Proof of Lemma 2

Let z, z′ ∈ Zn be two realizations that differ only
at a single coordinate. Without loss of generality,
since |Φ(F , z)− Φ(F , z′)| = |Φ(F , z′)− Φ(F , z)|, as-
sume that Φ(F , z) ≥ Φ(F , z′). By definition, we have
that

|Φ(F , z)− Φ(F , z′)|

=

∣∣∣∣∣sup
f∈F
{F − F (z)} − sup

f ′∈F
{F ′ − F ′(z′)}

∣∣∣∣∣
≤

∣∣∣∣∣sup
f∈F

F − F (z)− F + F (z′)

∣∣∣∣∣
=

∣∣∣∣∣sup
f∈F

1

n

n∑
i=1

fi(z
′)− fi(z)

∣∣∣∣∣
≤ sup
f∈F

1

n
‖f(z′)− f(z)‖1 ≤

β

n
.

The last inequality follows from uniform collective sta-
bility. We now have that Φ(F ,Z) satisfies the pre-
conditions of Theorem 1, with c = β. Recalling that
Φ(F) = E[Φ(F ,Z)], we therefore have that

P
{

Φ(F ,Z)− Φ(F) ≥ ε
}
≤ exp

(
−2nε2

β2 ‖Θπ
n‖

2
∞

)
.

Assigning δ probability to this event and solving for ε
completes the proof.

E. Proof of Lemma 3

For the following, we use variables Z and Z′ to distin-
guish between realizations of the training and testing
sets respectively. Using the definition of Φ(F) and

Jensen’s inequality, we have that

Φ(F) = E

[
sup
f∈F

E[F (Z′)]− F (Z)

]

≤ E

[
sup
f∈F

F (Z′)− F (Z)

]
.

Now define a set of Rademacher variables {σi}ni=1, and
let

T (σi) ,

{
Z if σi = 1,

Z′ if σi = −1,

and

T ′(σi) ,

{
Z′ if σi = 1,

Z if σi = −1.

Because Z ⊥⊥ Z′ and P(Z) = P(Z′), it follows that
P(Z,Z′) = P(T (σi) |σi) P(T ′(σi) |σi); so, by symme-
try,

Φ(F) ≤ E

[
sup
f∈F

n∑
i=1

fi(Z
′)− fi(Z)

]

= E

[
E

[
sup
f∈F

1

n

n∑
i=1

fi(T
′(σi))− fi(T (σi)) |σ

]]

= E

[
sup
f∈F

1

n

n∑
i=1

σi (fi(Z
′)− fi(Z))

]

≤ 2E

[
sup
f∈F

1

n

n∑
i=1

σifi(Z)

]
= 2Rn(F),

which completes the proof.

F. Proof of Lemma 4

We begin with a technical lemma, which is a general-
ization of Talagrand’s contraction lemma (Ledoux &
Talagrand, 1991) to vector-valued functions and arbi-
trary norms.

Lemma 10. Let F be a class of functions from a do-
main Z to Rk. Let {σi}ni=1 be a set of Rademacher
variables. If ϕ : Rk → R is λ-Lipschitz under ‖·‖p, for
any p ≥ 1, then, for any z ∈ Zn,

E

[
sup
f∈F

n∑
i=1

σiϕ(fj(zi))

]
≤ λ

k∑
j=1

E

[
sup
f∈F

n∑
i=1

σifj(zi)

]
.

Proof. Define a function Sn(f) ,
∑n
i=1 σiϕ(f(zi)).

Conditioned on σ1:n−1, we know that there must exist
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two functions f+, f− ∈ H such that

E

[
sup
f∈F

Sn(f) |σ1:n−1

]

= E

[
sup
f∈F

Sn−1(f) + σnϕ(f(zn)) |σ1:n−1

]

=
1

2

[
Sn−1(f+) + ϕ(f+(zn))

]
+

1

2

[
Sn−1(f−)− ϕ(f−(zn))

]
=

1

2

[
Sn−1(f+) + Sn−1(f−)

+ ϕ(f+(zn))− ϕ(f−(zn))
]

≤ 1

2

[
Sn−1(f+) + Sn−1(f−)

+ λ
∥∥f+(zn)− f−(zn)

∥∥
p

]
,

where the last line follows from the Lipschitz condition.
For each j ∈ [k], define a variable sn,j , sgn(f+j (zn)−
f−j (zn)), and note that∥∥f+(zn)− f−(zn)

∥∥
p
≤
∥∥f+(zn)− f−(zn)

∥∥
1

=

k∑
j=1

sn,j(f
+
j (zn)− f−j (zn)).

This yields

E

[
sup
f∈F

Sn(f) |σ1:n−1

]

≤ 1

2

Sn−1(f+) + λ

k∑
j=1

sn,jf
+
j (zn)


+

1

2

Sn−1(f−)− λ
k∑
j=1

sn,jf
−
j (zn)


≤ E

sup
f∈F

Sn−1(f) + λ

k∑
j=1

σnsn,jfj(zn) |σ1:n−1

 .
By induction on n, we therefore have that

E

[
sup
f∈F

Sn(f)

]
≤ E

sup
f∈F

λ

k∑
j=1

n∑
i=1

σisi,jfj(zi)


≤ λ

k∑
j=1

E

[
sup
f∈F

n∑
i=1

σifj(zi)

]
,

where si,j disappears because of symmetry.

The proof of Lemma 4 follows directly from this
lemma, since the second admissibility condition en-
sures that ` is λ-Lipschitz under the 1-norm. The fact

that h : Xn → Ŷn is irrelevant. Because Lemma 10
holds for any realization z ∈ Zn, we obtain the (non-
empirical) Rademacher complexity by taking the ex-
pectation over Z.

G. Proof of Lemma 5

Let ∆a , a− ȧ. By Definition 5, for any τ ∈ [0, 1],

τ(1−τ)
κ

2
‖∆a‖21+ϕ(ȧ+τ∆a)−ϕ(ȧ) ≤ τ(ϕ(a)−ϕ(ȧ)).

Since ȧ is, by definition, the unique minimizer of ϕ, it
follows that ϕ(ȧ + τ∆a) − ϕ(ȧ) ≥ 0, so the above in-
equality is preserved when this term is dropped. Thus,
dividing both sides by τκ/2, we have that

‖∆a‖21 ≤ (1− τ) ‖∆a‖21 ≤
2

κ
(ϕ(a)− ϕ(ȧ)),

where the left inequality follows from the fact that
(1− τ) is maximized at τ = 0.

H. Proof of Lemma 6

Let ȧ , arg mina∈A ϕ(ω, a) and ȧ′ ,
arg mina′∈A ϕ(ω′, a′). Without loss of generality, as-
sume that ϕ(ω, ȧ) ≥ ϕ(ω′, ȧ′). (If ϕ(ω′, ȧ′) ≥ ϕ(ω, ȧ),
we could state this in terms of ω′.) Using Lemma 5,
we have that

‖ȧ′ − ȧ‖21 ≤
2

κ
(ϕ(ω, ȧ′)− ϕ(ω, ȧ))

≤ 2

κ
(ϕ(ω, ȧ′)− ϕ(ω′, ȧ′))

≤ 2

κ
λ.

Taking the square root completes the proof.

I. Proof of Lemma 7

Using Cauchy-Schwarz, we have that

|Ew(x,a)− Ew(x′,a)|
= |〈w, f(x,a)〉 −Ψ(a)− 〈w, f(x′,a)〉+ Ψ(a)|
= |〈w, f(x,a)− f(x′,a)〉|
≤ ‖w‖2 ‖f(x,a)− f(x′,a)‖2
≤ R ‖f(x,a)− f(x′,a)‖2 ,

because, by definition, ‖w‖2 is uniformly upper-
bounded by R. Note that the features of (x,a) and
(x′,a) only differ at any clique involving node i. The
number of such cliques is Qi, which is uniformly upper-
bounded by QG, so at most QG features will change.
Further, since the norm of any feature function is, by
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definition, uniformly upper-bounded by B, we have
that

‖f(x,a)− f(x′,a)‖2

=

√√√√√∑
t∈T

∥∥∥∥∥∥
∑
q∈t(G)

1{i ∈ q}
(
ft(xq,aq)− ft(x′q,aq)

)∥∥∥∥∥∥
2

2

≤

√√√√√∑
t∈T

 ∑
q∈t(G)

1{i ∈ q}
∥∥ft(xq,aq)− ft(x′q,aq)∥∥2

2

≤

√√√√√∑
t∈T

∑
q∈t(G)

1{i ∈ q}
∥∥ft(xq,aq)− ft(x′q,aq)∥∥2

2

≤ 2BQi ≤ 2BQG,

which completes the proof.

J. Proof of Lemma 8

We will partition [0,Λ]d into k hypercube cells with
edge length (2ε/

√
d). Using multidimensional geom-

etry, one can show the hypercube [0, 2ε/
√
d]d is in-

scribed in a ball of radius ε; therefore, the Euclidean
distance from any point in [0,Λ]d to the center of the
nearest cell is at most ε. To find the value of k that
ε-covers [0,Λ]d, we let k(2ε/

√
d)d ≥ Λd and solve for

k.

K. Discretization Theorem

The following is a consequence of Massart’s finite class
lemma.

Theorem 8. Let F be a class of functions from Zn
to Rn. For any n ≥ 1 and p ≥ 1,

R(F ,Z) ≤ inf
ε

√
2 lnNp(ε,F ,Z)

n
+ ε,

and Rn(F) ≤ inf
ε

√
2 lnNp(ε,F , n)

n
+ ε.

L. Proof of Lemma 9

The ramp function is defined as

rγ(a) ,


1 for a ≤ 0,

1− a/γ for 0 < a ≤ γ,
0 for a > γ.

By definition, rγ (hence, `γ) is bounded by [0,1]; so

for any y, y′ ∈ Y and ŷ ∈ Ŷ, |`1(y, ŷ)− `1(y′, ŷ)| ≤ 1,
which establishes the first admissibility condition.

For ŷ, ŷ′ ∈ Ŷ, let u , arg maxy′∈Y:y 6=y′ 〈y′, ŷ〉 and u′ ,
arg maxy′∈Y:y 6=y′ 〈y′, ŷ′〉. Without loss of generality,
assume that 〈y, ŷ〉 − 〈u, ŷ〉 ≥ 〈y, ŷ′〉 − 〈u′, ŷ′〉. For any
y ∈ Y and ŷ, ŷ′ ∈ Ŷ, we have that

|(〈y, ŷ〉 − 〈u, ŷ〉)− (〈y, ŷ′〉 − 〈u′, ŷ′〉)|
= |〈y, ŷ − ŷ′〉+ 〈u′, ŷ′〉 − 〈u, ŷ〉|
≤ |〈y, ŷ − ŷ′〉+ 〈u′, ŷ′〉 − 〈u′, ŷ〉|
= |〈y − u′, ŷ − ŷ′〉|
≤ ‖y − u′‖∞ ‖ŷ − ŷ

′‖1
≤ ‖ŷ − ŷ′‖1 .

Further, for any a, a′ ∈ R,

|rγ(a)− rγ(a′)| ≤
∣∣∣∣1− aγ − 1− a′

γ

∣∣∣∣ =
1

γ
|a− a′| .

Combining these inequalities, we have that
|`γ(y, ŷ)− `γ(y, ŷ′)| ≤ (1/γ) ‖ŷ − ŷ′‖1, which es-
tablishes the second admissibility condition.

L.1. Collective Regression

In collective regression, the codomain is a bounded
interval on the real number line. Since the output can
always be shifted and scaled by a constant, we can
assume without loss of generality that Y, Ŷ ⊆ [0, 1]. A
standard loss function for regression is the quadratic
loss, typically defined as `q(y, ŷ) , (y − ŷ)2.

Lemma 11. The quadratic loss `q is (1, 2)-admissible.

Proof. First, since both Y and Ŷ are upper-bounded
by 1, we have the first admissibility condition. Sec-
ond, note that `q is smooth with respect to its sec-
ond argument. Therefore, by the mean value theorem,
there exists a τ ∈ [0, 1] such that, for any y ∈ Y and
ŷ, ŷ′ ∈ Ŷ, with ∆ŷ , ŷ′ − ŷ,

|`q(y, ŷ)− `q(y, ŷ′)| =
∣∣∣∣ ∂∂ŷ [`q(y, ŷ + τ∆ŷ)](∆ŷ)

∣∣∣∣
= |−2(y − (ŷ + τ∆ŷ))(∆ŷ)|
≤ 2 |y − (ŷ + τ∆ŷ)| |∆ŷ|
≤ 2 |∆ŷ| = 2 ‖ŷ − ŷ′‖1 ,

which establishes the second condition.

We can thus obtain bounds on the quadratic risk for
the class of TSM regressors with strongly convex reg-
ularizers, similar to how we obtained Theorem 6.
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