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Abstract

Matrix approximation is a common tool in
recommendation systems, text mining, and
computer vision. A prevalent assumption in
constructing matrix approximations is that
the partially observed matrix is of low-rank.
We propose a new matrix approximation
model where we assume instead that the
matrix is locally of low-rank, leading to a
representation of the observed matrix as a
weighted sum of low-rank matrices. We ana-
lyze the accuracy of the proposed local low-
rank modeling. Our experiments show im-
provements in prediction accuracy over clas-
sical approaches for recommendation tasks.

1. Introduction

Matrix approximation is a common task in ma-
chine learning. Given a few observed matrix entries
{Ma1,b1 , . . . ,Mam,bm}, matrix completion constructs a

matrix M̂ that approximates M at its unobserved en-
tries. Matrix approximation is used heavily in recom-
mendation systems, text processing, computer vision,
and bioinformatics. In recommendation systems, for
example, the matrix M corresponds to ratings of items
(columns) by users (rows). Matrix approximation in
this case corresponds to predicting the ratings of all
users on all items based on a few observed ratings. In
many cases, matrix approximation leads to state-of-
the-art models that are used in industrial settings.

In general, the problem of completing a matrix M
based on a few observed entries is ill-posed. There
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are infinite number of matrices that perfectly agree
with the observed entries of M , so without additional
assumptions, it is hard to prefer some matrices over
others as candidates for M̂ . One popular assumption
is that M is a low-rank matrix, which suggests that
it is reasonable to assume that the completed matrix
M̂ has low-rank. More formally, we approximate a
matrix M ∈ Rn1×n2 by a rank r matrix M̂ = UV T ,
where U ∈ Rn1×r, V ∈ Rn2×r, and r � min(n1, n2).
In many real datasets, the low-rank assumption is re-
alistic. Further, low-rank approximations often yield
matrices that generalizes well to the unobserved en-
tries.

In this paper, we extend low-rank matrix approxima-
tion in a way that significantly relaxes the low-rank
assumption. Instead of assuming that M has low-rank
globally, we assume that M behaves as a low-rank
matrix in the vicinity of certain row-column combi-
nations. We therefore construct several low-rank ap-
proximations of M , each being accurate in a particu-
lar region of the matrix. We express our estimator as
a smoothed convex combination of low-rank matrices
each of which approximates M in a local region.

We use techniques from non-parametric kernel
smoothing to achieve two goals. The first goal is de-
velop a notion of local low-rank approximation, and
the second is the aggregation of several local models
into unified matrix approximation. Standard low-rank
matrix approximation techniques achieve consistency
in the limit of large data (convergence to the data gen-
erating process) assuming that M is low-rank. Our lo-
cal method achieves consistency without the low-rank
assumption. Instead, we require that sufficient sam-
ples are available in increasingly small neighborhoods.
This analysis mirrors the theory of non-parametric ker-
nel smoothing, that is primarily developed for contin-
uous spaces, and generalizes well-known compressed
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sensing results to our setting. Our experiments show
that local low-rank modeling is significantly more ac-
curate than global low-rank modeling in the context
of recommendation systems.

2. Low-rank matrix approximation

We describe in this section two standard approaches
for low-rank matrix approximation (LRMA). We start
by establishing the notation used throughout the pa-
per. We denote matrices using upper case letters.
The original (partially observed) matrix is denoted by
M ∈ Rn1×n2 . A low-rank approximation of M is de-
noted by M̂ = UV T , where U ∈ Rn1×r, V ∈ Rn2×r,
and r � min(n1, n2). The set of integers {1, . . . , n} is
abbreviated as [n]. The set of observed entries of M is

denoted by A
def
= {(a1, b1), . . . , (am, bm)} ⊆ [n1]× [n2].

The training set is therefore {Ma,b : (a, b) ∈ A}. Map-
pings from matrix indices to a matrix space are de-
noted in calligraphic letters, e.g. T , and are operators
of the form T : [n1] × [n2] → Rn1×n2 . We denote the
entry (i, j) of the matrix T(a, b) as Ti,j(a, b). A pro-
jection ΠA with respect to a set of matrix indices A is
the function ΠA : Rn1×n2 → Rn1×n2 defined by

[ΠA(M)]a,b
def
=

{
Ma,b (a, b) ∈ A

0 otherwise.

We denote by � the component-wise product
of two matrices [A � B]i,j = Ai,jBi,j . We
use in this paper three matrix norms: the

Frobenius norm ‖X‖F def
=
√∑

i

∑
j X

2
i,j , the sup-

norm ‖X‖∞ def
= supi,j |Xi,j |, and the nuclear norm

‖X‖∗ def
=
∑r
i=1 σi(X), where σi(X) is the i’th singular

value of X (for symmetric matrices ‖X‖∗ = trace(X)).

Below are two popular approaches for constructing a
low-rank approximation M̂ of M . The first is based
on minimizing the Frobenius norm of ΠA(M −M̂) and
the second is based on minimizing the nuclear norm of
a matrix satisfying constraints constructed from the
training set.

A1: Incomplete SVD. The incomplete SVD method
constructs a low-rank approximation M̂ = UV T by
solving

(U, V ) = arg min
U,V

∑
(a,b)∈A

([UV T ]a,b −Ma,b)
2 , (1)

or equivalently

M̂ = arg min
X

‖ΠA(X −M)‖F s.t. rank(X) = r. (2)

A2: Compressed Sensing. An alternative to (2)
that originated from the compressed sensing commu-
nity (Candès & Tao, 2010) is to minimize the nuclear
norm of a matrix subject to constraints constructed
from the observed entries:

M̂ = arg min
X

‖X‖∗ s.t. ‖ΠA(X −M)‖F < ε . (3)

Minimizing the nuclear norm ‖X‖∗ is an effective sur-
rogate for minimizing the rank of X, and solving (3)
results in a low-rank matrix M̂ = UV T that approx-
imates the matrix M . One advantage of A2 over A1
is that we do not need to constrain the rank of M̂ in
advance. Note also that the problem defined by (3),
while being convex, may not necessarily scale up easily
to large matrices.

3. Local low-rank matrix approximation

In order to facilitate a local low-rank matrix approx-
imation, we need to pose an assumption that there
exists a metric structure over [n1]× [n2]. The distance
d((a, b), (a′, b′)) reflects the similarity between the rows
a and a′ and columns b and b′. In the case of recom-
mendation systems, for example, d((a, b), (a′, b′)) ex-
presses the relationship between users a, a′ and items
b, b′. The distance function may be constructed using
the observed ratings ΠA(M) or additional information
such as item-item similarity or side information on the
users when available. See Section 7 for further details.

In the global matrix factorization setting in Section 2,
we assume that the matrix M ∈ Rn1×n2 has a low-rank
structure. In the local setting, however, we assume
that the model is characterized by multiple low-rank
n1 × n2 matrices. Specifically, we assume a mapping
T : [n1] × [n2] → Rn1×n2 that associates with each
row-column combination [n1]× [n2] a low rank matrix
that describes the entries of M in its neighborhood (in
particular this applies to the observed entries A):

T : [n1]× [n2]→ Rn1×n2 where Ta,b(a, b) = Ma,b .

Figures 1 and 2 illustrate this model1.

Without additional assumptions, it is impossible to es-
timate the mapping T from a set of m < n1n2 observa-
tions. We assume, as is often done in non-parametric
statistics, that the mapping T is slowly varying. See
the formal definition in the sequel and an illustration in
Figure 2. Since the domain of T is discrete, the classi-
cal definitions of continuity or differentiability are not

1For illustrative purposes, we assume in Figure 1 a dis-
tance function d whose neighborhood structure coincides
with the natural order on indices. That is, s = (a, b) is
similar to r = (c, d) if |a− c| and |b− d| are small.
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M
s

r

T (r)Rn1⇥n2

T
(s)

Figure 1. For all s ∈ [n1] × [n2], the neighborhood {s′ :
d(s, s′) < h} in the original matrix M is approximately
described by the corresponding entries of the low-rank ma-
trix T (s) (shaded regions of M are matched by lines to the
corresponding regions in T (s) that approximate them). If
d(s, r) is small (see footnote 1), T (s) is similar to T (r), as
shown by their spatial closeness in the embedding Rn1×n2 .

applicable in our setting. We assume instead that T
is Hölder continuous (see Definition 1 in Section 5).

Following common approaches in non-parametric
statistics, we define a smoothing kernel Kh(s1, s2),
s1, s2 ∈ [n1] × [n2], as a non-negative symmetric uni-
modal function that is parameterized by a bandwidth
parameter h > 0. A large value of h implies that
Kh(s, ·) has a wide spread, while a small h corresponds
to narrow spread of Kh(s, ·). Three popular smoothing
kernels are the uniform kernel, the triangular kernel,
and the Epanechnikov kernel, defined respectively as

Kh(s1, s2) ∝ 1[d(s1, s2) < h] (4)

Kh(s1, s2) ∝ (1− h−1d(s1, s2)) 1[d(s1, s2) < h] (5)

Kh(s1, s2) ∝ (1− d(s1, s2)2) 1[d(s1, s2) < h] . (6)

We denote by K
(a,b)
h the matrix whose (i, j)-entry is

Kh((a, b), (i, j)). See for instance (Wand & Jones,
1995) for more information on smoothing kernels.

We describe below the local extensions of incomplete
SVD (A1 ) and compressed sensing (A2 ) matrix ap-
proximations. Both extensions estimate T (a, b) in the
vicinity of (a, b) ∈ [n1]×[n2] given the samples ΠA(M).

Local-A1: Incomplete SVD

T̂ (a, b) = arg min
X

‖K(a,b)
h �ΠA(X −M)‖F (7)

s.t. rank(X) = r .

Mt

M

T (r)

Tt(t)

T (t)
Tr(t) = Tr(r) + ✏ = Mr + ✏

Tr(r)

Mr

Tr(t)

Tt(r)

Figure 2. The original matrix M (bottom) is described lo-
cally by two low-rank matrices T (t) (near t) and T (r)
(near r). The lines connecting the three matrices iden-
tify identical entries: Mt = Tt(t) and Mr = Tr(r). The
equation at the top right shows a relation tying the three
patterned entries. Assuming the distance d(t, r) is small,
ε = Tr(t)− Tr(r) = Tr(t)−Mr(r) is small as well.

Local-A2: Compressed Sensing

T̂ (a, b) = arg min
X

‖X‖∗ (8)

s.t. ‖K(a,b)
h �ΠA(X −M)‖F < ε .

The two optimization problems above describe how
to estimate T̂ (a, b) for a particular choice of (a, b) ∈
[n1] × [n2]. Conceptually, this technique can be ap-
plied at each test entry (a, b), resulting in the matrix
approximation M̂ ≈M where

M̂a,b = T̂a,b(a, b), (a, b) ∈ [n1]× [n2] .

However, such a construction would require solving a
non-linear optimization problem for each test index
(a, b) and is thus computationally prohibitive. Instead,
we describe in the next section how to use a set of q
local models T̂ (s1), . . . , T̂ (sq), s1, . . . , sq ∈ [n1] × [n2]

to obtain a computationally efficient estimate ˆ̂T (s) for
all s ∈ [n1]× [n2].

4. Global Approximation

The problem of recovering a mapping T from q values
without imposing a strong parametric form is known as
non-parametric regression. We propose using a vari-
ation of locally constant kernel regression (Wand &
Jones, 1995), also known as Nadaraya-Watson regres-
sion

ˆ̂T (s) =

q∑
i=1

Kh(si, s)∑q
j=1Kh(sj , s)

T̂ (si) . (9)
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Equation (9) is simply a weighted average of
T̂ (s1), . . . , T̂ (sq), where the weights ensure that values

of T̂ at indices close to s contribute more than those
further away from s. Note that both the left-hand side
and the right-hand side of (9) denote matrices. The
denominator in (9) ensures that the weights sum to
one.

In contrast to T̂ , the estimate ˆ̂T can be computed
for all s ∈ [n1] × [n2] efficiently since computing
ˆ̂T (s) simply requires evaluating and averaging T̂ (si),
i = 1, . . . , q. The resulting matrix approximation is
ˆ̂Ma,b = ˆ̂Ta,b(a, b) and (a, b) ∈ [n1]× [n2].

The accuracy of ˆ̂T as an estimator of T̂ improves
with the number of local models q and the degree

of continuity of T̂ . The accuracy of ˆ̂T as an esti-
mator of T is limited by the quality of the local es-
timators T̂ (s1), . . . , T̂ (sq). However, assuming that

T̂ (s1), . . . , T̂ (sq) are accurate in the neighborhoods of
s1, . . . , sq, and q is sufficiently large, the estimation

error ˆ̂T a,b(a, b) − Ta,b(a, b) is likely to be small as we
analyze in the next section. We term the resulting
approach LLORMA for Local LOw Rank Matrix Ap-
proximation.

5. Estimation accuracy

In this section we analyze the estimation accuracy of
LLORMA. Our analysis consists of two parts. In the
first we analyze the large deviation of T̂ from T . Then,
based on this analysis, we derive a deviation bound on

the global approximation ˆ̂T . Our analysis technique is
based on the seminal paper of Candès & Tao (2010).
The goal of this section is to underscore the character-
istics of estimation error in terms of parameters such
as the train set size, matrix dimensions, and kernel
bandwidth.

Analysis of T̂ − T
Candès & Tao (2010) established that it is possible to
estimate an n1×n2 matrixM of rank r if the number of
observations m ≥ Cµrn log6 n, where n = min(n1, n2),
C is a constant, and µ is the strong incoherence prop-
erty parameter described in (Candès & Tao, 2010).
This bound is tight in the sense that it is close to the
information theoretic limit of Ω(r n log n).

The aforementioned result is not applicable in our case
since the matrixM is not necessarily of low-rank. Con-
cretely, when r = O(n) the bound above degenerates
into a sample complexity ofO(n2 log n) which is clearly
larger than the number of entries in the matrix M . We

develop below a variation on the results in (Candès &
Tao, 2010) and (Candès & Plan, 2010) that applies to
the local-A2 compressed-sensing estimator T̂ .

Definition 1. Let X be a metric space. A function
f : X → Rn1×n2 is Hölder continuous with parameters
α, β > 0 if

∀x, x′ ∈ X : ‖f(x)− f(x′)‖F ≤ αdβ(x, x′) . (10)

In our analysis we make the following assumptions:
(i) T is Hölder continuous, (ii) T (s) is a rank r matrix
that satisfies the strong incoherence property, and (iii)
the kernel Kh is a uniform kernel based on a product
distance function. The Hölder continuity assumption
on T can be replaced by the following weaker condition
without affecting the results

‖Ks
h � (T (s)− T (s′))‖F ≤ αdβ(s, s′). (11)

We denote by Bh(s) the neighborhood of indices near

s, Bh(s)
def
= {s′ ∈ [n1]× [n2] : d(s, s′) < h} and we use

n1(h, s) and n2(h, s) to denote the number of unique
row and column indices, respectively, in Bh(s). Fi-
nally, we denote γ = min(n1(h, s), n2(h, s)).

The proposition below provides a bound on the aver-
age squared-error within a neighborhood of s

E(T̂ )(s, h) =

√√√√ 1

|Bh(s)|
∑

s′∈Bh(s)

(
T̂s′(s)− Ts′(s)

)2
.

Proposition 1. If |A ∩ Bh(s)| ≥ Cµ2γr log6 γ, then
with probability of at least 1− δ,

E(T̂ )(s, h) ≤ αhβ√
|Bh(s)|

(
4

√
γ(2 + p)

p
+ 2

)
,

where γ = 3
√

1/δ and p = |A ∩Bh(s)|/|Bh(s)|.

Proof. Assumptions (i) and (iii) above imply that if
Kh(s, s′) > 0 then

‖Ks
h � (T (s)− T (s′))‖∞ < αhβ .

We can thus assume that if d(s, s′) < h, an observation
Ms′ = Ts′(s′) is equal to Ts′(s)+Z where Z is a random
variable whose absolute value is bounded by αhβ . This
means that we can use observations Ms′ = Ts′(s′) for
estimating the local model T (s) as long as we admit a
noisy measurement process.

Since K is a uniform kernel based on a product dis-
tance by assumption (iii), the set Bh(s) is a Carte-
sian product set. We view this product set as a ma-
trix of dimensions n1(h, s) × n2(h, s) that we approx-
imate. (Note that n1(h, s) and n2(h, s) are monotoni-
cally increasing with h, and as h→∞, n1(h, s) = n1,
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n2(h, s) = n2.) The number of observed entries in this
matrix approximation problem is |A ∩Bh(s)|.
Applying Theorem 7 in (Candès & Plan, 2010) to the
matrix completion problem described above, we get
that if |A∩Bh(s)| ≥ Cµ2γr log6 γ, then with probabil-
ity greater than 1− γ−3,

‖Ks
h � (T (s)− T̂ (s))‖F ≤ αhβ

(
4

√
γ(2 + p)

p
+ 2

)
,

where p = |A∩Bh(s)|
|Bh(s)| is the density of observed samples.

Dividing by
√
|Bh(s)| concludes the proof.

If the observed samples are spread uniformly over the
matrix, we have p = m/(n1n2), so

4

√
γ

2 + p

p
+ 2 = 4

√
γ

2 +m/(n1n2)

m/(n1n2)
+ 2

= 4

√
γ(2n1n2 +m)

m
+ 2.

Multiplying αhβ/
√
|Bh(s)| yields Corollary 1.

Corollary 1. Assume that the conditions of Proposi-
tion 1 hold and in addition the observed samples are
spread uniformly with respect to d. Then, the follow-
ing inequality holds

E(T̂ )(s, h) ≤ 4αhβ√
|Bh(s)|

√
γ(2n1n2 + m)

m
+

2αhβ√
|Bh(s)|

.

If in addition the matrix M is squared (n1 = n2 = n)
and the distribution of distances d is uniform, then
n1(h, s) = n2(h, s) = n/h, |Bh(s)| = (n/h)2, and γ =
n/h. In this case, the bound on E(T̂ )(s, h) becomes

4αhβ+1/2

√
2n

m
+

1

n
+

2αhβ+1

n
. (12)

In the case of a square matrix with uniformly spread
samples, it is instructive to view n,m, h as monoton-
ically increasing sequences, indexed by k ∈ N and as-
sume that limk→∞ n[k] = limk→∞m[k] = ∞. In other
words, we consider the limit of matrices of increasing
sizes with an increasing number of samples. In the case
of uniformly distributed distances, the bound (12) will
converge to zero if

lim
k→∞

hβ+1
[k]

n[k]
= lim
k→∞

h2β+1
[k]

n[k]
= lim
k→∞

h2β+1
[k] n[k]

m[k]
= 0.

Analysis of ˆ̂T − T
We start by showing that T̂ is Hölder continuous with
high probability, and then proceed to analyze the es-

timation error of ˆ̂T .

Proposition 2. If d(s, s′) < h and Proposition 1 holds
at s, s′, then with probability at least 1− δ,

‖Ks
h � (T̂ (s)− T̂ (s′))‖F ≤ αhβ

(
8

√
γ(2 + p)

p
+ 5

)
.

where γ = 3
√

2/δ.

Proof. Using the triangle inequality for ‖ · ‖F ,

‖Ks
h � (T̂ (s)− T̂ (s′))‖F ≤ ‖Ks

h � (T̂ (s)− T (s))‖F
+ ‖Ks

h � (T̂ (s′)− T (s′))‖F
+ ‖Ks

h � (T (s)− T (s′))‖F .

We apply the bound from Proposition 1 to the first
two terms and use the assumption that T is Hölder
continuous to bound the third term. The adjustment
to the confidence level 2γ−3 is obtained using the union
bound.

Proposition 3. Assume that Proposition 1 holds.
Then, with probability of at least 1− δ,

E( ˆ̂T )(s, h) ≤ αhβ√
|Bh(s)|

(
12

√
γ(2 + p)

p
+ 7

)
.

where γ = 3
√

(2|A ∩Bh(s)|+ 1)/δ.

Proof. Using the triangle inequality we get

‖Ks
h � ( ˆ̂T (s)− T (s))‖F ≤ (13)

‖Ks
h � (T̂ (s)− T (s))‖F + ‖Ks

h � ( ˆ̂T (s)− T̂ (s))‖F .

We bound the first term using Proposition 1. Since
ˆ̂T (s) is a weighted average of T̂ (si), i = 1, . . . , q with
si ∈ Bh(s), the second term is bounded by

‖Ks
h�( ˆ̂T (s)− T̂ (s))‖F

=
∥∥∥Ks

h �
(∑

i

wi∑
j wj
T̂ (si)− T̂ (s)

)∥∥∥
F

=
∥∥∥Ks

h �
∑
i

wi∑
j wj

(T̂ (si)− T̂ (s))
∥∥∥
F

≤
∑
i

∥∥∥∥∥ wi∑
j wj

Ks
h � (T̂ (si)− T̂ (s))

∥∥∥∥∥
F

≤
∑
i

wi∑
j wj
‖Ks

h � (T̂ (si)− T̂ (s))‖F .
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There are |A ∩ Bh(s)| summands in the above term.
We bound each of them using Proposition 2. Together
with the bound (13) this gives the desired result (after
dividing by

√
|Bh(s)|). The adjustment to the confi-

dence level (2|A∩Bh(s)|+ 1)γ−3 is obtained using the
union bound.

The constants in the proposition above can be im-
proved considerably by using large deviation bounds
that are tighter than the union bound.

6. The LLORMA algorithm

In the previous sections, we assumed a general
kernel function Kh(s1, s2), where s1, s2 ∈ [n1] ×
[n2]. This kernel function may be defined in sev-
eral ways. For simplicity, we assume a product form
Kh((a, b), (c, d)) = Kh1

(a, c)K ′h2
(b, d) where K and K ′

are kernels on the spaces [n1] and [n2], respectively.
We used the Epanechnikov kernel (6) for both K,K ′ as
it achieves the lowest integrated squared error (Wand
& Jones, 1995).

The distance d in (6) may be defined using additional
information describing row (user) similarity or column
(item) similarity. If no such information is available
(as is the case in our experiments), d may be com-
puted solely based on the partially observed matrix
M . In that case, we may use any distance measure
between two row vectors (for K) or two column vec-
tors (for K ′). Empirically, we found that standard
distance measures such as L2 or cosine similarity do
not perform well when M is sparse. We therefore in-
stead factorize M using standard incomplete SVD (1)
M ≈ UV T and then proceed to compute d based on
the cosine distances between the rows of factor matri-
ces U and V . For example, the distance between users

i and j is d(i, j) = arccos
(
〈ui,uj〉
‖ui‖·‖uj‖

)
, where ui, uj are

the i and j rows of the matrix U .

There are several ways of choosing the anchor points

s1, . . . , sq that define the estimator ˆ̂T .

1. Sample anchor points uniformly from [n1]× [n2].
2. Sample anchor points uniformly from the ob-

served entries (training set) A.
3. Sample anchor points from the test entries (if they

are known in advance).
4. Select anchor points such that no entry in [n1]×

[n2] is far away from an anchor point.

If the row and column indices corresponding to the
test set are known in advance, method 3 above is pre-
ferred. We did not find a significant difference between

Algorithm 1 The LLORMA Algorithm

1: Input: M ∈ Rn1×n2 , h1, h2, r, q
2: for all t = 1, ..., q in parallel do
3: (at, bt) := a randomly selected train element
4: for i = 1→ n1 do
5: [K

(at)
h1

]i := (1− da(at, i)
2)1{da(at,i)<h}

6: end for
7: for j = 1→ n2 do

8: [K
(bt)
h2

]j := (1− db(bt, j)2)1{db(bt,j)<h}
9: end for

10: (U (t), V (t)) := arg minU,V [λUΩ(U) + λV Ω(V )

11: +
∑

(i,j)∈A[K
(at)
h1

]i[K
(bt)
h2

]j
(
[UV T ]i,j −Mi,j

)2
]

12: end for
13: Output: T̂ (st) = U (t)V (t)T , t = 1, . . . , q

methods 1 and 2 empirically, so we used method 2 in
our experiments.

Algorithm 1 describes the learning algorithm for esti-
mating the local models at the anchor points T̂ (si),
with i = 1, . . . , q. In line 10, we use L2 regularization,
as is standard in global SVD. This minimization prob-
lem can be computed with gradient-based methods, as
it is differentiable. After these models are estimated,
they are combined using (9) to create the estimate
ˆ̂T (s) for all s ∈ [n1]× [n2].

The q iterations of the loop in Algorithm 1 (lines 2-
12) are independent of each other, and thus can be
computed in parallel. The complexity of Algorithm 1
is q times the complexity of solving a single regularized
SVD problem. Note, however, that Algorithm 1 may
be in fact faster than global SVD since (a) the q loops
may be computed in parallel, and (b) the rank used in
the local SVD model can be significantly lower than
the rank used in a global SVD model (see Section 7).
If the kernel Kh has limited support (Kh(s, s′) is non-
zero only for a few values of s′ for any given s) the
regularized SVD problems in Algorithm 1 would be
more sparse than the global SVD problem, resulting
in an additional speedup.

7. Experiments

Experimental Design. We conduct two experi-
ments using recommendation systems data: (a) com-
paring LLORMA to SVD and other state-of-the-
art techniques, and (b) examining dependency of
LLORMA on the rank r, the number of anchor points
q, and the train set size.

We use three popular recommendation systems
datasets: MovieLens 1M (6K × 4K with 106 obser-
vations), MovieLens 10M (70K× 10K with 107 obser-
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Method MovieLens (1M) MovieLens (10M) Netflix

APG Not known 0.8005 0.8433
DFC(NYS) Not known 0.8085 0.8486
DFC(PROJ) Not known 0.7944 0.8411

LRMA Global Local Global Local Global Local
Rank-1 0.9201 0.9135 0.8723 0.8650 0.9388 0.9295
Rank-3 0.8838 0.8670 0.8348 0.8189 0.8928 0.8792
Rank-5 0.8737 0.8537 0.8255 0.8049 0.8836 0.8604
Rank-7 0.8678 0.8463 0.8234 0.7950 0.8788 0.8541
Rank-10 0.8650 0.8396 0.8219 0.7889 0.8765 0.8444
Rank-15 0.8652 0.8370 0.8225 0.7830 0.8758 0.8365
Rank-20 0.8647 0.8333 0.8220 0.7815 0.8742 0.8337

Table 1. RMSE of different recommendation systems on three datasets: MovieLens 1M, MovieLens 10M, and Netflix.
Results on APG (Toh & Yun, 2010) and DFC are from (Mackey et al., 2011).
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Figure 3. RMSE of LLORMA, SVD, and other baselines on MovieLens 10M (left) and Netflix (right) dataset. (The
Netflix winner RMSE is based on the qualifying set from the Netflix competition while our result use a randomly sampled
dataset of similar size.) LLORMA models are indicated by thick solid lines, while SVD models are indicated by dotted
lines. Models with same rank are colored identically.

vations), and Netflix (480K × 18K with 108 observa-
tions). We split the available data to train and test
sets randomly such that the ratio of train set to test
set is 9:1, and averaged over five such repetitions. We
use a default rating of 3 for test users or items without
training observations.

In our experiments, we used the Epanechnikov kernel
with h1 = h2 = 0.8, µ = 0.01 (gradient descent step-
size), λU = λV = 0.001 (L2-regularization coefficient),
T = 100 (maximum number of iterations), and ε =
0.0001 (gradient descent convergence threshold), and
q = 50 (number of anchor points).

Result and Analysis. Table 1 lists the performance
of LLORMA with 50 anchor points, SVD, and re-
cent state-of-the-art methods based on figures pub-
lished in (Mackey et al., 2011). For a fixed rank r,

LLORMA always outperforms SVD. Both LLORMA
and SVD perform better as r increases. Although both
encounter the law of diminishing returns, LLORMA
with a modest rank of r ≥ 5 outperforms SVD with
any rank whatsoever. We can see that LLORMA also
outperforms the Netflix winner RMSE 0.8567 as well
as other baselines.

Figure 3 graphs the RMSE of LLORMA and SVD (for
several values of r) as well as the recently proposed
DFC method (Mackey et al., 2011) as a function of
the number of anchor points (all but LLORMA are
constants in this variable). As in the case of Table 1,
both LLORMA and SVD improve as r increases, but
LLORMA with rank r ≥ 5 outperforms SVD with any
rank. Moreover, LLORMA outperforms SVD in aver-
age with even a few anchor points (though the perfor-
mance of LLORMA improves further as the number of
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Figure 4. RMSE as a function of train set size for Movie-
Lens 1M data. Local models are indicated by thick solid
lines, while other methods are indicated by dotted lines.

anchor points q increases).

Figure 4 graphs the RMSE of LLORMA as a func-
tion of the train set size, and compares it with global
SVD (rank r = 50) and other state-of-the-art base-
lines: non-negative matrix factorization (r = 50) (Lee
& Seung, 2001) and Bayesian probabilistic matrix fac-
torization (r = 5) (Salakhutdinov & Mnih, 2008b).
The test set size was fixed to 10% of the MovieLens 1M
and the RMSE was averaged over five train-test splits.
The graph shows that all methods improve with the
train set size, but LLORMA consistently outperforms
SVD and the other baselines.

In summary, we conclude that (1) LLORMA outper-
forms SVD and other state-of-the-art methods includ-
ing the Netflix winner and DFC, (2) LLORMA can
achieve high performance with a low-rank and only a
few anchor points, and (3) LLORMA works well with
either a small or a large train set.

8. Related work
Matrix factorization for recommender systems has
been researched intensively, especially in the context
of the Netflix Prize competition. Billsus & Pazzani
(1998) initially proposed applying SVD to CF con-
text. Salakhutdinov & Mnih (2008a) and Salakhut-
dinov & Mnih (2008b) extended matrix factorization
to probabilistic and Bayesian approach, and Lawrence
& Urtasun (2009) proposed non-linear version of PMF.
Rennie & Srebro (2005) proposed a maximum-margin
method. Lee et al. (2012b) conducted a comprehensive
experimental study comparing a number of state-of-
the-art and traditional recommendation system meth-
ods using the PREA toolkit (Lee et al., 2012c).

Recent algorithmic progress in matrix completion was
achieved by Toh & Yun (2010); Keshavan et al.
(2010). Divide-and-Conquer Matrix Factorization
(DFC) (Mackey et al., 2011) also solves a number of
smaller matrix factorization problems. Our approach
generalizes DFC in that we use a metric structure
on [n1] × [n2] and use overlapping partitions. Mir-
bakhsh & Ling (2013) successfully adopted clustering
paradigm for seeking user and item communities.
In addition to single matrix factorization, several en-
semble models have been proposed for CF. DeCoste
(2006) suggested ensembles of MMMF. The Netflix
Prize winner (Bell et al., 2007; Koren, 2008) used
combination of memory-based and matrix factoriza-
tion methods. The Netflix Prize runner-up (Sill
et al., 2009) proposed Feature-Weighted Least Square
(FWLS), using linear ensemble of learners with dy-
namic weights. Lee et al. (2012a) extended FWLS
by introducing automatic stage-wise feature induction.
Kumar et al. (2009); Mackey et al. (2011) applied en-
sembles to Nystrom method and DFC, respectively.
Related models from the dimensionality reduction lit-
erature are Local PCA e.g., (Kambhatla & Leen, 1997)
and LLE (Roweis & Saul, 2000). A recent related pa-
per on matrix completion (Wang et al., 2013) applies
low-rank factorizations to clusters of points.
Candès & Tao (2010) derived a bound on the perfor-
mance of low-rank matrix completion, and Candès &
Plan (2010) adapted the analaysis to a noisy setting.
Related results are obtained by (Shalev-Shwartz et al.,
2011; Foygel & Srebro, 2011; Foygel et al., 2012).

9. Summary
We presented a new low-rank matrix approximation
based on the assumption that the matrix is locally
low-rank. Our proposed algorithm, called LLORMA,
is highly parallelizable and thus scales well with the
amount of observations and the dimension of the prob-
lem. Our experiments indicate that LLORMA out-
performs several recent state-of-the-art methods with-
out a significant computational overhead. Our for-
mal analysis generalize standard compressed sensing
results. We analyze the performance of LLORMA in
terms of its dependency on the matrix size, training set
size, and locality (kernel bandwidth parameter). Our
method is applicable beyond recommendation systems
so long as the locality assumption holds. We thus plan
to investigate applications in other domains such as
signal and image denoising.
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