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Abstract

We propose a randomized block-coordinate
variant of the classic Frank-Wolfe algorithm
for convex optimization with block-separable
constraints. Despite its lower iteration cost,
we show that it achieves a similar conver-
gence rate in duality gap as the full Frank-
Wolfe algorithm. We also show that, when
applied to the dual structural support vector
machine (SVM) objective, this yields an on-
line algorithm that has the same low iteration
complexity as primal stochastic subgradient
methods. However, unlike stochastic subgra-
dient methods, the block-coordinate Frank-
Wolfe algorithm allows us to compute the op-
timal step-size and yields a computable dual-
ity gap guarantee. Our experiments indicate
that this simple algorithm outperforms com-
peting structural SVM solvers.

1. Introduction

Binary SVMs are amongst the most popular classifica-
tion methods, and this has motivated substantial in-
terest in optimization solvers that are tailored to their
specific problem structure. However, despite their
wider applicability, there has been much less work
on solving the optimization problem associated with
structural SVMs, which are the generalization of SVMs
to structured outputs like graphs and other combinato-
rial objects (Taskar et al., 2003; Tsochantaridis et al.,
2005). This seems to be due to the difficulty of dealing
with the exponential number of constraints in the pri-
mal problem, or the exponential number of variables
in the dual problem. Indeed, because they achieve an
Õ(1/ε) convergence rate while only requiring a single
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call to the so-called maximization oracle on each it-
eration, basic stochastic subgradient methods are still
widely used for training structural SVMs (Ratliff et al.,
2007; Shalev-Shwartz et al., 2010a). However, these
methods are often frustrating to use for practitioners,
because their performance is very sensitive to the se-
quence of step sizes, and because it is difficult to decide
when to terminate the iterations.

To solve the dual structural SVM problem, in this
paper we consider the Frank-Wolfe (1956) algorithm,
which has seen a recent surge of interest in machine
learning and signal processing (Mangasarian, 1995;
Clarkson, 2010; Jaggi, 2011; 2013; Bach et al., 2012),
including in the context of binary SVMs (Gärtner &
Jaggi, 2009; Ouyang & Gray, 2010). A key advan-
tage of this algorithm is that the iterates are sparse,
and we show that this allows us to efficiently apply
it to the dual structural SVM objective even though
there are an exponential number of variables. A sec-
ond key advantage of this algorithm is that the it-
erations only require optimizing linear functions over
the constrained domain, and we show that this is
equivalent to the maximization oracle used by sub-
gradient and cutting-plane methods (Joachims et al.,
2009; Teo et al., 2010). Thus, the Frank-Wolfe al-
gorithm has the same wide applicability as subgradi-
ent methods, and can be applied to problems such as
low-treewidth graphical models (Taskar et al., 2003),
graph matchings (Caetano et al., 2009), and associa-
tive Markov networks (Taskar, 2004). In contrast,
other approaches must use more expensive (and poten-
tially intractable) oracles such as computing marginals
over labels (Collins et al., 2008; Zhang et al., 2011) or
doing a Bregman projection onto the space of struc-
tures (Taskar et al., 2006). Interestingly, for struc-
tural SVMs we also show that existing batch subgra-
dient and cutting-plane methods are special cases of
Frank-Wolfe algorithms, and this leads to stronger and
simpler O(1/ε) convergence rate guarantees for these
existing algorithms.
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As in other batch structural SVM solvers like cutting-
plane methods (Joachims et al., 2009; Teo et al., 2010)
and the excessive gap technique (Zhang et al., 2011)
(see Table 1 at the end for an overview), each Frank-
Wolfe iteration unfortunately requires calling the ap-
propriate oracle once for all training examples, unlike
the single oracle call needed by stochastic subgradient
methods. This can be prohibitive for data sets with
a large number of training examples. To reduce this
cost, we propose a novel randomized block-coordinate
version of the Frank-Wolfe algorithm for problems with
block-separable constraints. We show that this al-
gorithm still achieves the O(1/ε) convergence rate of
the full Frank-Wolfe algorithm, and in the context of
structural SVMs, it only requires a single call to the
maximization oracle. Although the stochastic subgra-
dient and the novel block-coordinate Frank-Wolfe al-
gorithms have a similar iteration cost and theoretical
convergence rate for solving the structural SVM prob-
lem, the new algorithm has several important advan-
tages for practitioners:

• The optimal step-size can be efficiently computed
in closed-form, hence no step-size needs to be se-
lected.

• The algorithm yields a duality gap guarantee, and
(at the cost of computing the primal objective) we
can compute the duality gap as a proper stopping
criterion.

• The convergence rate holds even when using ap-
proximate maximization oracles.

Further, our experimental results show that the op-
timal step-size leads to a significant advantage during
the first few passes through the data, and a systematic
(but smaller) advantage in later passes.

2. Structural Support Vector Machines

We first briefly review the standard convex optimiza-
tion setup for structural SVMs (Taskar et al., 2003;
Tsochantaridis et al., 2005). In structured predic-
tion, the goal is to predict a structured object y ∈
Y(x) (such as a sequence of tags) for a given in-
put x ∈ X . In the standard approach, a structured
feature map φ : X × Y → Rd encodes the rele-
vant information for input/output pairs, and a lin-
ear classifier with parameter w is defined by hw(x) =
argmaxy∈Y(x)〈w,φ(x,y)〉. Given a labeled training
set D = {(xi,yi)}ni=1, w is estimated by solving

min
w, ξ

λ

2
‖w‖2 +

1

n

n∑

i=1

ξi (1)

s.t. 〈w,ψi(y)〉 ≥ L(yi,y)− ξi ∀i, ∀y ∈
=:Yi︷ ︸︸ ︷
Y(xi),

where ψi(y) := φ(xi,yi) − φ(xi,y), and Li(y) :=
L(yi,y) denotes the task-dependent structured error
of predicting output y instead of the observed output
yi (typically a Hamming distance between the two la-
bels). The slack variable ξi measures the surrogate
loss for the i-th datapoint and λ is the regularization
parameter. The convex problem (1) is what Joachims
et al. (2009, Optimization Problem 2) call the n-slack
structural SVM with margin-rescaling. A variant with
slack-rescaling was proposed by Tsochantaridis et al.
(2005), which is equivalent to our setting if we replace
all vectors ψi(y) by Li(y)ψi(y).

Loss-Augmented Decoding. Unfortunately, the
above problem can have an exponential number of con-
straints due to the combinatorial nature of Y. We can
replace the

∑
i |Yi| linear constraints with n piecewise-

linear ones by defining the structured hinge-loss:

‘max
oracle’

H̃i(w) := max
y∈Yi

Li(y)− 〈w,ψi(y)〉︸ ︷︷ ︸
=:Hi(y;w)

. (2)

The constraints in (1) can thus be replaced with the
non-linear ones ξi ≥ H̃i(w). The computation of the
structured hinge-loss for each i amounts to finding the
most ‘violating’ output y for a given input xi, a task
which can be carried out efficiently in many structured
prediction settings (see the introduction). This prob-
lem is called the loss-augmented decoding subproblem.
In this paper, we only assume access to an efficient
solver for this subproblem, and we call such a solver a
maximization oracle. The equivalent non-smooth un-
constrained formulation of (1) is:

min
w

λ

2
‖w‖2 +

1

n

n∑

i=1

H̃i(w). (3)

Having a maximization oracle allows us to apply
subgradient methods to this problem (Ratliff et al.,
2007), as a subgradient of H̃i(w) with respect to w
is −ψi(y∗i ), where y∗i is any maximizer of the loss-
augmented decoding subproblem (2).

The Dual. The Lagrange dual of the above n-slack-
formulation (1) has m :=

∑
i |Yi| variables or potential

‘support vectors’. Writing αi(y) for the dual variable
associated with the training example i and potential
output y ∈ Yi, the dual problem is given by

min
α∈Rm

α≥0

f(α) :=
λ

2

∥∥Aα
∥∥2 − bTα (4)

s.t.
∑
y∈Yi

αi(y) = 1 ∀i ∈ [n] ,

where the matrix A ∈ Rd×m consists of the m columns
A :=

{
1
λnψi(y) ∈ Rd

∣∣ i ∈ [n],y ∈ Yi
}

, and the vector

b ∈ Rm is given by b :=
(

1
nLi(y)

)
i∈[n],y∈Yi

. Given a



Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

dual variable vector α, we can use the Karush-Kuhn-
Tucker optimality conditions to obtain the correspond-

ing primal variables w = Aα =
∑
i,y∈Yi

αi(y)ψi(y)
λn ,

see Appendix E. The gradient of f then takes the sim-
ple form ∇f(α) = λATAα − b = λATw − b; its
(i,y)-th component is − 1

nHi(y;w), cf. (2). Finally,
note that the domain M ⊂ Rm of (4) is the product
of n probability simplices, M := ∆|Y1| × . . .×∆|Yn|.

3. The Frank-Wolfe Algorithm

We consider the convex optimization problem
minα∈M f(α), where the convex feasible set M is
compact and the convex objective f is continuously
differentiable. The Frank-Wolfe algorithm (1956)
(shown in Algorithm 1) is an iterative optimiza-
tion algorithm for such problems that only requires
optimizing linear functions over M, and thus has
wider applicability than projected gradient algorithms,
which require optimizing a quadratic function overM.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate α (see picture in inset).

↵

f(↵)

M

f

s

g(↵)
f(↵) +

⌦
s
0 �↵,rf(↵)

↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size γ.
These simple up-
dates yield two
interesting proper-
ties. First, every
iterate α(k) can be written as a convex combination of
the starting point α(0) and the search corners s found
previously. The parameter α(k) thus has a sparse
representation, which makes the algorithm suitable
even for cases where the dimensionality of α is
exponential. Second, since f is convex, the minimum
of the linearization of f over M immediately gives a
lower bound on the value of the yet unknown optimal
solution f(α∗). Every step of the algorithm thus
computes for free the following ‘linearization duality
gap’ defined for any feasible point α ∈ M (which is
in fact a special case of the Fenchel duality gap as

Algorithm 1 Frank-Wolfe on a Compact Domain

Let α(0) ∈M
for k = 0 . . .K do

Compute s := argmin
s′∈M

〈
s′,∇f(α(k))

〉

Let γ := 2
k+2 , or optimize γ by line-search

Update α(k+1) := (1− γ)α(k) + γs

explained in Appendix D):

g(α) := max
s′∈M

〈α− s′,∇f(α)〉 = 〈α− s,∇f(α)〉. (5)

As g(α) ≥ f(α) − f(α∗) by the above argument, s
thus readily gives at each iteration the current dual-
ity gap as a certificate for the current approximation
quality (Jaggi, 2011; 2013), allowing us to monitor the
convergence, and more importantly to choose the the-
oretically sound stopping criterion g(α(k)) ≤ ε.
In terms of convergence, it is known that after O(1/ε)
iterations, Algorithm 1 obtains an ε-approximate solu-
tion (Frank & Wolfe, 1956; Dunn & Harshbarger, 1978)
as well as a guaranteed ε-small duality gap (Clarkson,
2010; Jaggi, 2013), along with a certificate to (5). For
the convergence results to hold, the internal linear sub-
problem does not need to be solved exactly, but only
to some error. We review and generalize the conver-
gence proof in Appendix C. The constant hidden in
the O(1/ε) notation is the curvature constant Cf , an
affine invariant quantity measuring the maximum de-
viation of f from its linear approximation over M (it
yields a weaker form of Lipschitz assumption on the
gradient, see e.g. Appendix A for a formal definition).

4. Frank-Wolfe for Structural SVMs

Note that classical algorithms like the projected gra-
dient method cannot be tractably applied to the dual
of the structural SVM problem (4), due to the large
number of dual variables. In this section, we explain
how the Frank-Wolfe method (Algorithm 1) can be
efficiently applied to this dual problem, and discuss
its relationship to other algorithms. The main in-
sight here is to notice that the linear subproblem em-
ployed by Frank-Wolfe is actually directly equivalent
to the loss-augmented decoding subproblem (2) for
each datapoint, which can be solved efficiently (see
Appendix B.1 for details). Recall that the optimiza-
tion domain for the dual variables α is the product

Algorithm 2 Batch Primal-Dual Frank-Wolfe Algo-
rithm for the Structural SVM

Let w(0) := 0, `(0) := 0
for k = 0 . . .K do

for i = 1 . . . n do
Solve y∗i := argmax

y∈Yi

Hi(y;w(k)) cf. (2)

Let ws :=

n∑

i=1

1
λnψi(y

∗
i ) and `s := 1

n

n∑
i=1

Li(y
∗
i )

Let γ := λ(w(k)−ws)
Tw(k)−`(k)+`s

λ‖w(k)−ws‖2
and clip to [0, 1]

Update w(k+1) := (1− γ)w(k) + γws
and `(k+1) := (1− γ)`(k) + γ `s
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of n simplices, M = ∆|Y1| × . . . × ∆|Yn|. Since each
simplex consists of a potentially exponential number
|Yi| of dual variables, we cannot maintain a dense vec-
tor α during the algorithm. However, as mentioned in
Section 3, each iterate α(k) of the Frank-Wolfe algo-
rithm is a sparse convex combination of the previously
visited corners s and the starting point α(0), and so
we only need to maintain the list of previously seen
solutions to the loss-augmented decoding subproblems
to keep track of the non-zero coordinates of α, avoid-
ing the problem of its exponential size. Alternately,
if we do not use kernels, we can avoid the quadratic
explosion of the number of operations needed in the
dual by not explicitly maintaining α(k), but instead
maintaining the corresponding primal variable w(k).

A Primal-Dual Frank-Wolfe Algorithm for the
Structural SVM Dual. Applying Algorithm 1
with line search to the dual of the structural SVM (4),
but only maintaining the corresponding primal primal
iterates w(k) := Aα(k), we obtain Algorithm 2. Note
that the Frank-Wolfe search corner s = (ey

∗
1 , . . . , ey

∗
n),

which is obtained by solving the loss-augmented sub-
problems, yields the update ws = As. We use the nat-
ural starting point α(0) := (ey1 , . . . , eyn) which yields
w(0) = 0 as ψi(yi) = 0 ∀i.

The Duality Gap. The duality gap (5) for our
structural SVM dual formulation (4) is given by

g(α) := max
s′∈M

〈α− s′,∇f(α)〉
= (α− s)T (λATAα− b)
= λ(w −As)Tw − bTα+ bTs ,

where s is an exact minimizer of the linearized prob-
lem given at the point α. This (Fenchel) duality gap
turns out to be the same as the Lagrangian duality gap
here (see Appendix B.2), and gives a direct handle on
the suboptimality of w(k) for the primal problem (3).
Using ws := As and `s := bTs, we observe that the
gap is efficient to compute given the primal variables
w := Aα and ` := bTα, which are maintained dur-
ing the run of Algorithm 2. Therefore, we can use the
duality gap g(α(k)) ≤ ε as a proper stopping criterion.

Implementing the Line-Search. Because the ob-
jective of the structural SVM dual (4) is sim-
ply a quadratic function in α, the optimal step-
size for any given candidate search point s ∈ M
can be obtained analytically. Namely, γLS :=
argminγ∈[0,1] f

(
α+ γ

(
s−α

))
is obtained by setting

the derivative of this univariate quadratic function in γ
to zero, which here (before restricting to [0, 1]) gives

γopt := 〈α−s,∇f(α)〉
λ‖A(α−s)‖2 = g(α)

λ‖w−ws‖2
(used in Algorithms 2

and 4).

Convergence Proof and Running Time. In the
following, we write R for the maximal length of a dif-
ference feature vector, i.e. R :=maxi∈[n],y∈Yi

‖ψi(y)‖2,
and we write the maximum error as Lmax :=
maxi,y Li(y). By bounding the curvature constant Cf
for the dual SVM objective (4), we can now directly
apply the known convergence results for the standard
Frank-Wolfe algorithm to obtain the following primal-
dual rate (proof in Appendix B.3):

Theorem 1. Algorithm 2 obtains an ε-approximate
solution to the structural SVM dual problem (4) and

duality gap g(α(k)) ≤ ε after at most O
(
R2

λε

)
itera-

tions, where each iteration costs n oracle calls.

Since we have proved that the duality gap is smaller
than ε, this implies that the original SVM primal ob-
jective (3) is actually solved to accuracy ε as well.

Relationship with the Batch Subgradient
Method in the Primal. Surprisingly, the batch
Frank-Wolfe method (Algorithm 2) is equivalent to
the batch subgradient method in the primal, though
Frank-Wolfe allows a more clever choice of step-size,
since line-search can be used in the dual. To see the
equivalence, notice that a subgradient of (3) is given
by dsub = λw − 1

n

∑
iψi(y

∗
i ) = λ(w − ws), where

y∗i and ws are as defined in Algorithm 2. Hence, for a
step-size of β, the subgradient method update becomes
w(k+1) := w(k) − βdsub = w(k) − βλ(w(k) − ws) =
(1 − βλ)w(k) + βλws. Comparing this with Algo-
rithm 2, we see that each Frank-Wolfe step on the
dual problem (4) with step-size γ is equivalent to a
batch subgradient step in the primal with a step-size
of β = γ/λ, and thus our convergence results also ap-
ply to it. This seems to generalize the equivalence be-
tween Frank-Wolfe and the subgradient method for a
quadratic objective with identity Hessian as observed
by Bach et al. (2012, Section 4.1).

Relationship with Cutting Plane Algorithms.
In each iteration, the cutting plane algorithm
of Joachims et al. (2009) and the Frank-Wolfe method
(Algorithm 2) solve the loss-augmented decoding prob-
lem for each datapoint, selecting the same new ‘active’
coordinates to add to the dual problem. The only dif-
ference is that instead of just moving towards the cor-
ner s, as in classical Frank-Wolfe, the cutting plane al-
gorithm re-optimizes over all the previously added ‘ac-
tive’ dual variables (this task is a quadratic program).
This shows that the method is exactly equivalent to
the ‘fully corrective’ variant of Frank-Wolfe, which in
each iteration re-optimizes over all previously visited
corners (Clarkson, 2010; Shalev-Shwartz et al., 2010b).
Note that the convergence results for the ‘fully correc-
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Algorithm 3 Block-Coordinate Frank-Wolfe Algo-
rithm on Product Domain

Let α(0) ∈M =M(1) × . . .×M(n)

for k = 0 . . .K do
Pick i at random in {1, . . . , n}
Find s(i) := argmin

s′
(i)
∈M(i)

〈
s′(i),∇(i)f(α(k))

〉

Let γ := 2n
k+2n , or optimize γ by line-search

Update α
(k+1)
(i) := α

(k)
(i) + γ

(
s(i) −α(k)

(i)

)

tive’ variant directly follow from the ones for Frank-
Wolfe (by inclusion), thus our convergence results ap-
ply to the cutting plane algorithm of Joachims et al.
(2009), significantly simplifying its analysis.

5. Faster Block-Coordinate Frank-Wolfe

A major disadvantage of the standard Frank-Wolfe al-
gorithm when applied to the structural SVM problem
is that each iteration requires a full pass through the
data, resulting in n calls to the maximization oracle.
In this section, we present the main new contribution
of the paper: a block-coordinate generalization of the
Frank-Wolfe algorithm that maintains all appealing
properties of Frank-Wolfe, but yields much cheaper
iterations, requiring only one call to the maximization
oracle in the context of structural SVMs. The new
method is given in Algorithm 3, and applies to any
constrained convex optimization problem of the form

min
α∈M(1)×...×M(n)

f(α) , (6)

where the domain has the structure of a Cartesian
product M = M(1) × . . . ×M(n) ⊆ Rm over n ≥ 1
blocks. The main idea of the method is to per-
form cheaper update steps that only affect a single
variable block M(i), and not all of them simultane-
ously. This is motivated by coordinate descent meth-
ods, which have a very successful history when ap-
plied to large scale optimization. Here we assume that
each factor M(i) ⊆ Rmi is convex and compact, with
m =

∑n
i=1mi. We will write α(i) ∈ Rmi for the i-th

block of coordinates of a vector α ∈ Rm. In each step,
Algorithm 3 picks one of the n blocks uniformly at ran-
dom, and leaves all other blocks unchanged. If there is
only one block (n = 1), then Algorithm 3 becomes the
standard Frank-Wolfe Algorithm 1. The algorithm can
be interpreted as a simplification of Nesterov’s ‘huge-
scale’ uniform coordinate descent method (Nesterov,
2012, Section 4). Here, instead of computing a pro-
jection operator on a block (which is intractable for
structural SVMs), we only need to solve one linear sub-
problem in each iteration, which for structural SVMs
is equivalent to a call to the maximization oracle.

Algorithm 4 Block-Coordinate Primal-Dual Frank-
Wolfe Algorithm for the Structural SVM

Let w(0) := wi
(0) := w̄(0) := 0, `(0) := `i

(0) := 0
for k = 0 . . .K do

Pick i at random in {1, . . . , n}
Solve y∗i := argmax

y∈Yi

Hi(y;w(k)) cf. (2)

Let ws := 1
λnψi(y

∗
i ) and `s := 1

n
Li(y

∗
i )

Let γ :=
λ(w

(k)
i −ws)

Tw(k)−`(k)
i +`s

λ‖w(k)
i −ws‖2

and clip to [0, 1]

Update wi
(k+1) := (1− γ)wi

(k) + γws
and `i

(k+1) := (1− γ)`i
(k) + γ `s

Update w(k+1) := w(k) +wi
(k+1) −wi(k)

and `(k+1) := `(k) + `i
(k+1) − `i(k)

(Optionally: Update w̄(k+1) := k
k+2

w̄(k) + 2
k+2

w(k+1))

Convergence Results. The following main theo-
rem shows that after O(1/ε) many iterations, Algo-
rithm 3 obtains an ε-approximate solution to (6), and
guaranteed ε-small duality gap (proof in Appendix C).

Here the constant C⊗f :=
∑n
i=1 C

(i)
f is the sum of the

(partial) curvature constants of f with respect to the
individual domain block M(i). We discuss this Lip-
schitz assumption on the gradient in more details in
Appendix A, where we compute the constant precisely
for the structural SVM and obtain C⊗f = Cf/n, where
Cf is the classical Frank-Wolfe curvature.

Theorem 2. For each k ≥ 0, the iterate α(k) of
Algorithm 3 (either using the predefined step-sizes,
or using line-search) satisfies E

[
f(α(k))

]
− f(α∗) ≤

2n
k+2n

(
C⊗f + h0

)
, where α∗ ∈M is a solution to prob-

lem (6), h0 := f(α(0)) − f(α∗) is the initial error at
the starting point of the algorithm, and the expectation
is over the random choice of the block i in the steps of
the algorithm.

Furthermore, if Algorithm 3 is run for K ≥ 0 itera-

tions, then it has an iterate α(k̂), 0 ≤ k̂ ≤ K, with

duality gap bounded by E
[
g(α(k̂))

]
≤ 6n

K+1

(
C⊗f + h0) .

Application to the Structural SVM. Algo-
rithm 4 applies the block-coordinate Frank-Wolfe al-
gorithm with line-search to the structural SVM dual
problem (4), maintaining only the primal variables w.
We see that Algorithm 4 is equivalent to Algorithm 3,
by observing that the corresponding primal updates
become ws = As[i] and `s = bTs[i]. Here s[i] is the

zero-padding of s(i) := ey
∗
i ∈ M(i) so that s[i] ∈ M.

Note that Algorithm 4 has a primal parameter vector
wi (= Aα[i]) for each datapoint i, but that this does
not significantly increase the storage cost of the algo-
rithm since each wi has a sparsity pattern that is the
union of the corresponding ψi(y

∗
i ) vectors. If the fea-

ture vectors are not sparse, it might be more efficient
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to work directly in the dual instead (see the kernel-
ized version below). The line-search is analogous to
the batch Frank-Wolfe case discussed above, and for-
malized in Appendix B.4.

By applying Theorem 2 to the SVM case where C⊗f =

Cf/n = 4R2/λn (in the worst case), we get that the
number of iterations needed for our new block-wise Al-
gorithm 4 to obtain a specific accuracy ε is the same
as for the batch version in Algorithm 2 (under the
assumption that the initial error h0 is smaller than
4R2/λn), even though each iteration takes n times
fewer oracle calls. If h0 > 4R2/λn, we can use the
fact that Algorithm 4 is using line-search to get a
weaker dependence on h0 in the rate (Theorem C.4).
We summarize the overall rate as follows (proof in Ap-
pendix B.3):

Theorem 3. If Lmax ≤ 4R2

λn (so h0 ≤ 4R2

λn ), then Algo-
rithm 4 obtains an ε-approximate solution to the struc-
tural SVM dual problem (4) and expected duality gap

E[g(α(k))] ≤ ε after at most O
(
R2

λε

)
iterations, where

each iteration costs a single oracle call.

If Lmax >
4R2

λn , then it requires at most an additional

(constant in ε) number of O
(
n log

(
λnLmax
R2

))
steps to

get the same error and duality gap guarantees.

In terms of ε, the O(1/ε) convergence rate above is
similar to existing stochastic subgradient and cutting-
plane methods. However, unlike stochastic sub-
gradient methods, the block-coordinate Frank-Wolfe
method allows us to compute the optimal step-size at
each iteration (while for an additional pass through the
data we can evaluate the duality gap (5) to allow us to
decide when to terminate the algorithm in practice).
Further, unlike cutting-plane methods which require n
oracle calls per iteration, this rate is achieved ‘online’,
using only a single oracle call per iteration.

Approximate Subproblems and Decoding. In-
terestingly, we can show that all the convergence re-
sults presented in this paper also hold if only approx-
imate minimizers of the linear subproblems are used
instead of exact minimizers. If we are using an ap-
proximate oracle giving candidate directions s(i) in Al-
gorithm 3 (or s in Algorithm 1) with a multiplicative
accuracy ν ∈ (0, 1] (with respect to the the duality
gap (5) on the current block), then the above conver-
gence bounds from Theorem 2 still apply. The only
change is that the convergence is slowed by a factor
of 1/ν2. We prove this generalization in the Theo-
rems of Appendix C. For structural SVMs, this signif-
icantly improves the applicability to large-scale prob-
lems, where exact decoding is often too costly but ap-
proximate loss-augmented decoding may be possible.

Kernelized Algorithms. Both Algorithms 2 and 4
can directly be used with kernels by maintaining the
sparse dual variables α(k) instead of the primal vari-
ables w(k). In this case, the classifier is only given
implicitly as a sparse combination of the correspond-
ing kernel functions, i.e. w = Aα. Using our Algo-
rithm 4, we obtain the currently best known bound
on the number of support vectors, i.e. a guaranteed

ε-approximation with only O(R
2

λε ) support vectors.
In comparison, the standard cutting plane method
(Joachims et al., 2009) adds n support vectors ψi(y

∗
i )

at each iteration. More details on the kernelized vari-
ant of Algorithm 4 are discussed in Appendix B.5.

6. Experiments

We compare our novel Frank-Wolfe approach to ex-
isting algorithms for training structural SVMs on the
OCR dataset (n = 6251, d = 4028) from Taskar et al.
(2003) and the CoNLL dataset (n = 8936, d = 1643026)

from Sang & Buchholz (2000). Both datasets are se-
quence labeling tasks, where the loss-augmented de-
coding problem can be solved exactly by the Viterbi
algorithm. Our third application is a word alignment
problem between sentences in different languages in
the setting of Taskar et al. (2006) (n = 5000, d = 82).
Here, the structured labels are bipartite matchings,
for which computing marginals over labels as required
by the methods of Collins et al. (2008); Zhang et al.
(2011) is intractable, but loss-augmented decoding can
be done efficiently by solving a min-cost flow problem.

We compare Algorithms 2 and 4, the batch Frank-
Wolfe method (FW )1 and our novel block-coordinate
Frank-Wolfe method (BCFW ), to the cutting plane al-
gorithm implemented in SVMstruct (Joachims et al.,
2009) with its default options, the online exponen-
tiated gradient (online-EG) method of Collins et al.
(2008), and the stochastic subgradient method (SSG)
with step-size chosen as in the ‘Pegasos’ version
of Shalev-Shwartz et al. (2010a). We also include the

weighted average w̄(k) := 2
k(k+1)

∑k
t=1 tw

(t) of the it-

erates from SSG (called SSG-wavg) which was recently
shown to converge at the faster rate of O(1/k) instead
of O ((log k)/k) (Lacoste-Julien et al., 2012; Shamir &
Zhang, 2013). Analogously, we average the iterates
from BCFW the same way to obtain the BCFW-wavg
method (implemented efficiently with the optional line
in Algorithm 4), which also has a provable O(1/k)
convergence rate (Theorem C.3). The performance of
the different algorithms according to several criteria
is visualized in Figure 1. The results are discussed

1This is equivalent to the batch subgradient method
with an adaptive step-size, as mentioned in Section 4.
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(a) OCR dataset, λ = 0.01.
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(b) OCR dataset, λ = 0.001.
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(c) OCR dataset, λ = 1/n.
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(d) CoNLL dataset, λ = 1/n.
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(e) Test error for λ = 1/n on CoNLL.
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(f) Matching dataset, λ = 0.001.

Figure 1. The shaded areas for the stochastic methods (BCFW, SSG and online-EG) indicate the worst and best objective
achieved in 10 randomized runs. The top row compares the suboptimality achieved by different solvers for different
regularization parameters λ. For large λ (a), the stochastic algorithms (BCFW and SSG) perform considerably better
than the batch solvers (cutting plane and FW ). For a small λ (c), even the batch solvers achieve a lower objective earlier
on than SSG. Our proposed BCFW algorithm achieves a low objective in both settings. (d) shows the convergence for
CoNLL with the first passes in more details. Here BCFW already results in a low objective even after seeing only few
datapoints. The advantage is less clear for the test error in (e) though, where SSG-wavg does surprisingly well. Finally,
(f) compares the methods for the matching prediction task.

in the caption, while additional experiments can be
found in Appendix F. In most of the experiments, the
BCFW-wavg method dominates all competitors. The
superiority is especially striking for the first few itera-
tions, and when using a small regularization strength
λ, which is often needed in practice. In term of test
error, a peculiar observation is that the weighted av-
erage of the iterates seems to help both methods sig-
nificantly: SSG-wavg sometimes slightly outperforms
BCFW-wavg despite having the worst objective value
amongst all methods. This phenomenon is worth fur-
ther investigation.

7. Related Work

There has been substantial work on dual coordinate
descent for SVMs, including the original sequential
minimal optimization (SMO) algorithm. The SMO al-
gorithm was generalized to structural SVMs (Taskar,
2004, Chapter 6), but its convergence rate scales badly
with the size of the output space: it was estimated
as O (n|Y|/λε) in Zhang et al. (2011). Further, this
method requires an expectation oracle to work with

its factored dual parameterization. As in our algo-
rithm, Rousu et al. (2006) propose updating one train-
ing example at a time, but using multiple Frank-Wolfe
updates to optimize along the subspace. However,
they do not obtain any rate guarantees and their algo-
rithm is less general because it again requires an ex-
pectation oracle. In the degenerate binary SVM case,
our block-coordinate Frank-Wolfe algorithm is actu-
ally equivalent to the method of Hsieh et al. (2008),
where because each datapoint has a unique dual vari-
able, exact coordinate optimization can be accom-
plished by the line-search step of our algorithm. Hsieh
et al. (2008) show a local linear convergence rate in the
dual, and our results complement theirs by providing
a global primal convergence guarantee for their algo-
rithm of O (1/ε). After our paper had appeared on
arXiv, Shalev-Shwartz & Zhang (2012) have proposed
a generalization of dual coordinate descent applicable
to several regularized losses, including the structural
SVM objective. Despite being motivated from a differ-
ent perspective, a version of their algorithm (Option II
of Figure 1) gives the exact same step-size and update
direction as BCFW with line-search, and their Corol-
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Table 1. Convergence rates given in the number of calls to the oracles for different optimization algorithms for the struc-
tural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy ε measured for different
types of gaps, in term of the number of training examples n, regularization parameter λ, size of the label space |Y|, max-
imum feature norm R := maxi,y ‖ψi(y)‖2 (some minor terms were ignored for succinctness). Table inspired from (Zhang
et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm Online Primal/Dual Type of guarantee Oracle type # Oracle calls

dual extragradient (Taskar
et al., 2006)

no primal-‘dual’ saddle point gap Bregman projection O
(
nR log |Y|

λε

)

online exponentiated gradient
(Collins et al., 2008)

yes dual expected dual error expectation O
(

(n+log |Y|)R2

λε

)

excessive gap reduction
(Zhang et al., 2011)

no primal-dual duality gap expectation O

(
nR
√

log |Y|
λε

)

BMRM (Teo et al., 2010) no primal ≥primal error maximization O
(
nR2

λε

)

1-slack SVM-Struct (Joachims
et al., 2009)

no primal-dual duality gap maximization O
(
nR2

λε

)

stochastic subgradient
(Shalev-Shwartz et al., 2010a)

yes primal primal error w.h.p. maximization Õ
(
R2

λε

)

this paper: block-coordinate
Frank-Wolfe

yes primal-dual expected duality gap maximization O
(
R2

λε

)
Thm. 3

lary 3 gives a similar convergence rate as our Theo-
rem 3. Balamurugan et al. (2011) propose to approx-
imately solve a quadratic problem on each example
using SMO, but they do not provide any rate guar-
antees. The online-EG method implements a variant
of dual coordinate descent, but it requires an expecta-
tion oracle and Collins et al. (2008) estimate its primal
convergence at only O

(
1/ε2

)
.

Besides coordinate descent methods, a variety of other
algorithms have been proposed for structural SVMs.
We summarize a few of the most popular in Table 1,
with their convergence rates quoted in number of ora-
cle calls to reach an accuracy of ε. However, we note
that almost no guarantees are given for the optimiza-
tion of structural SVMs with approximate oracles. A
regret analysis in the context of online optimization
was considered by Ratliff et al. (2007), but they do not
analyze the effect of this on solving the optimization
problem. The cutting plane algorithm of Tsochan-
taridis et al. (2005) was considered with approximate
maximization by Finley & Joachims (2008), though
the dependence of the running time on the the approx-
imation error was left unclear. In contrast, we pro-
vide guarantees for batch subgradient, cutting plane,
and block-coordinate Frank-Wolfe, for achieving an ε-
approximate solution as long as the error of the oracle
is appropriately bounded.

8. Discussion

This work proposes a novel randomized block-
coordinate generalization of the classic Frank-Wolfe
algorithm for optimization with block-separable con-
straints. Despite its potentially much lower iteration
cost, the new algorithm achieves a similar convergence

rate in the duality gap as the full Frank-Wolfe method.
For the dual structural SVM optimization problem, it
leads to a simple online algorithm that yields a solu-
tion to an issue that is notoriously difficult to address
for stochastic algorithms: no step-size sequence needs
to be tuned since the optimal step-size can be effi-
ciently computed in closed-form. Further, at the cost
of an additional pass through the data (which could
be done alongside a full Frank-Wolfe iteration), it al-
lows us to compute a duality gap guarantee that can
be used to decide when to terminate the algorithm.
Our experiments indicate that empirically it converges
faster than other stochastic algorithms for the struc-
tural SVM problem, especially in the realistic setting
where only a few passes through the data are possible.

Although our structural SVM experiments use an
exact maximization oracle, the duality gap guaran-
tees, the optimal step-size, and a computable bound
on the duality gap are all still available when only
an appropriate approximate maximization oracle is
used. Finally, although the structural SVM problem is
what motivated this work, we expect that the block-
coordinate Frank-Wolfe algorithm may be useful for
other problems in machine learning where a complex
objective with block-separable constraints arises.
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