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Abstract

We present a new algorithm for general re-
inforcement learning where the true environ-
ment is known to belong to a finite class of N
arbitrary models. The algorithm is shown to
be near-optimal for all but O(N log2N) time-
steps with high probability. Infinite classes
are also considered where we show that com-
pactness is a key criterion for determining
the existence of uniform sample-complexity
bounds. A matching lower bound is given for
the finite case.

1. Introduction

Reinforcement Learning (RL) is the task of learning
policies that lead to nearly-optimal rewards where the
environment is unknown. One metric of the efficiency
of an RL algorithm is sample-complexity, which is a
high probability upper bound on the number of time-
steps when that algorithm is not nearly-optimal that
holds for all environment in some class. Such bounds
are typically shown for very specific classes of environ-
ments, such as (partially observable/factored) Markov
Decision Processes (MDP) and bandits. We consider
more general classes of environments where at each
time-step an agent takes an action a ∈ A where-upon
it receives reward r ∈ [0, 1] and an observation o ∈ O,
which are generated stochastically by the environment
and may depend arbitrarily on the entire history se-
quence.

We present a new reinforcement learning algorithm,
named Maximum Exploration Reinforcement Learn-
ing (MERL), that accepts as input a finite set M :=
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{ν1, · · · , νN} of arbitrary environments, an accuracy
ε, and a confidence δ. The main result is that MERL
has a sample-complexity of

Õ

(
N

ε2(1− γ)3
log2 N

δε(1− γ)

)
,

where 1/(1 − γ) is the effective horizon determined
by discount rate γ. We also consider the case where
M is infinite, but compact with respect to a particular
topology. In this case, a variant of MERL has the same
sample-complexity as above, but where N is replaced
by the size of the smallest ε-cover. A lower bound
is also given that matches the upper bound except for
logarithmic factors. Finally, ifM is non-compact then
in general no finite sample-complexity bound exists.

1.1. Related Work

Many authors have worked on the sample-complexity
of RL in various settings. The simplest case is the
multiarmed bandit problem that has been extensively
studied with varying assumptions. The typical mea-
sure of efficiency in the bandit literature is regret, but
sample-complexity bounds are also known and some-
times used. The next step from bandits is finite state
MDPs, of which bandits are an example with only a
single state. There are two main settings when MDPs
are considered, the discounted case where sample-
complexity bounds are proven and the undiscounted
(average reward) case where regret bounds are more
typical. In the discounted setting the upper and lower
bounds on sample-complexity are now extremely re-
fined. See Strehl et al. (2009) for a detailed review
of the popular algorithms and theorems. More re-
cent work on closing the gap between upper and lower
bounds is by Szita & Szepesvári (2010); Lattimore &
Hutter (2012); Azar et al. (2012). In the undiscounted
case it is necessary to make some form of ergodicity
assumption as without this regret bounds cannot be
given. In this work we avoid ergodicity assumptions
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and discount future rewards. Nevertheless, our al-
gorithm borrows some tricks used by UCRL2 (Auer
et al., 2010). Previous work for more general environ-
ment classes is somewhat limited. For factored MDPs
there are known bounds, see (Chakraborty & Stone,
2011) and references there-in. Even-dar et al. (2005)
give essentially unimprovable exponential bounds on
the sample-complexity of learning in finite partially
observable MDPs. Maillard et al. (2013) show regret
bounds for undiscounted RL where the true environ-
ment is assumed to be finite, Markov and commu-
nicating, but where the state is not directly observ-
able. As far as we know there has been no work on
the sample-complexity of RL when environments are
completely general, but asymptotic results have gar-
nered some attention with positive results by Hutter
(2002); Ryabko & Hutter (2008); Sunehag & Hutter
(2012) and (mostly) negative ones by Lattimore &
Hutter (2011b). Perhaps the closest related worked is
(Diuk et al., 2009), which deals with a similar problem
in the rather different setting of learning the optimal
predictor from a class of N experts. They obtain an
O(N logN) bound, which is applied to the problem of
structure learning for discounted finite-state factored
MDPs. Our work generalises this approach to the non-
Markov case and compact model classes.

2. Notation

The definition of environments is borrowed from the
work of ?, although the notation is slightly more formal
to ease the application of martingale inequalities.

General. N = {0, 1, 2, · · · } is the natural numbers.
For the indicator function we write [[x = y]] = 1 if
x = y and 0 otherwise. We use ∧ and ∨ for logical
and/or respectively. If A is a set then |A| is its size
and A∗ is the set of all finite strings (sequences) over
A. If x and y are sequences then x @ y means that
x is a prefix of y. Unless otherwise mentioned, log
represents the natural logarithm. For random variable
X we write EX for its expectation. For x ∈ R, dxe is
the ceiling function.

Environments and policies. Let A, O and R ⊂ R
be finite sets of actions, observations and rewards re-
spectively and H := A × O × R. H∞ is the set of
infinite history sequences while H∗ := (A × O × R)∗

is the set of finite history sequences. If h ∈ H∗
then `(h) is the number of action/observation/reward
tuples in h. We write at(h), ot(h), rt(h) for the
tth action/observation/reward of history sequence h.
For h ∈ H∗, Γh := {h′ ∈ H∞ : h @ h′} is the cylin-
der set. Let F := σ({Γh : h ∈ H∗}) and Ft :=
σ({Γh : h ∈ H∗ ∧ `(h) = t}) be σ-algebras. An en-
vironment µ is a set of conditional probability distri-

butions over observation/reward pairs given the his-
tory so far. A policy π is a function π : H∗ →
A. An environment and policy interact sequen-
tially to induce a measure, Pµ,π, on filtered prob-
ability space (H∞,F , {Ft}). For convenience, we
abuse notation and write Pµ,π(h) := Pµ,π(Γh). If
h @ h′ then conditional probabilities are Pµ,π(h′|h) :=

Pµ,π(h′)/Pµ,π(h). Rt(h; d) :=
∑t+d
k=t γ

k−trk(h) is the
d-step return function and Rt(h) := limd→∞Rt(h; d).
Given history ht with `(ht) = t, the value func-
tion is defined by V πµ (ht; d) := E[Rt(h; d)|ht] where
the expectation is taken with respect to Pµ,π(·|ht).
V πµ (ht) := limd→∞ V πµ (ht; d). The optimal policy for
environment µ is π∗µ := arg maxπ V

π
µ , which with our

assumptions is known to exist (Lattimore & Hutter,

2011a). The value of the optimal policy is V ∗µ := V
π∗µ
µ .

In general, µ denotes the true environment while ν is a
model. π will typically be the policy of the algorithm
under consideration. Q∗µ(h, a) is the value in history
h of following policy π∗µ except for the first time-step
when action a is taken. M is a set of environments
(models).

Sample-complexity. Policy π is ε-optimal in his-
tory h and environment µ if V ∗µ (h)− V πµ (h) ≤ ε. The
sample-complexity of a policy π in environment class
M is the smallest Λ such that, with high probability,
π is ε-optimal for all but Λ time-steps for all µ ∈ M.
Define Lεµ,π : H∞ → N ∪ {∞} to be the number of
time-steps when π is not ε-optimal.

Lεµ,π(h) :=

∞∑
t=1

[[
V ∗µ (ht)− V πµ (ht) > ε

]]
,

where ht is the length t prefix of h. The sample-
complexity of policy π is Λ with respect to accuracy ε
and confidence 1− δ if P

{
Lεµ,π(h) > Λ

}
< δ, ∀µ ∈M.

3. Finite Case

We start with the finite case where the true environ-
ment is known to belong to a finite set of models, M.
The Maximum Exploration Reinforcement Learning
algorithm is model-based in the sense that it maintains
a set, Mt ⊆ M, where models are eliminated once
they become implausible. The algorithm operates in
phases of exploration and exploitation, choosing to ex-
ploit if it knows all plausible environments are reason-
ably close under all optimal policies and explore oth-
erwise. This method of exploration essentially guar-
antees that MERL is nearly optimal whenever it is
exploiting and the number of exploration phases is
limited with high probability. The main difficulty is
specifying what it means to be plausible. Previous au-
thors working on finite environments, such as MDPs
or bandits, have removed models for which the tran-
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sition probabilities are not sufficiently close to their
empirical estimates. In the more general setting this
approach fails because states (histories) are never vis-
ited more than once, so sufficient empirical estimates
cannot be collected. Instead, we eliminate environ-
ments if the reward we actually collect over time is
not sufficiently close to the reward we expected given
that environment.

Before giving the explicit algorithm, we explain the
operation of MERL more formally in two parts. First
we describe how it chooses to explore and exploit and
then how the model class is maintained. See Figure
1 for a diagram of how exploration and exploitation
occurs.

Exploring and exploiting. At each time-step t
MERL computes the pair of environments ν, ν in the
model class Mt and the policy π maximising the dif-
ference

∆ := V πν (h; d)− V πν (h; d), d :=
1

1− γ
log

8

(1− γ)ε
.

If ∆ > ε/4, then MERL follows policy π for d time-
steps, which we call an exploration phase. Other-
wise, for one time-step it follows the optimal pol-
icy with respect to the first environment currently in
the model class. Therefore, if MERL chooses to ex-
ploit, then all policies and environments in the model
class lead to similar values, which implies that exploit-
ing is near-optimal. If MERL explores, then either
V πν (h; d)−V πµ (h; d) > ε/8 or V πµ (h; d)−V πν (h; d) > ε/8,
which will allow us to apply concentration inequalities
to eventually eliminate either ν (the upper bound) or
ν (the lower bound).

The model class. An exploration phase is a κ-
exploration phase if ∆ ∈ [ε2κ−2, ε2κ−1), where

κ ∈ K :=

{
0, 1, 2, · · · , log2

1

ε(1− γ)
+ 2

}
.

For each environment ν ∈ M and each κ ∈ K, MERL
associates a counter E(ν, κ), which is incremented at
the start of a κ-exploration phase if ν ∈ {ν, ν}. At the
end of each κ-exploration phase MERL calculates the
discounted return actually received during that explo-
ration phase R ∈ [0, 1/(1− γ)] and records the values

X(ν, κ) := (1− γ)(V πν (h; d)−R)

X(ν, κ) := (1− γ)(R− V πν (h; d)),

where h is the history at the start of the exploration
phase. So X(ν, κ) is the difference between the return
expected if the true model was ν and the actual return
and X(ν, κ) is the difference between the actual return
and the expected return if the true model was ν. Since
the expected value of R is V πµ (h; d), and ν,ν are upper
and lower bounds respectively, the expected values of
both X(ν, κ) and X(ν, κ) are non-negative and at least

one of them has expectation larger than (1− γ)ε/8.

MERL eliminates environment ν from the model class
if the cumulative sum of X(ν, κ) over all exploration
phases where ν ∈ {ν, ν} is sufficiently large, but it
tests this condition only when the counts E(ν, κ) has
increased enough since the last test. Let αj :=

⌈
αj
⌉

for α ∈ (1, 2) as defined in the algorithm. MERL only
tests if ν should be removed from the model class when
E(ν, κ) = αj for some j ∈ N. This restriction ensures
that tests are not performed too often, which allows
us to apply the union bound without losing too much.
Note that if the true environment µ ∈ {ν, ν}, then
Eµ,πX(µ, κ) = 0, which will ultimately be enough to
ensure that µ remains in the model class with high
probability. The reason for using κ to bucket explo-
ration phases will become apparent later in the proof
of Lemma 3.

Algorithm 1 MERL

1: Inputs: ε, δ and M := {ν1, ν2, · · · , νN}.
2: t = 1 and h empty history
3: d := 1

1−γ log 8
(1−γ)ε

, δ1 := δ

32|K|N3/2

4: α := 4
√
N

4
√
N−1

and αj :=
⌈
αj
⌉

5: E(ν, κ) := 0, ∀ν ∈M and κ ∈ N
6: loop
7: repeat
8: Π := {π∗ν : ν ∈M}
9: ν, ν, π := arg max

ν,ν∈M,π∈Π
V πν (h; d)− V πν (h; d)

10: if ∆ := V πν (h; d)− V πν (h; d) > ε/4 then

11: h̃ = h and R = 0
12: for j = 0→ d do
13: R = R+ γjrt(h)
14: Act(π)
15: end for
16: κ := min

{
κ ∈ N : ∆ > ε2κ−2

}
.

17: E(ν, κ) = E(ν, κ) + 1 and E(ν, κ) = E(ν, κ) + 1

18: X(ν, κ)E(ν,κ) = (1− γ)(V πν (h̃; d)−R)

19: X(ν, κ)E(ν,κ) = (1− γ)(R− V πν (h̃; d))
20: else
21: i := min {i : νi ∈M} and Act(π∗νi)
22: end if
23: until ∃ν ∈M, κ, j ∈ N such that E(ν, κ) = αj and

E(ν,κ)∑
i=1

X(ν, κ)i ≥
√

2E(ν, κ) log
E(ν, κ)

δ1
.

24: M =M−{ν}
25: end loop
26: function Act(π)
27: Take action at = π(h) and receive reward and ob-

servation rt, ot from environment
28: t← t+ 1 and h← hatotrt
29: end function

Subscripts. For clarity, we have omitted subscripts
in the pseudo-code above. In the analysis we will refer
to Et(ν, κ) and Mt for the values of E(ν, κ) and M
respectively at time-step t. We write νt for νi in line
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21 and similarly πt := π∗νt .

Phases. An exploration phase is a period of exactly d
time-steps, starting at time-step t if

1. t is not currently in an exploration phase.
2. ∆ := V πν (ht; d)− V πν (ht; d) > ε/4.

We say it is a ν-exploration phase if ν = ν or ν = ν and
a κ-exploration phase if ∆ ∈ [ε2κ−2, ε2κ−1) ≡ [εκ, 2εκ)
where εκ := ε2κ−2. It is a (ν, κ)-exploration phase if
it satisfies both of the previous statements. We say
that MERL is exploiting at time-step t if t is not in an
exploration phase. A failure phase is also a period of
d time-steps and starts in time-step t if

1. t is not in an exploration phase or earlier failure
phase

2. V ∗µ (ht)− V πµ (ht) > ε.

Unlike exploration phases, the algorithm does not de-
pend on the failure phases, which are only used in the
analysis, An exploration or failure phase starting at
time-step t is proper if µ ∈ Mt. The effective horizon
d is chosen to ensure that V πµ (h; d) ≥ V πµ (h)− ε/8 for
all π, µ and h.

t

V πν (h; d)− V πν (h; d) = 4ε V πν (h; d)− V πν (h; d) = ε

V ∗µ (h)− V πµ (h) > ε

explore, κ = 4 explore, κ = 2

failure phaseexploiting exploiting

Figure 1. Exploration/exploitation/failure phases, d = 4

Test statistics. We have previously remarked that
most traditional model-based algorithms with sample-
complexity guarantees record statistics about the tran-
sition probabilities of an environment. Since the en-
vironments are assumed to be finite, these statistics
eventually become accurate (or irrelevant) and the
standard theory on the concentration of measure can
be used for hypothesis testing. In the general case,
environments can be infinite and so we cannot col-
lect useful statistics about individual transitions. In-
stead, we use the statistics X(ν, κ), which are de-
pendent on the value function rather than individual
transitions. These satisfy Eµ,π[X(µ, κ)i] = 0 while
Eµ,π[X(ν, κ)i] ≥ 0 for all ν ∈ Mt. Testing is then
performed on the statistic

∑αk
i=1X(ν, κ)i, which will

satisfy certain martingale inequalities.

Updates. As MERL explores, it updates its model
class, Mt ⊆ M, by removing environments that have
become implausible. This is comparable to the up-
dating of confidence intervals for algorithms such as

MBIE (Strehl & Littman, 2005) or UCRL2 (Auer
et al., 2010). In MBIE, the confidence interval about
the empirical estimate of a transition probability is
updated after every observation. A slight theoreti-
cal improvement used by UCRL2 is to only update
when the number of samples of a particular statis-
tic doubles. The latter trick allows a cheap appli-
cation of the union bound over all updates without
wasting too many samples. For our purposes, how-
ever, we need to update slightly more often than the
doubling trick would allow. Instead, we check if an
environment should be eliminated if the number of
(ν, κ)-exploration phases is exactly αj for some j where

αj :=
⌈
αj
⌉

and α := 4
√
N

4
√
N−1 ∈ (1, 2). Since the growth

of αj is still exponential, the union bound will still be
applicable.

Probabilities. For the remainder of this section, un-
less otherwise mentioned, all probabilities and expec-
tations are with respect to Pµ,π where π is the policy
of Algorithm 1 and µ ∈M is the true environment.

Analysis. Define Gmax := 216N |K|
ε2(1−γ)2 log2 29N

ε2(1−γ)2δ1 and

Emax := 216N
ε2(1−γ)2 log2 29N

ε2(1−γ)2δ1 , which are high proba-

bility bounds on the number of failure and exploration
phases respectively.

Theorem 1. Let µ ∈M = {ν1, ν2, · · · νN} be the true
environment and π be the policy of Algorithm 1. Then

P
{
Lεµ,π(h) ≥ d · (Gmax + Emax)

}
≤ δ.

If lower order logarithmic factors are dropped then the
sample-complexity bound of MERL given by Theorem

1 is Õ
(

N
ε2(1−γ)3 log2 N

δε(1−γ)

)
. Theorem 1 follows from

three lemmas.

Lemma 2. µ ∈Mt for all t with probability 1− δ/4.

Lemma 3. The number of proper failure phases is
bounded by

Gmax :=
216N |K|
ε2(1− γ)2

log2 29N

ε2(1− γ)2δ1

with probability at least 1− δ
2 .

Lemma 4. The number of proper exploration phases
is bounded by

Emax :=
216N

ε2(1− γ)2
log2 29N

ε2(1− γ)2δ1

with probability at least 1− δ
4 .

Proof of Theorem 1 Applying the union bound to
the results of Lemmas 2, 3 and 4 gives the following
with probability at least 1− δ.

1. There are no non-proper exploration or failure
phases.

2. The number of proper exploration phases is at
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most Emax.
3. The number of proper failure phases is at most
Gmax.

If π is not ε-optimal at time-step t then t is either in
an exploration or failure phase. Since both are exactly
d time-steps long the total number of time-steps when
π is sub-optimal is at most d · (Gmax + Emax). �

We now turn our attention to proving Lemmas 2, 3
and 4. Of these, Lemma 4 is more conceptually chal-
lenging while Lemma 3 is intuitively unsurprising, but
technically difficult.

Proof of Lemma 2 If µ is removed from M, then
there exists a κ and j ∈ N such that

αj∑
i=1

X(µ, κ)i ≥
√

2αj log
αj
δ1
.

Fix a κ ∈ K, E∞(µ, κ) := limtEt(µ, κ) and Xi :=
X(µ, κ)i. Define a sequence of random variables

X̃i :=

{
Xi if i ≤ E∞(µ, κ)

0 otherwise.

Now we claim thatBn :=
∑n
i=1 X̃i is a martingale with

|Bi+1 −Bi| ≤ 1 and EBi = 0. That it is a martingale
with zero expectation follows because if t is the time-
step at the start of the exploration phase associated
with variable Xi, then E[Xi|Ft] = 0. |Bi+1 − Bi| ≤ 1
because discounted returns are bounded in [0, 1/(1 −
γ)] and by the definition of Xi.

For all j ∈ N, we have by Azuma’s inequality that

P

{
Bαj ≥

√
2αj log

αj
δ1

}
≤ δ1
αj
.

Apply the union bound over all j.

P

{
∃j ∈ N : Bαj ≥

√
2αj log

αj
δ1

}
≤
∞∑
j=1

δ1
αj
.

Complete the result by the union bound over all κ,
applying Lemma 10 (see Appendix) and the definition
of δ1 to bound

∑
κ∈K

∑∞
j=1

δ1
αj
≤ δ/4. �

We are now ready to give a high-probability bound on
the number of proper exploration phases. If MERL
starts a proper exploration phase at time-step t then
at least one of the following holds:

1. E[X(ν, κ)E(ν,κ)|Ft] > (1− γ)ε/8.
2. E[X(ν, κ)E(ν,κ)|Ft] > (1− γ)ε/8.

This contrasts with E[X(µ, κ)E(µ,κ)|Ft] = 0, which en-
sures that µ remains in M for all time-steps. If one
could know which of the above statements were true at
each time-step then it would be comparatively easy to

show by means of Azuma’s inequality that all environ-
ments that are not ε-close are quickly eliminated after
O( 1

ε2(1−γ)2 ) ν-exploration phases, which would lead to

the desired bound. Unfortunately though, the truth of
(1) or (2) above cannot be determined, which greatly
increases the complexity of the proof.

Proof of Lemma 4 Fix a κ ∈ K and let Emax,κ be
a constant to be chosen later. Let ht be the history
at the start of some κ-exploration phase. We say an
(ν, κ)-exploration phase is ν-effective if

E[X(ν, κ)E(ν,κ)|Ft] ≡ (1− γ)(V πµ (ht; d)− V πν (ht; d))

> (1− γ)εκ/2

and ν-effective if the same condition holds for ν. Now
since t is the start of a proper exploration phase we
have that µ ∈Mt and so

V πν (ht; d) ≥ V πµ (ht; d) ≥ V πν (ht; d)

V πν (ht; d)− V πν (ht; d) > εκ.

Therefore every proper exploration phase is either ν-
effective or ν-effective. Let Et,κ :=

∑
ν Et(ν, κ), which

is twice the number of κ-exploration phases at time t
and E∞,κ := limtEt,κ, which is twice the total number
of κ-exploration phases.1 Let Ft(ν, κ) be the number
of ν-effective (ν, κ)-exploration phases up to time-step
t. Since each proper κ-exploration phase is either ν-
effective or ν-effective or both,

∑
ν Ft(ν, κ) ≥ Et,κ/2.

Applying Lemma 8 to yν := Et(ν, κ)/Et,κ and xν :=
Ft(ν, κ)/Et(ν, κ) shows that if E∞,κ > Emax,κ then
there exists a t′ and ν such that Et′,κ = Emax,κ and

Ft′(ν, κ)2

Emax,κEt′(ν, κ)
≥ 1

4N
, (1)

which implies that

Ft′(ν, κ) ≥
√
Emax,κEt′(ν, κ)

4N

(a)

≥ Et′(ν, κ)√
4N

, (2)

where (a) follows because Emax,κ = Et′,κ ≥ Et′(ν, κ).
Let Z(ν) be the event that there exists a t′ satisfying
(1). We will shortly show that P {Z(ν)} < δ/(4N |K|).
Therefore

P {E∞,κ > Emax,κ} ≤ P {∃ν : Z(ν)} ≤
∑
ν∈M

P {Z(ν)}

≤ δ/(4|K|)
Finally take the union bound over all κ and let

Emax :=
∑
κ∈K

1

2
Emax,κ,

where we used 1
2Emax,κ because Emax,κ is a high-

probability upper bound on E∞,κ, which is twice the
number of κ-exploration phases.

1Note that it is never the case that ν = ν at the start
of an exploration phase, since in this case ∆ = 0.
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Bounding P {Z(ν)} < δ/(4N |K|). Fix a ν ∈ M
and let X1, X2, · · · , XE∞(ν,κ) be the sequence with
Xi := X(ν, κ)i and let ti be the corresponding time-
step at the start of the ith (ν, κ)-exploration phase.
Define a sequence

Yi :=

{
Xi −E[Xi|Fti ] if i ≤ E∞(ν, κ)

0 otherwise

Let λ(E) :=
√

2E log E
δ1

. Now if Z(ν), then the largest

time-step t ≤ t′ with Et(ν, t) = αj for some j ∈ N is

t := max {t ≤ t′ : ∃j ∈ N s.t. αj = Et(ν, t)} ,
which exists and satisfies

1. Et(ν, κ) = αj for some j.
2. E∞(ν, κ) > Et(ν, κ).
3. Ft(ν, κ) ≥

√
Et(ν, κ)Emax,κ/(16N).

4. Et(ν, κ) ≥ Emax,κ/(16N).

where parts 1 and 2 are straightforward and parts
3 and 4 follow by the definition of {αj}, which was
chosen specifically for this part of the proof. Since
E∞(ν, κ) > Et(ν, κ), at the end of the exploration
phase starting at time-step t, ν must remain in M.
Therefore

λ(αj)
(a)

≥
αj∑
i=1

Xi

(b)

≥
αj∑
i=1

Yi +
εκ(1− γ)Ft(ν, κ)

2

(c)

≥
αj∑
i=1

Yi +
εκ(1− γ)

8

√
αjEmax,κ

N
, (3)

where in (a) we used the definition of the confidence in-
terval of MERL. In (b) we used the definition of Yi and
the fact that EXi ≥ 0 for all i and EXi ≥ εκ(1− γ)/2
if Xi is effective. Finally we used the lower bound on
the number of effective ν-exploration phases, Ft(ν, κ)

(part 3 above). If Emax,κ := 211N
ε2κ(1−γ)2

log2 29N
ε2(1−γ)2δ1 ,

then by applying Lemma 9 with a = 29N
ε2κ(1−γ)2

and

b = 1/δ1 we obtain

Emax,κ ≥
29N

ε2κ(1− γ)2
log

Emax,κ

δ1
≥ 29N

ε2κ(1− γ)2
log

αj
δ1

Multiplying both sides by αj and rearranging and us-
ing the definition of λ(αj) leads to

εκ(1− γ)

8

√
αjEmax,κ

N
≥ 2λ(αj).

Inserting this into Equation (3) shows that Z(ν) im-
plies that there exists an αj such that

∑αj
i=1 Yi ≤

−λ(αj). Now by the same argument as in the proof
of Lemma 2, Bn :=

∑n
i=1 Yi is a martingale with

|Bi+1 −Bi| ≤ 1. Therefore by Azuma’s inequality

P

{
αj∑
i=1

Yi ≤ −λ(αj)

}
≤ δ1
αj
.

Finally apply the union bound over all j. �

Recall that if MERL is exploiting at time-step t, then
πt is the optimal policy with respect to the first en-
vironment in the model class. To prove Lemma 3 we
start by showing that in this case πt is nearly-optimal.

Lemma 5. Let t be a time-step and ht be the corre-
sponding history. If µ ∈ Mt and MERL is exploiting
(not exploring), then V ∗µ (ht)− V πtµ (ht) ≤ 5ε/8.

Proof of Lemma 5 Since MERL is not exploring

V ∗µ (ht)− V πtµ (ht)
(a)

≤ V ∗µ (ht; d)− V πtµ (ht; d) +
ε

8
(b)

≤ V
π∗µ
νt (ht; d)− V πtνt (ht; d) + 5ε/8

(c)

≤ 5ε/8,

(a) follows by truncating the value function. (b) fol-
lows because µ ∈ Mt and MERL is exploiting. (c) is
true since πt is the optimal policy in νt. �

Lemma 5 is almost sufficient to prove Lemma 3. The
only problem is that MERL only follows πt = π∗νt un-
til there is an exploration phase. The idea to prove
Lemma 3 is as follows:

1. If there is a low probability of entering an explo-
ration phase within the next d time-steps follow-
ing policy πt, then π is nearly as good as πt, which
itself is nearly optimal by Lemma 5.

2. The number of time-steps when the probability
of entering an exploration phase within the next
d time-steps is high is unlikely to be too large
before an exploration phase is triggered. Since
there are not many exploration phases with high
probability, there are also unlikely to be too many
time-steps when π expects to enter one with high
probability.

Before the proof of Lemma 3 we remark on an eas-
ier to prove (but weaker) version of Theorem 1. If
MERL is exploiting then Lemma 5 shows that V ∗µ (h)−
Q∗µ(h, π(h)) ≤ 5ε/8 < ε. Therefore if we cared about
the number of time-steps when this is not the case
(rather than V ∗µ −V πµ ), then we would already be done
by combining Lemmas 4 and 5.

Proof of Lemma 3 Let t be the start of a proper
failure phase with corresponding history, h. Therefore
V ∗µ (h) − V πµ (h) > ε. By Lemma 5, V ∗µ (h) − V πµ (h) =
V ∗µ (h)−V πtµ (h)+V πtµ (h)−V πµ (h) ≤ 5ε/8+V πtµ −V πµ (h)
and so

V πtµ (h)− V πµ (h) ≥ 3ε

8
. (4)

We define set Hκ ⊂ H∗ to be the set of extensions of h
that trigger κ-exploration phases. Formally Hκ ⊂ H∗
is the prefix free set such that h′ in Hκ if h @ h′ and h′
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triggers a κ-exploration phase for the first time since
t. Let Hκ,d := {h′ : h′ ∈ Hκ ∧ `(h′) ≤ t+ d}, which is
the set of extensions of h that are at most d long and
trigger κ-exploration phases. Therefore

3ε

8

(a)

≤ V πtµ (h)− V πµ (h)

(b)
=
∑
κ∈K

∑
h′∈Hκ

P (h′|h)γ`(h
′)−t (V πtµ (h′)− V πµ (h′)

)
(c)

≤
∑
κ∈K

∑
h′∈Hκ,d

P (h′|h)
(
V πtµ (h′)− V πµ (h′)

)
+
ε

8

(d)

≤
∑
κ∈K

∑
h′∈Hκ,d

P (h′|h)
(
V ∗µ (h′; d)− V πµ (h′; d)

)
+
ε

4

(e)

≤
∑
κ∈K

∑
h′∈Hκ,d

P (h′|h)4εκ +
ε

4
,

(a) follows from Equation (4). (b) by noting that that
π = πt until an exploration phase is triggered. (c) by
replacing Hκ with Hκ,d and noting that if h′ ∈ Hκ −
Hκ,d, then γ`(h

′)−t ≤ (1 − γ)ε/8. (d) by substituting
V ∗µ (h′) ≥ V πtµ (h′) and by using the effective horizon to
truncate the value functions. (e) by the definition of a
κ-exploration phase.

Since the maximum of a set is greater than the aver-
age, there exists a κ ∈ K such that

∑
h′∈Hκ,d P (h′|h) ≥

2−κ−3/|K|, which is the probability that MERL en-
counters a κ-exploration phase within d time-steps
from h. Now fix a κ and let t1, t2, · · · , · · · , tGκ be the
sequence of time-steps such that ti is the start of a fail-
ure phase and the probability of a κ-exploration phase
within the next d time-steps is at least 2−κ−3/|K|.
Let Yi ∈ {0, 1} be the event that a κ-exploration
phase does occur within d time-steps of ti and define
an auxiliary infinite sequence Ỹ1, Ỹ2, · · · by Ỹi := Yi
if i ≤ Gκ and 1 otherwise. Let Eκ be the num-
ber of κ-exploration phases and Gmax,κ be a constant
to be chosen later and suppose Gκ > Gmax,κ, then∑Gmax,κ

i=1 Ỹi =
∑Gmax,κ

i=1 Yi and either
∑Gmax,κ

i=1 Ỹi ≤
Emax,κ or Eκ > Emax,κ, where the latter follows be-
cause Yi = 1 implies a κ-exploration phase occurred.
Therefore

P {Gκ > Gmax,κ}

≤ P


Gmax,κ∑
i=1

Ỹi < Emax,κ

+ P {Eκ > Emax,κ}

≤ P


Gmax,κ∑
i=1

Ỹi < Emax,κ

+
δ

4|K|
.

We now choose Gmax,κ sufficiently large to bound the
first term in the display above by δ/(4|K|). By the

definition of Ỹi and Yi, if i ≤ Gκ then E[Ỹi|Fti ] ≥
2−κ−3/|K| and for i > Gκ, Ỹi is always 1. Setting

Gmax,κ := 2κ+4|K|Emax,κ

=
217N |K|
εεκ(1− γ)2

log2 29N

ε2(1− γ)2δ1

is sufficient to guarantee E[
∑Gmax,κ

i=1 Ỹi] > 2Emax,κ and
an application of Azuma’s inequality to the martingale
difference sequence completes the result. Finally we
apply the union bound over all κ and set Gmax :=∑
κ∈NGmax,κ >

∑
κ∈KGmax,κ. �

4. Compact Case

In the last section we presented MERL and proved a
sample-complexity bound for the case when the envi-
ronment class is finite. In this section we show that
if the number of environments is infinite, but compact
with respect to the topology generated by a natural
metric, then sample-complexity bounds are still pos-
sible with a minor modification of MERL. The key
idea is to use compactness to cover the space of envi-
ronments with ε-balls and compute statistics on these
balls rather than individual environments. Since all
environments in the same ε-ball are sufficiently close,
the resulting statistics cannot be significantly different
and all analysis goes through identically to the finite
case. Define a topology on the space of all environ-
ments induced by the pseudo-metric

d(ν1, ν2) := sup
h,π
|V πν1(h)− V πν2(h)|.

Theorem 6. Let M be compact and coverable by N
ε-balls then a modification of Algorithm 1 satisfies

P
{
L2ε
µ,π(h) ≥ d · (Gmax + Emax)

}
≤ δ.

The main modification is to define statistics on ele-
ments of the cover, rather than specific environments.

1. Let U1, · · · , UN be an ε-cover of M.
2. At each time-step choose U and U such that ν ∈ U

and ν ∈ U .
3. Define statistics {X} on elements of the cover,

rather than environments, by

X(U, κ)E(U,κ) := inf
ν∈U

(1− γ)(R− V πν (h))

X(U, κ)E(U,κ) := inf
ν∈U

(1− γ)(V πν (h)−R)

4. If there exists a U where the test fails then elimi-
nate all environments in that cover.

The proof requires only small modifications to show
that with high probability the U containing the true
environment is never discarded, while those not con-
taining the true environment are if tested sufficiently
often.
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5. Unbounded Environment Classes

If the environment class is non-compact then we can-
not in general expect finite sample-complexity bounds.
Indeed, even asymptotic results are usually not possi-
ble.

Theorem 7. There exist non-compact M for which
no agent has a finite PAC bound.

The obvious example is when M is the set of all en-
vironments. Then for any policy M includes an envi-
ronment that is tuned to ensure the policy acts sub-
optimally infinitely often. A more interesting example
is the class of all computable environments, which is
non-compact and also does not admit algorithms with
uniform finite sample-complexity. See negative results
by Lattimore & Hutter (2011b) for counter-examples.

6. Lower Bound

We now turn our attention to the lower bound. In
specific cases, the bound in Theorem 1 is very weak.
For example, if M is the class of finite MDPs with
|S| states then a natural covering leads to a PAC
bound with exponential dependence on the state-space
while it is known that the true dependence is at most
quadratic. This should not be surprising since infor-
mation about the transitions for one state gives infor-
mation about a large subset of M, not just a single
environment. We show that the bound in Theorem 1
is unimprovable for general environment classes except
for logarithmic factors. That is, there exists a class of
environments where Theorem 1 is nearly tight.

1
r = 0

	
r = 0

⊕
r = 1

0
r = 0

1− p

p := 1/(2− γ)

1
2
− ε(a)

1
2

+ ε(a)

q := 2− 1/γ

1− q

q

1− q

The simplest counter-example
is a set of MDPs with four
states, S = {0, 1,⊕,	} and
N actions, A = {a1, · · · , aN}.
The rewards and transitions
are depicted in the figure on
the right where the transi-
tion probabilities depend on
the action. Let M :=
{ν1, · · · , νN} where for νk we
set ε(ai) = [[i = k]]ε(1 − γ).
Therefore in environment νk, ak is the optimal ac-
tion in state 1. M can be viewed as a set of bandits
with rewards in (0, 1/(1 − γ)). In the bandit domain
tight lower bounds on sample-complexity are known
and given in Mannor & Tsitsiklis (2004). These re-
sults can be applied as in Strehl et al. (2009) and Lat-
timore & Hutter (2012) to show that no algorithm has
sample-complexity less than O( N

ε2(1−γ)3 log 1
δ ).

7. Conclusions
Summary. The Maximum Exploration Reinforce-
ment Learning algorithm was presented. For finite
classes of arbitrary environments a sample-complexity
bound was given that is linear in the number of envi-
ronments. We also presented lower bounds that show
that in general this cannot be improved except for log-
arithmic factors. Learning is also possible for com-
pact classes with the sample complexity depending
on the size of the smallest ε-cover where the distance
between two environments is the difference in value
functions over all policies and history sequences. Fi-
nally, for non-compact classes of environments sample-
complexity bounds are typically not possible.

Running time. The running time of MERL can be
arbitrary large since computing the policy maximising
∆ depends on the environment class used. Even as-
suming the distribution of observation/rewards given
the history can be computed in constant time, the val-
ues of optimal policies can still only be computed in
time exponential in the horizon.

Future work. MERL is close to unimprovable in the
sense that there exists a class of environments where
the upper bound is nearly tight. On the other hand,
there are classes of environments where the bound of
Theorem 1 scales badly compared to the bounds of
tuned algorithms (for example, finite state MDPs). It
would be interesting to show that MERL, or a vari-
ant thereof, actually performs comparably to the opti-
mal sample-complexity even in these cases. This ques-
tion is likely to be subtle since there are unrealistic
classes of environments where the algorithm minimis-
ing sample-complexity should take actions leading di-
rectly to a trap where it receives low reward eternally,
but is never (again) sub-optimal. Since MERL will
not behave this way it will tend to have poor sample-
complexity bounds in this type of environment class.
This is really a failure of the sample-complexity op-
timality criterion rather than MERL, since jumping
into non-rewarding traps is clearly sub-optimal by any
realistic measure.

Acknowledgements. This work was supported by
ARC grant DP120100950.

A. Technical Results

Lemma 8. Let x, y ∈ [0, 1]N satisfy
∑N
i=1 yi = 1 and∑N

i=1 xiyi ≥ 1/2. Then maxi x
2
i yi > 1/(4N).

Lemma 9. Let a, b > 2 and x := 4a(log ab)2. Then
x ≥ a log bx.

Lemma 10. Let αj :=
⌈
αj
⌉

where α := 4
√
N

4
√
N−1 . Then∑∞

j=1 α
−1
j ≤ 4

√
N .
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nen, Esko, and Zeugmann, Thomas (eds.), Algorith-
mic Learning Theory, volume 6925 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg,
2011b.

Lattimore, T. and Hutter, M. PAC bounds for dis-
counted MDPs. Technical report, 2012. http://tor-
lattimore.com/pubs/pac-tech.pdf.

Maillard, Odalric-Ambrym, Nguyen, Phuong, Ort-
ner, Ronald, and Ryabko, Daniil. Optimal regret
bounds for selecting the state representation in re-
inforcement learning. In Proceedings of the Thirti-
eth International Conference on Machine Learning
(ICML’13), 2013.

Mannor, S. and Tsitsiklis, J. The sample complexity
of exploration in the multi-armed bandit problem.
J. Mach. Learn. Res., 5:623–648, December 2004.
ISSN 1532-4435.

Ryabko, D. and Hutter, M. On the possibility of learn-
ing in reactive environments with arbitrary depen-
dence. Theoretical Computer Science, 405(3):274–
284, 2008.

Strehl, A. and Littman, M. A theoretical analysis of
model-based interval estimation. In Proceedings of
the 22nd international conference on Machine learn-
ing, ICML ’05, pp. 856–863, 2005.

Strehl, A., Li, L., and Littman, M. Reinforcement
learning in finite MDPs: PAC analysis. J. Mach.
Learn. Res., 10:2413–2444, December 2009.

Sunehag, P. and Hutter, M. Optimistic agents are
asymptotically optimal. In Proceedings of the 25th
Australasian AI conference, 2012.
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