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Abstract

We propose a randomized block-coordinate
variant of the classic Frank-Wolfe algorithm
for convex optimization with block-separable
constraints. Despite its lower iteration cost,
we show that it achieves a similar conver-
gence rate in duality gap as the full Frank-
Wolfe algorithm. We also show that, when
applied to the dual structural support vector
machine (SVM) objective, this yields an on-
line algorithm that has the same low iteration
complexity as primal stochastic subgradient
methods. However, unlike stochastic subgra-
dient methods, the block-coordinate Frank-
Wolfe algorithm allows us to compute the op-
timal step-size and yields a computable dual-
ity gap guarantee. Our experiments indicate
that this simple algorithm outperforms com-
peting structural SVM solvers.

1. Introduction

Binary SVMs are amongst the most popular classifica-
tion methods, and this has motivated substantial in-
terest in optimization solvers that are tailored to their
specific problem structure. However, despite their
wider applicability, there has been much less work
on solving the optimization problem associated with
structural SVMs, which are the generalization of SVMs
to structured outputs like graphs and other combinato-
rial objects (Taskar et al., 2003; Tsochantaridis et al.,
2005). This seems to be due to the difficulty of dealing
with the exponential number of constraints in the pri-
mal problem, or the exponential number of variables
in the dual problem. Indeed, because they achieve an
Õ(1/ε) convergence rate while only requiring a single
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call to the so-called maximization oracle on each it-
eration, basic stochastic subgradient methods are still
widely used for training structural SVMs (Ratliff et al.,
2007; Shalev-Shwartz et al., 2010a). However, these
methods are often frustrating to use for practitioners,
because their performance is very sensitive to the se-
quence of step sizes, and because it is difficult to decide
when to terminate the iterations.

To solve the dual structural SVM problem, in this
paper we consider the Frank-Wolfe (1956) algorithm,
which has seen a recent surge of interest in machine
learning and signal processing (Mangasarian, 1995;
Clarkson, 2010; Jaggi, 2011; 2013; Bach et al., 2012),
including in the context of binary SVMs (Gärtner &
Jaggi, 2009; Ouyang & Gray, 2010). A key advan-
tage of this algorithm is that the iterates are sparse,
and we show that this allows us to efficiently apply
it to the dual structural SVM objective even though
there are an exponential number of variables. A sec-
ond key advantage of this algorithm is that the it-
erations only require optimizing linear functions over
the constrained domain, and we show that this is
equivalent to the maximization oracle used by sub-
gradient and cutting-plane methods (Joachims et al.,
2009; Teo et al., 2010). Thus, the Frank-Wolfe al-
gorithm has the same wide applicability as subgradi-
ent methods, and can be applied to problems such as
low-treewidth graphical models (Taskar et al., 2003),
graph matchings (Caetano et al., 2009), and associa-
tive Markov networks (Taskar, 2004). In contrast,
other approaches must use more expensive (and poten-
tially intractable) oracles such as computing marginals
over labels (Collins et al., 2008; Zhang et al., 2011) or
doing a Bregman projection onto the space of struc-
tures (Taskar et al., 2006). Interestingly, for struc-
tural SVMs we also show that existing batch subgra-
dient and cutting-plane methods are special cases of
Frank-Wolfe algorithms, and this leads to stronger and
simpler O(1/ε) convergence rate guarantees for these
existing algorithms.
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As in other batch structural SVM solvers like cutting-
plane methods (Joachims et al., 2009; Teo et al., 2010)
and the excessive gap technique (Zhang et al., 2011)
(see Table 1 at the end for an overview), each Frank-
Wolfe iteration unfortunately requires calling the ap-
propriate oracle once for all training examples, unlike
the single oracle call needed by stochastic subgradient
methods. This can be prohibitive for data sets with
a large number of training examples. To reduce this
cost, we propose a novel randomized block-coordinate
version of the Frank-Wolfe algorithm for problems with
block-separable constraints. We show that this al-
gorithm still achieves the O(1/ε) convergence rate of
the full Frank-Wolfe algorithm, and in the context of
structural SVMs, it only requires a single call to the
maximization oracle. Although the stochastic subgra-
dient and the novel block-coordinate Frank-Wolfe al-
gorithms have a similar iteration cost and theoretical
convergence rate for solving the structural SVM prob-
lem, the new algorithm has several important advan-
tages for practitioners:

• The optimal step-size can be efficiently computed
in closed-form, hence no step-size needs to be se-
lected.

• The algorithm yields a duality gap guarantee, and
(at the cost of computing the primal objective) we
can compute the duality gap as a proper stopping
criterion.

• The convergence rate holds even when using ap-
proximate maximization oracles.

Further, our experimental results show that the op-
timal step-size leads to a significant advantage during
the first few passes through the data, and a systematic
(but smaller) advantage in later passes.

2. Structural Support Vector Machines

We first briefly review the standard convex optimiza-
tion setup for structural SVMs (Taskar et al., 2003;
Tsochantaridis et al., 2005). In structured predic-
tion, the goal is to predict a structured object y ∈
Y(x) (such as a sequence of tags) for a given in-
put x ∈ X . In the standard approach, a structured
feature map φ : X × Y → Rd encodes the rele-
vant information for input/output pairs, and a lin-
ear classifier with parameter w is defined by hw(x) =
argmaxy∈Y(x)〈w,φ(x,y)〉. Given a labeled training
set D = {(xi,yi)}ni=1, w is estimated by solving

min
w, ξ

λ

2
‖w‖2 +

1

n

n∑

i=1

ξi (1)

s.t. 〈w,ψi(y)〉 ≥ L(yi,y)− ξi ∀i, ∀y ∈
=:Yi︷ ︸︸ ︷
Y(xi),

where ψi(y) := φ(xi,yi) − φ(xi,y), and Li(y) :=
L(yi,y) denotes the task-dependent structured error
of predicting output y instead of the observed output
yi (typically a Hamming distance between the two la-
bels). The slack variable ξi measures the surrogate
loss for the i-th datapoint and λ is the regularization
parameter. The convex problem (1) is what Joachims
et al. (2009, Optimization Problem 2) call the n-slack
structural SVM with margin-rescaling. A variant with
slack-rescaling was proposed by Tsochantaridis et al.
(2005), which is equivalent to our setting if we replace
all vectors ψi(y) by Li(y)ψi(y).

Loss-Augmented Decoding. Unfortunately, the
above problem can have an exponential number of con-
straints due to the combinatorial nature of Y. We can
replace the

∑
i |Yi| linear constraints with n piecewise-

linear ones by defining the structured hinge-loss:

‘max
oracle’

H̃i(w) := max
y∈Yi

Li(y)− 〈w,ψi(y)〉︸ ︷︷ ︸
=:Hi(y;w)

. (2)

The constraints in (1) can thus be replaced with the
non-linear ones ξi ≥ H̃i(w). The computation of the
structured hinge-loss for each i amounts to finding the
most ‘violating’ output y for a given input xi, a task
which can be carried out efficiently in many structured
prediction settings (see the introduction). This prob-
lem is called the loss-augmented decoding subproblem.
In this paper, we only assume access to an efficient
solver for this subproblem, and we call such a solver a
maximization oracle. The equivalent non-smooth un-
constrained formulation of (1) is:

min
w

λ

2
‖w‖2 +

1

n

n∑

i=1

H̃i(w). (3)

Having a maximization oracle allows us to apply
subgradient methods to this problem (Ratliff et al.,
2007), as a subgradient of H̃i(w) with respect to w
is −ψi(y∗i ), where y∗i is any maximizer of the loss-
augmented decoding subproblem (2).

The Dual. The Lagrange dual of the above n-slack-
formulation (1) has m :=

∑
i |Yi| variables or potential

‘support vectors’. Writing αi(y) for the dual variable
associated with the training example i and potential
output y ∈ Yi, the dual problem is given by

min
α∈Rm

α≥0

f(α) :=
λ

2

∥∥Aα
∥∥2 − bTα (4)

s.t.
∑
y∈Yi

αi(y) = 1 ∀i ∈ [n] ,

where the matrix A ∈ Rd×m consists of the m columns
A :=

{
1
λnψi(y) ∈ Rd

∣∣ i ∈ [n],y ∈ Yi
}

, and the vector

b ∈ Rm is given by b :=
(

1
nLi(y)

)
i∈[n],y∈Yi

. Given a
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dual variable vector α, we can use the Karush-Kuhn-
Tucker optimality conditions to obtain the correspond-

ing primal variables w = Aα =
∑
i,y∈Yi

αi(y)ψi(y)
λn ,

see Appendix E. The gradient of f then takes the sim-
ple form ∇f(α) = λATAα − b = λATw − b; its
(i,y)-th component is − 1

nHi(y;w), cf. (2). Finally,
note that the domain M ⊂ Rm of (4) is the product
of n probability simplices, M := ∆|Y1| × . . .×∆|Yn|.

3. The Frank-Wolfe Algorithm

We consider the convex optimization problem
minα∈M f(α), where the convex feasible set M is
compact and the convex objective f is continuously
differentiable. The Frank-Wolfe algorithm (1956)
(shown in Algorithm 1) is an iterative optimiza-
tion algorithm for such problems that only requires
optimizing linear functions over M, and thus has
wider applicability than projected gradient algorithms,
which require optimizing a quadratic function overM.
At every iteration, a feasible search corner s is
first found by minimizing over M the linearization
of f at the current iterate α (see picture in inset).

↵

f(↵)

M

f

s

g(↵)
f(↵) +

⌦
s
0 �↵,rf(↵)

↵

The next iterate is
then obtained as
a convex combina-
tion of s and the
previous iterate,
with step-size γ.
These simple up-
dates yield two
interesting proper-
ties. First, every
iterate α(k) can be written as a convex combination of
the starting point α(0) and the search corners s found
previously. The parameter α(k) thus has a sparse
representation, which makes the algorithm suitable
even for cases where the dimensionality of α is
exponential. Second, since f is convex, the minimum
of the linearization of f over M immediately gives a
lower bound on the value of the yet unknown optimal
solution f(α∗). Every step of the algorithm thus
computes for free the following ‘linearization duality
gap’ defined for any feasible point α ∈ M (which is
in fact a special case of the Fenchel duality gap as

Algorithm 1 Frank-Wolfe on a Compact Domain

Let α(0) ∈M
for k = 0 . . .K do

Compute s := argmin
s′∈M

〈
s′,∇f(α(k))

〉

Let γ := 2
k+2 , or optimize γ by line-search

Update α(k+1) := (1− γ)α(k) + γs

explained in Appendix D):

g(α) := max
s′∈M

〈α− s′,∇f(α)〉 = 〈α− s,∇f(α)〉. (5)

As g(α) ≥ f(α) − f(α∗) by the above argument, s
thus readily gives at each iteration the current dual-
ity gap as a certificate for the current approximation
quality (Jaggi, 2011; 2013), allowing us to monitor the
convergence, and more importantly to choose the the-
oretically sound stopping criterion g(α(k)) ≤ ε.
In terms of convergence, it is known that after O(1/ε)
iterations, Algorithm 1 obtains an ε-approximate solu-
tion (Frank & Wolfe, 1956; Dunn & Harshbarger, 1978)
as well as a guaranteed ε-small duality gap (Clarkson,
2010; Jaggi, 2013), along with a certificate to (5). For
the convergence results to hold, the internal linear sub-
problem does not need to be solved exactly, but only
to some error. We review and generalize the conver-
gence proof in Appendix C. The constant hidden in
the O(1/ε) notation is the curvature constant Cf , an
affine invariant quantity measuring the maximum de-
viation of f from its linear approximation over M (it
yields a weaker form of Lipschitz assumption on the
gradient, see e.g. Appendix A for a formal definition).

4. Frank-Wolfe for Structural SVMs

Note that classical algorithms like the projected gra-
dient method cannot be tractably applied to the dual
of the structural SVM problem (4), due to the large
number of dual variables. In this section, we explain
how the Frank-Wolfe method (Algorithm 1) can be
efficiently applied to this dual problem, and discuss
its relationship to other algorithms. The main in-
sight here is to notice that the linear subproblem em-
ployed by Frank-Wolfe is actually directly equivalent
to the loss-augmented decoding subproblem (2) for
each datapoint, which can be solved efficiently (see
Appendix B.1 for details). Recall that the optimiza-
tion domain for the dual variables α is the product

Algorithm 2 Batch Primal-Dual Frank-Wolfe Algo-
rithm for the Structural SVM

Let w(0) := 0, `(0) := 0
for k = 0 . . .K do

for i = 1 . . . n do
Solve y∗i := argmax

y∈Yi

Hi(y;w(k)) cf. (2)

Let ws :=

n∑

i=1

1
λnψi(y

∗
i ) and `s := 1

n

n∑
i=1

Li(y
∗
i )

Let γ := λ(w(k)−ws)
Tw(k)−`(k)+`s

λ‖w(k)−ws‖2
and clip to [0, 1]

Update w(k+1) := (1− γ)w(k) + γws
and `(k+1) := (1− γ)`(k) + γ `s
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of n simplices, M = ∆|Y1| × . . . × ∆|Yn|. Since each
simplex consists of a potentially exponential number
|Yi| of dual variables, we cannot maintain a dense vec-
tor α during the algorithm. However, as mentioned in
Section 3, each iterate α(k) of the Frank-Wolfe algo-
rithm is a sparse convex combination of the previously
visited corners s and the starting point α(0), and so
we only need to maintain the list of previously seen
solutions to the loss-augmented decoding subproblems
to keep track of the non-zero coordinates of α, avoid-
ing the problem of its exponential size. Alternately,
if we do not use kernels, we can avoid the quadratic
explosion of the number of operations needed in the
dual by not explicitly maintaining α(k), but instead
maintaining the corresponding primal variable w(k).

A Primal-Dual Frank-Wolfe Algorithm for the
Structural SVM Dual. Applying Algorithm 1
with line search to the dual of the structural SVM (4),
but only maintaining the corresponding primal primal
iterates w(k) := Aα(k), we obtain Algorithm 2. Note
that the Frank-Wolfe search corner s = (ey

∗
1 , . . . , ey

∗
n),

which is obtained by solving the loss-augmented sub-
problems, yields the update ws = As. We use the nat-
ural starting point α(0) := (ey1 , . . . , eyn) which yields
w(0) = 0 as ψi(yi) = 0 ∀i.

The Duality Gap. The duality gap (5) for our
structural SVM dual formulation (4) is given by

g(α) := max
s′∈M

〈α− s′,∇f(α)〉
= (α− s)T (λATAα− b)
= λ(w −As)Tw − bTα+ bTs ,

where s is an exact minimizer of the linearized prob-
lem given at the point α. This (Fenchel) duality gap
turns out to be the same as the Lagrangian duality gap
here (see Appendix B.2), and gives a direct handle on
the suboptimality of w(k) for the primal problem (3).
Using ws := As and `s := bTs, we observe that the
gap is efficient to compute given the primal variables
w := Aα and ` := bTα, which are maintained dur-
ing the run of Algorithm 2. Therefore, we can use the
duality gap g(α(k)) ≤ ε as a proper stopping criterion.

Implementing the Line-Search. Because the ob-
jective of the structural SVM dual (4) is sim-
ply a quadratic function in α, the optimal step-
size for any given candidate search point s ∈ M
can be obtained analytically. Namely, γLS :=
argminγ∈[0,1] f

(
α+ γ

(
s−α

))
is obtained by setting

the derivative of this univariate quadratic function in γ
to zero, which here (before restricting to [0, 1]) gives

γopt := 〈α−s,∇f(α)〉
λ‖A(α−s)‖2 = g(α)

λ‖w−ws‖2
(used in Algorithms 2

and 4).

Convergence Proof and Running Time. In the
following, we write R for the maximal length of a dif-
ference feature vector, i.e. R :=maxi∈[n],y∈Yi

‖ψi(y)‖2,
and we write the maximum error as Lmax :=
maxi,y Li(y). By bounding the curvature constant Cf
for the dual SVM objective (4), we can now directly
apply the known convergence results for the standard
Frank-Wolfe algorithm to obtain the following primal-
dual rate (proof in Appendix B.3):

Theorem 1. Algorithm 2 obtains an ε-approximate
solution to the structural SVM dual problem (4) and

duality gap g(α(k)) ≤ ε after at most O
(
R2

λε

)
itera-

tions, where each iteration costs n oracle calls.

Since we have proved that the duality gap is smaller
than ε, this implies that the original SVM primal ob-
jective (3) is actually solved to accuracy ε as well.

Relationship with the Batch Subgradient
Method in the Primal. Surprisingly, the batch
Frank-Wolfe method (Algorithm 2) is equivalent to
the batch subgradient method in the primal, though
Frank-Wolfe allows a more clever choice of step-size,
since line-search can be used in the dual. To see the
equivalence, notice that a subgradient of (3) is given
by dsub = λw − 1

n

∑
iψi(y

∗
i ) = λ(w − ws), where

y∗i and ws are as defined in Algorithm 2. Hence, for a
step-size of β, the subgradient method update becomes
w(k+1) := w(k) − βdsub = w(k) − βλ(w(k) − ws) =
(1 − βλ)w(k) + βλws. Comparing this with Algo-
rithm 2, we see that each Frank-Wolfe step on the
dual problem (4) with step-size γ is equivalent to a
batch subgradient step in the primal with a step-size
of β = γ/λ, and thus our convergence results also ap-
ply to it. This seems to generalize the equivalence be-
tween Frank-Wolfe and the subgradient method for a
quadratic objective with identity Hessian as observed
by Bach et al. (2012, Section 4.1).

Relationship with Cutting Plane Algorithms.
In each iteration, the cutting plane algorithm
of Joachims et al. (2009) and the Frank-Wolfe method
(Algorithm 2) solve the loss-augmented decoding prob-
lem for each datapoint, selecting the same new ‘active’
coordinates to add to the dual problem. The only dif-
ference is that instead of just moving towards the cor-
ner s, as in classical Frank-Wolfe, the cutting plane al-
gorithm re-optimizes over all the previously added ‘ac-
tive’ dual variables (this task is a quadratic program).
This shows that the method is exactly equivalent to
the ‘fully corrective’ variant of Frank-Wolfe, which in
each iteration re-optimizes over all previously visited
corners (Clarkson, 2010; Shalev-Shwartz et al., 2010b).
Note that the convergence results for the ‘fully correc-
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Algorithm 3 Block-Coordinate Frank-Wolfe Algo-
rithm on Product Domain

Let α(0) ∈M =M(1) × . . .×M(n)

for k = 0 . . .K do
Pick i at random in {1, . . . , n}
Find s(i) := argmin

s′
(i)
∈M(i)

〈
s′(i),∇(i)f(α(k))

〉

Let γ := 2n
k+2n , or optimize γ by line-search

Update α
(k+1)
(i) := α

(k)
(i) + γ

(
s(i) −α(k)

(i)

)

tive’ variant directly follow from the ones for Frank-
Wolfe (by inclusion), thus our convergence results ap-
ply to the cutting plane algorithm of Joachims et al.
(2009), significantly simplifying its analysis.

5. Faster Block-Coordinate Frank-Wolfe

A major disadvantage of the standard Frank-Wolfe al-
gorithm when applied to the structural SVM problem
is that each iteration requires a full pass through the
data, resulting in n calls to the maximization oracle.
In this section, we present the main new contribution
of the paper: a block-coordinate generalization of the
Frank-Wolfe algorithm that maintains all appealing
properties of Frank-Wolfe, but yields much cheaper
iterations, requiring only one call to the maximization
oracle in the context of structural SVMs. The new
method is given in Algorithm 3, and applies to any
constrained convex optimization problem of the form

min
α∈M(1)×...×M(n)

f(α) , (6)

where the domain has the structure of a Cartesian
product M = M(1) × . . . ×M(n) ⊆ Rm over n ≥ 1
blocks. The main idea of the method is to per-
form cheaper update steps that only affect a single
variable block M(i), and not all of them simultane-
ously. This is motivated by coordinate descent meth-
ods, which have a very successful history when ap-
plied to large scale optimization. Here we assume that
each factor M(i) ⊆ Rmi is convex and compact, with
m =

∑n
i=1mi. We will write α(i) ∈ Rmi for the i-th

block of coordinates of a vector α ∈ Rm. In each step,
Algorithm 3 picks one of the n blocks uniformly at ran-
dom, and leaves all other blocks unchanged. If there is
only one block (n = 1), then Algorithm 3 becomes the
standard Frank-Wolfe Algorithm 1. The algorithm can
be interpreted as a simplification of Nesterov’s ‘huge-
scale’ uniform coordinate descent method (Nesterov,
2012, Section 4). Here, instead of computing a pro-
jection operator on a block (which is intractable for
structural SVMs), we only need to solve one linear sub-
problem in each iteration, which for structural SVMs
is equivalent to a call to the maximization oracle.

Algorithm 4 Block-Coordinate Primal-Dual Frank-
Wolfe Algorithm for the Structural SVM

Let w(0) := wi
(0) := w̄(0) := 0, `(0) := `i

(0) := 0
for k = 0 . . .K do

Pick i at random in {1, . . . , n}
Solve y∗i := argmax

y∈Yi

Hi(y;w(k)) cf. (2)

Let ws := 1
λnψi(y

∗
i ) and `s := 1

n
Li(y

∗
i )

Let γ :=
λ(w

(k)
i −ws)

Tw(k)−`(k)
i +`s

λ‖w(k)
i −ws‖2

and clip to [0, 1]

Update wi
(k+1) := (1− γ)wi

(k) + γws
and `i

(k+1) := (1− γ)`i
(k) + γ `s

Update w(k+1) := w(k) +wi
(k+1) −wi(k)

and `(k+1) := `(k) + `i
(k+1) − `i(k)

(Optionally: Update w̄(k+1) := k
k+2

w̄(k) + 2
k+2

w(k+1))

Convergence Results. The following main theo-
rem shows that after O(1/ε) many iterations, Algo-
rithm 3 obtains an ε-approximate solution to (6), and
guaranteed ε-small duality gap (proof in Appendix C).

Here the constant C⊗f :=
∑n
i=1 C

(i)
f is the sum of the

(partial) curvature constants of f with respect to the
individual domain block M(i). We discuss this Lip-
schitz assumption on the gradient in more details in
Appendix A, where we compute the constant precisely
for the structural SVM and obtain C⊗f = Cf/n, where
Cf is the classical Frank-Wolfe curvature.

Theorem 2. For each k ≥ 0, the iterate α(k) of
Algorithm 3 (either using the predefined step-sizes,
or using line-search) satisfies E

[
f(α(k))

]
− f(α∗) ≤

2n
k+2n

(
C⊗f + h0

)
, where α∗ ∈M is a solution to prob-

lem (6), h0 := f(α(0)) − f(α∗) is the initial error at
the starting point of the algorithm, and the expectation
is over the random choice of the block i in the steps of
the algorithm.

Furthermore, if Algorithm 3 is run for K ≥ 0 itera-

tions, then it has an iterate α(k̂), 0 ≤ k̂ ≤ K, with

duality gap bounded by E
[
g(α(k̂))

]
≤ 6n

K+1

(
C⊗f + h0) .

Application to the Structural SVM. Algo-
rithm 4 applies the block-coordinate Frank-Wolfe al-
gorithm with line-search to the structural SVM dual
problem (4), maintaining only the primal variables w.
We see that Algorithm 4 is equivalent to Algorithm 3,
by observing that the corresponding primal updates
become ws = As[i] and `s = bTs[i]. Here s[i] is the

zero-padding of s(i) := ey
∗
i ∈ M(i) so that s[i] ∈ M.

Note that Algorithm 4 has a primal parameter vector
wi (= Aα[i]) for each datapoint i, but that this does
not significantly increase the storage cost of the algo-
rithm since each wi has a sparsity pattern that is the
union of the corresponding ψi(y

∗
i ) vectors. If the fea-

ture vectors are not sparse, it might be more efficient
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to work directly in the dual instead (see the kernel-
ized version below). The line-search is analogous to
the batch Frank-Wolfe case discussed above, and for-
malized in Appendix B.4.

By applying Theorem 2 to the SVM case where C⊗f =

Cf/n = 4R2/λn (in the worst case), we get that the
number of iterations needed for our new block-wise Al-
gorithm 4 to obtain a specific accuracy ε is the same
as for the batch version in Algorithm 2 (under the
assumption that the initial error h0 is smaller than
4R2/λn), even though each iteration takes n times
fewer oracle calls. If h0 > 4R2/λn, we can use the
fact that Algorithm 4 is using line-search to get a
weaker dependence on h0 in the rate (Theorem C.4).
We summarize the overall rate as follows (proof in Ap-
pendix B.3):

Theorem 3. If Lmax ≤ 4R2

λn (so h0 ≤ 4R2

λn ), then Algo-
rithm 4 obtains an ε-approximate solution to the struc-
tural SVM dual problem (4) and expected duality gap

E[g(α(k))] ≤ ε after at most O
(
R2

λε

)
iterations, where

each iteration costs a single oracle call.

If Lmax >
4R2

λn , then it requires at most an additional

(constant in ε) number of O
(
n log

(
λnLmax
R2

))
steps to

get the same error and duality gap guarantees.

In terms of ε, the O(1/ε) convergence rate above is
similar to existing stochastic subgradient and cutting-
plane methods. However, unlike stochastic sub-
gradient methods, the block-coordinate Frank-Wolfe
method allows us to compute the optimal step-size at
each iteration (while for an additional pass through the
data we can evaluate the duality gap (5) to allow us to
decide when to terminate the algorithm in practice).
Further, unlike cutting-plane methods which require n
oracle calls per iteration, this rate is achieved ‘online’,
using only a single oracle call per iteration.

Approximate Subproblems and Decoding. In-
terestingly, we can show that all the convergence re-
sults presented in this paper also hold if only approx-
imate minimizers of the linear subproblems are used
instead of exact minimizers. If we are using an ap-
proximate oracle giving candidate directions s(i) in Al-
gorithm 3 (or s in Algorithm 1) with a multiplicative
accuracy ν ∈ (0, 1] (with respect to the the duality
gap (5) on the current block), then the above conver-
gence bounds from Theorem 2 still apply. The only
change is that the convergence is slowed by a factor
of 1/ν2. We prove this generalization in the Theo-
rems of Appendix C. For structural SVMs, this signif-
icantly improves the applicability to large-scale prob-
lems, where exact decoding is often too costly but ap-
proximate loss-augmented decoding may be possible.

Kernelized Algorithms. Both Algorithms 2 and 4
can directly be used with kernels by maintaining the
sparse dual variables α(k) instead of the primal vari-
ables w(k). In this case, the classifier is only given
implicitly as a sparse combination of the correspond-
ing kernel functions, i.e. w = Aα. Using our Algo-
rithm 4, we obtain the currently best known bound
on the number of support vectors, i.e. a guaranteed

ε-approximation with only O(R
2

λε ) support vectors.
In comparison, the standard cutting plane method
(Joachims et al., 2009) adds n support vectors ψi(y

∗
i )

at each iteration. More details on the kernelized vari-
ant of Algorithm 4 are discussed in Appendix B.5.

6. Experiments

We compare our novel Frank-Wolfe approach to ex-
isting algorithms for training structural SVMs on the
OCR dataset (n = 6251, d = 4028) from Taskar et al.
(2003) and the CoNLL dataset (n = 8936, d = 1643026)

from Sang & Buchholz (2000). Both datasets are se-
quence labeling tasks, where the loss-augmented de-
coding problem can be solved exactly by the Viterbi
algorithm. Our third application is a word alignment
problem between sentences in different languages in
the setting of Taskar et al. (2006) (n = 5000, d = 82).
Here, the structured labels are bipartite matchings,
for which computing marginals over labels as required
by the methods of Collins et al. (2008); Zhang et al.
(2011) is intractable, but loss-augmented decoding can
be done efficiently by solving a min-cost flow problem.

We compare Algorithms 2 and 4, the batch Frank-
Wolfe method (FW )1 and our novel block-coordinate
Frank-Wolfe method (BCFW ), to the cutting plane al-
gorithm implemented in SVMstruct (Joachims et al.,
2009) with its default options, the online exponen-
tiated gradient (online-EG) method of Collins et al.
(2008), and the stochastic subgradient method (SSG)
with step-size chosen as in the ‘Pegasos’ version
of Shalev-Shwartz et al. (2010a). We also include the

weighted average w̄(k) := 2
k(k+1)

∑k
t=1 tw

(t) of the it-

erates from SSG (called SSG-wavg) which was recently
shown to converge at the faster rate of O(1/k) instead
of O ((log k)/k) (Lacoste-Julien et al., 2012; Shamir &
Zhang, 2013). Analogously, we average the iterates
from BCFW the same way to obtain the BCFW-wavg
method (implemented efficiently with the optional line
in Algorithm 4), which also has a provable O(1/k)
convergence rate (Theorem C.3). The performance of
the different algorithms according to several criteria
is visualized in Figure 1. The results are discussed

1This is equivalent to the batch subgradient method
with an adaptive step-size, as mentioned in Section 4.
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(a) OCR dataset, λ = 0.01.
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(b) OCR dataset, λ = 0.001.
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(c) OCR dataset, λ = 1/n.
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(d) CoNLL dataset, λ = 1/n.
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(e) Test error for λ = 1/n on CoNLL.

10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

effective passes

p
ri

m
a
l

su
b

o
p

ti
m

a
li

ty
fo

r
p

ro
b

le
m

(1
)

BCFW

BCFW-wavg

SSG

SSG-wavg

FW

cutting plane

(f) Matching dataset, λ = 0.001.

Figure 1. The shaded areas for the stochastic methods (BCFW, SSG and online-EG) indicate the worst and best objective
achieved in 10 randomized runs. The top row compares the suboptimality achieved by different solvers for different
regularization parameters λ. For large λ (a), the stochastic algorithms (BCFW and SSG) perform considerably better
than the batch solvers (cutting plane and FW ). For a small λ (c), even the batch solvers achieve a lower objective earlier
on than SSG. Our proposed BCFW algorithm achieves a low objective in both settings. (d) shows the convergence for
CoNLL with the first passes in more details. Here BCFW already results in a low objective even after seeing only few
datapoints. The advantage is less clear for the test error in (e) though, where SSG-wavg does surprisingly well. Finally,
(f) compares the methods for the matching prediction task.

in the caption, while additional experiments can be
found in Appendix F. In most of the experiments, the
BCFW-wavg method dominates all competitors. The
superiority is especially striking for the first few itera-
tions, and when using a small regularization strength
λ, which is often needed in practice. In term of test
error, a peculiar observation is that the weighted av-
erage of the iterates seems to help both methods sig-
nificantly: SSG-wavg sometimes slightly outperforms
BCFW-wavg despite having the worst objective value
amongst all methods. This phenomenon is worth fur-
ther investigation.

7. Related Work

There has been substantial work on dual coordinate
descent for SVMs, including the original sequential
minimal optimization (SMO) algorithm. The SMO al-
gorithm was generalized to structural SVMs (Taskar,
2004, Chapter 6), but its convergence rate scales badly
with the size of the output space: it was estimated
as O (n|Y|/λε) in Zhang et al. (2011). Further, this
method requires an expectation oracle to work with

its factored dual parameterization. As in our algo-
rithm, Rousu et al. (2006) propose updating one train-
ing example at a time, but using multiple Frank-Wolfe
updates to optimize along the subspace. However,
they do not obtain any rate guarantees and their algo-
rithm is less general because it again requires an ex-
pectation oracle. In the degenerate binary SVM case,
our block-coordinate Frank-Wolfe algorithm is actu-
ally equivalent to the method of Hsieh et al. (2008),
where because each datapoint has a unique dual vari-
able, exact coordinate optimization can be accom-
plished by the line-search step of our algorithm. Hsieh
et al. (2008) show a local linear convergence rate in the
dual, and our results complement theirs by providing
a global primal convergence guarantee for their algo-
rithm of O (1/ε). After our paper had appeared on
arXiv, Shalev-Shwartz & Zhang (2012) have proposed
a generalization of dual coordinate descent applicable
to several regularized losses, including the structural
SVM objective. Despite being motivated from a differ-
ent perspective, a version of their algorithm (Option II
of Figure 1) gives the exact same step-size and update
direction as BCFW with line-search, and their Corol-
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Table 1. Convergence rates given in the number of calls to the oracles for different optimization algorithms for the struc-
tural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy ε measured for different
types of gaps, in term of the number of training examples n, regularization parameter λ, size of the label space |Y|, max-
imum feature norm R := maxi,y ‖ψi(y)‖2 (some minor terms were ignored for succinctness). Table inspired from (Zhang
et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm Online Primal/Dual Type of guarantee Oracle type # Oracle calls

dual extragradient (Taskar
et al., 2006)

no primal-‘dual’ saddle point gap Bregman projection O
(
nR log |Y|

λε

)

online exponentiated gradient
(Collins et al., 2008)

yes dual expected dual error expectation O
(

(n+log |Y|)R2

λε

)

excessive gap reduction
(Zhang et al., 2011)

no primal-dual duality gap expectation O

(
nR
√

log |Y|
λε

)

BMRM (Teo et al., 2010) no primal ≥primal error maximization O
(
nR2

λε

)

1-slack SVM-Struct (Joachims
et al., 2009)

no primal-dual duality gap maximization O
(
nR2

λε

)

stochastic subgradient
(Shalev-Shwartz et al., 2010a)

yes primal primal error w.h.p. maximization Õ
(
R2

λε

)

this paper: block-coordinate
Frank-Wolfe

yes primal-dual expected duality gap maximization O
(
R2

λε

)
Thm. 3

lary 3 gives a similar convergence rate as our Theo-
rem 3. Balamurugan et al. (2011) propose to approx-
imately solve a quadratic problem on each example
using SMO, but they do not provide any rate guar-
antees. The online-EG method implements a variant
of dual coordinate descent, but it requires an expecta-
tion oracle and Collins et al. (2008) estimate its primal
convergence at only O

(
1/ε2

)
.

Besides coordinate descent methods, a variety of other
algorithms have been proposed for structural SVMs.
We summarize a few of the most popular in Table 1,
with their convergence rates quoted in number of ora-
cle calls to reach an accuracy of ε. However, we note
that almost no guarantees are given for the optimiza-
tion of structural SVMs with approximate oracles. A
regret analysis in the context of online optimization
was considered by Ratliff et al. (2007), but they do not
analyze the effect of this on solving the optimization
problem. The cutting plane algorithm of Tsochan-
taridis et al. (2005) was considered with approximate
maximization by Finley & Joachims (2008), though
the dependence of the running time on the the approx-
imation error was left unclear. In contrast, we pro-
vide guarantees for batch subgradient, cutting plane,
and block-coordinate Frank-Wolfe, for achieving an ε-
approximate solution as long as the error of the oracle
is appropriately bounded.

8. Discussion

This work proposes a novel randomized block-
coordinate generalization of the classic Frank-Wolfe
algorithm for optimization with block-separable con-
straints. Despite its potentially much lower iteration
cost, the new algorithm achieves a similar convergence

rate in the duality gap as the full Frank-Wolfe method.
For the dual structural SVM optimization problem, it
leads to a simple online algorithm that yields a solu-
tion to an issue that is notoriously difficult to address
for stochastic algorithms: no step-size sequence needs
to be tuned since the optimal step-size can be effi-
ciently computed in closed-form. Further, at the cost
of an additional pass through the data (which could
be done alongside a full Frank-Wolfe iteration), it al-
lows us to compute a duality gap guarantee that can
be used to decide when to terminate the algorithm.
Our experiments indicate that empirically it converges
faster than other stochastic algorithms for the struc-
tural SVM problem, especially in the realistic setting
where only a few passes through the data are possible.

Although our structural SVM experiments use an
exact maximization oracle, the duality gap guaran-
tees, the optimal step-size, and a computable bound
on the duality gap are all still available when only
an appropriate approximate maximization oracle is
used. Finally, although the structural SVM problem is
what motivated this work, we expect that the block-
coordinate Frank-Wolfe algorithm may be useful for
other problems in machine learning where a complex
objective with block-separable constraints arises.
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Bernd Gärtner and Ronny Luss for helpful discussions,
and Robert Carnecky for the 3D illustration. MJ is
supported by the ERC Project SIPA, and by the Swiss
National Science Foundation. SLJ and MS are partly
supported by the ERC (SIERRA-ERC-239993). SLJ
is supported by a Research in Paris fellowship. MS is
supported by a NSERC postdoctoral fellowship.



Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

References

Bach, F., Lacoste-Julien, S., and Obozinski, G. On the
equivalence between herding and conditional gradient al-
gorithms. In ICML, 2012.

Balamurugan, P., Shevade, S., Sundararajan, S., and
Keerthi, S. A sequential dual method for structural
SVMs. In SDM, 2011.

Caetano, T.S., McAuley, J.J., Cheng, Li, Le, Q.V., and
Smola, A.J. Learning graph matching. IEEE PAMI, 31
(6):1048–1058, 2009.

Clarkson, K. Coresets, sparse greedy approximation, and
the Frank-Wolfe algorithm. ACM Transactions on Al-
gorithms, 6(4):1–30, 2010.

Collins, M., Globerson, A., Koo, T., Carreras, X., and
Bartlett, P. L. Exponentiated gradient algorithms for
conditional random fields and max-margin Markov net-
works. JMLR, 9:1775–1822, 2008.

Dunn, J.C. and Harshbarger, S. Conditional gradient algo-
rithms with open loop step size rules. Journal of Mathe-
matical Analysis and Applications, 62(2):432–444, 1978.

Finley, T. and Joachims, T. Training structural SVMs
when exact inference is intractable. In ICML, 2008.

Frank, M. and Wolfe, P. An algorithm for quadratic pro-
gramming. Naval Research Logistics Quarterly, 3:95–
110, 1956.
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Supplementary Material
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

Outline. In Appendix A, we discuss the curvature constants and compute them for the structural SVM prob-
lem. In Appendix B, we give additional details on applying the Frank-Wolfe algorithms to the structural SVM
and provide proofs for Theorems 1 and 3. In the main Appendix C, we give a self-contained presentation and
analysis of the new block-coordinate Frank-Wolfe method (Algorithm 3), and prove the main convergence Theo-
rem 2. In Appendix D, the ‘linearization’-duality gap is interpreted in terms of Fenchel duality. For completeness,
we include a short derivation of the dual problem to the structural SVM in Appendix E. Finally, we present in
Appendix F additional experimental results as well as more detailed information about the implementation.

A. The Curvature Constants Cf and C⊗
f

The Curvature Constant Cf . The curvature constant Cf is given by the maximum relative deviation of the
objective function f from its linear approximations, over the domainM (Clarkson, 2010; Jaggi, 2013). Formally,

Cf := sup
x,s∈M,
γ∈[0,1],

y=x+γ(s−x)

2

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉) . (7)

The assumption of bounded Cf corresponds to a slightly weaker, affine invariant form of a smoothness assumption
on f . It is known that Cf is upper bounded by the Lipschitz constant of the gradient ∇f times the squared
diameter of M, for any arbitrary choice of a norm (Jaggi, 2013, Lemma 8); but it can also be much smaller
(in particular, when the dimension of the affine hull of M is smaller than the ambient space), so it is a more
fundamental quantity in the analysis of the Frank-Wolfe algorithm than the Lipschitz constant of the gradient.
As pointed out by Jaggi (2013, Section 2.4), Cf is invariant under affine transformations, as is the Frank-Wolfe
algorithm.

The Product Curvature Constant C⊗f . The curvature concept can be generalized to our setting of product

domains M :=M(1) × . . .×M(n) as follows: over each individual coordinate block, the curvature is given by

C
(i)
f := sup

x∈M, s(i)∈M(i),

γ∈[0,1],
y=x+γ(s[i]−x[i])

2

γ2

(
f(y)− f(x)− 〈y(i) − x(i),∇(i)f(x)〉

)
, (8)

where the notation x[i] refers to the zero-padding of x(i) so that x[i] ∈M. By considering the Taylor expansion

of f , it is not hard to see that also the ‘partial’ curvature C
(i)
f is upper bounded by the Lipschitz constant of the

partial gradient ∇(i)f times the squared diameter of just one domain block M(i). See also the proof of Lemma
A.2 below.

We define the global product curvature constant as the sum of these curvatures for each block, i.e.

C⊗f :=

n∑

i=1

C
(i)
f (9)

Observe that for the classical Frank-Wolfe case when n = 1, we recover the original curvature constant.
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Computing the Curvature Constant Cf in the SVM Case.

Lemma A.1. For the dual structural SVM objective function (4) over the domain M := ∆|Y1| × . . . × ∆|Yn|,
the curvature constant Cf , as defined in (7), is upper bounded by

Cf ≤
4R2

λ
,

where R is the maximal length of a difference feature vector, i.e. R := max
i∈[n],y∈Yi

‖ψi(y)‖2 .

Proof of Lemma A.1. If the objective function is twice differentiable, we can plug-in the second degree Taylor
expansion of f into the above definition (7) of the curvature, see e.g. (Jaggi, 2011, Inequality (2.12)) or (Clarkson,
2010, Section 4.1). In our case, the gradient at α is given by λATAα − b, so that the Hessian is λATA, being
a constant matrix independent of α. This gives the following upper bound2 on Cf , which we can separate into
two identical matrix-vector products with our matrix A:

Cf ≤ sup
x,y∈M,

z∈[x,y]⊆M

(y − x)T∇2f(z)(y − x)

= λ · sup
x,y∈M

(A(y − x))TA(y − x)

= λ · sup
v,w∈AM

‖v −w‖22 ≤ λ · sup
v∈AM

‖2v‖22

By definition of our compact domain M, we have that each vector v ∈ AM is precisely the sum of n vectors,
each of these being a convex combination of the feature vectors for the possible labelings for datapoint i.

Therefore, the norm ‖v‖2 is upper bounded by n times the longest column of the matrix A, or more formally
‖v‖2 ≤ n 1

λnR with R being the longest3 feature vector, i.e.

R := max
i∈[n],y∈Yi

‖ψi(y)‖2 .

Altogether, we have obtained that the curvature Cf is upper bounded by 4R2

λ .

We also note that in the worst case, this bound is tight. For example, we can make Cf = 4R2

λ by having for each
datapoint i, two labelings which give opposite difference feature vectors ψi of the same maximal norm R.

Computing the Product Curvature Constant C⊗f in the SVM Case.

Lemma A.2. For the dual structural SVM objective function (4) over the domain M := ∆|Y1| × . . . × ∆|Yn|,

the total curvature constant C⊗f on the product domain M, as defined in (9), is upper bounded by

C⊗f ≤
4R2

λn

where R is the maximal length of a difference feature vector, i.e. R := max
i∈[n],y∈Yi

‖ψi(y)‖2 .

Proof. We follow the same lines as in the above proof of Lemma A.1, but now applying the same bound to the
block-wise definition (8) of the curvature on the i-th block. Here, the change from x to y is now restricted to
only affect the coordinates in the i-th block M(i). To simplify the notation, let M[i] be M(i) augmented with
the zero domain for all the other blocks – i.e. the analog of x(i) ∈ M(i) is x[i] ∈ M[i]. x(i) is the i-th block of

x whereas x[i] ∈ M is x(i) padded with zeros for all the other blocks. We thus require that y − x ∈ M[i] for a

2Because our function is a quadratic function, this is actually an equality.
3This choice of the radius R then gives 1

λn
R = maxi∈[n],y∈Yi

∥∥ 1
λn
ψi(y)

∥∥
2

= maxi∈[n],y∈Yi
∥∥A(i,y)

∥∥.
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valid change from x to y. Again by the degree-two Taylor expansion, we obtain

C
(i)
f ≤ sup

x,y∈M,

(y−x)∈M[i]

z∈[x,y]⊆M

(y − x)T∇2f(z)(y − x)

= λ · sup
x,y∈M

(y−x)∈M[i]

(A(y − x))TA(y − x)

= λ · sup
v,w∈AM(i)

‖v −w‖22 ≤ λ · sup
v∈AM(i)

‖2v‖22

In other words, by definition of our compact domain M(i) = ∆|Yi|, we have that each vector v ∈ AM(i) is a
convex combination of the feature vectors corresponding to the possible labelings for datapoint i. Therefore,
the norm ‖v‖2 is again upper bounded by the longest column of the matrix A, which means ‖v‖2 ≤ 1

λnR with

R := maxi∈[n],y∈Yi
‖ψi(y)‖2. Summing up over the n blocks M(i), we obtain that the product curvature C⊗f is

upper bounded by 4R2

λn .

For the same argument as at the end of the proof for Lemma A.1, this bound is actually tight in the worst
case.

B. More Details on the Algorithms for Structural SVMs

B.1. Equivalence of an Exact Frank-Wolfe Step and Loss-Augmented Decoding

To see that the proposed Algorithm 2 indeed exactly corresponds to the standard Frank-Wolfe Algorithm 1
applied to the SVM dual problem (4), we verify that the search direction s giving the update ws = As is in fact
an exact Frank-Wolfe step, which can be seen as follows:

Lemma B.1. The sparse vector s ∈ Rn constructed in the inner for-loop of Algorithm 2 is an exact solution to
s = argmins′∈M

〈
s′,∇f(α(k))

〉
for optimization problem (4).

Proof. Over the product domainM = ∆|Y1|× . . .×∆|Yn|, the minimization mins′∈M〈s′,∇f(α)〉 decomposes as∑
i minsi∈∆|Yi|

〈si,∇if(α)〉. The minimization of a linear function over the simplex reduces to a search over its
corners – in this case, it amounts for each i to find the minimal component of −Hi(y;w) over y ∈ Yi, i.e. solving
the loss-augmented decoding problem as used in Algorithm 2 to construct the domain vertex s. To see this, note
that for our choice of primal variables w = Aα, the gradient of the dual objective, ∇f(α) = λATAα− b, writes
as λATw− b. This vector is precisely the loss-augmented decoding function − 1

nHi(y;w), for i ∈ [n], y ∈ Yi, as
defined in (2).

B.2. Relation between the Lagrange Duality Gap and the ‘Linearization’ Gap for the Structural
SVM

We show here that the simple ‘linearization’ gap (5), evaluated on the structural SVM dual problem (4) is
actually equivalent to the standard Lagrangian duality gap for the structural SVM primal objective (1) (these
two duality gaps are not the same in general4). This is important for the duality gap convergence rate results
of our Frank-Wolfe algorithms to be transferable as primal convergence rates on the original structural SVM
objective (3), which is the one with statistical meaning (for example with generalization error bounds as given
in Taskar et al. (2003)).

Proof. So consider the difference of our objective at w := Aα in the primal problem (3), and the dual objective

4For example, the two gaps are different when evaluated on the dual of the conditional random field objective (see, for
example, Collins et al. (2008) for the formulation), which does not have a Lipschitz continuous gradient.
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at α in problem (4) (in the maximization version). This difference is

gLagrange(w,α) =
λ

2
wTw +

1

n

n∑

i=1

H̃i(w)−
(
bTα− λ

2
wTw

)

= λwTw − bTα+
1

n

n∑

i=1

max
y∈Yi

Hi(y;w) .

Now recall that by the definition of A and b, we have that 1
nHi(y;w) = (b− λATw)(i,y) = (−∇f(α))(i,y). By

summing up over all points and re-using a similar argument as in Lemma B.1 above, we get that

1

n

n∑

i=1

max
y∈Yi

Hi(y;w) =

n∑

i=1

max
y∈Yi

(−∇f(α))(i,y) = max
s′∈M

〈s′,−∇f(α)〉 ,

gLagrange(w,α) = (λwTA− bT )α+
1

n

n∑

i=1

max
y∈Yi

Hi(y;w)

= 〈∇f(α),α〉+ max
s′∈M

〈−s′,∇f(α)〉 = 〈α− s,∇f(α)〉 = g(α) ,

as defined in (5).

B.3. Convergence Analysis

B.3.1. Convergence of the Batch Frank-Wolfe Algorithm 2 on the Structural SVM Dual

Theorem’ 1. Algorithm 2 obtains an ε-approximate solution to the structural SVM dual problem (4) and duality

gap g(α(k)) ≤ ε after at most O
(
R2

λε

)
iterations, where each iteration costs n oracle calls.

Proof. We apply the known convergence results for the standard Frank-Wolfe Algorithm 1, as given e.g. in (Frank
& Wolfe, 1956; Dunn & Harshbarger, 1978; Jaggi, 2013), or as given in the paragraph just after the proof of
Theorem C.1: For each k ≥ 1, the iterate α(k) of Algorithm 1 (either using the predefined step-sizes, or using

line-search) satisfies E[f(α(k))]− f(α∗) ≤ 2Cf

k+2 , where α∗ ∈M is an optimal solution to problem (4).

Furthermore, if Algorithm 1 is run for K ≥ 1 iterations, then it has an iterate α(k̂), 1 ≤ k̂ ≤ K, with duality gap

bounded by E[g(α(k̂))] ≤ 6Cf

K+1 . This was shown e.g. in (Jaggi, 2013) with slightly different constants, or also in
our analysis presented below (see the paragraph after the generalized analysis provided in Theorem C.3, when
the number of blocks n is set to one).

Now for the SVM problem and the equivalent Algorithm 2, the claim follows from the curvature bound Cf ≤ 4R2

λ
for the dual structural SVM objective function (4) over the domain M := ∆|Y1| × . . . ×∆|Yn|, as given in the
above Lemma A.1.

B.3.2. Convergence of the Block-Coordinate Frank-Wolfe Algorithm 4 on the Structural
SVM Dual

Theorem’ 3. If Lmax ≤ 4R2

λn (so h0 ≤ 4R2

λn ), then Algorithm 4 obtains an ε-approximate solution to the structural

SVM dual problem (4) and expected duality gap E[g(α(k))] ≤ ε after at most O
(
R2

λε

)
iterations, where each

iteration costs a single oracle call.

If Lmax >
4R2

λn , then it requires at most an additional (constant in ε) number of O
(
n log

(
λnLmax
R2

))
steps to get

the same error and duality gap guarantees, whereas the predefined step-size variant will require an additional
O
(
nLmax
ε

)
steps.

Proof. Writing h0 = f(α(0))− f(α∗) for the error at the starting point used by the algorithm, the convergence
Theorem 2 states that if k ≥ 0 and k ≥ 2n

ε (C⊗f + h0), then the expected error is E[f(α(k))] − f(α∗) ≤ ε and
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analogously for the expected duality gap. The result then follows by plugging in the curvature bound C⊗f ≤ 4R2

λn
for the dual structural SVM objective function (4) over the domain M := ∆|Y1| × . . . × ∆|Yn|, as detailed in
Lemma A.2 (notice that it is n times smaller than the curvature Cf needed for the batch algorithm) and then
bounding h0. To bound h0, we observe that by the choice of the starting point α(0) using only the observed

labels, the initial error is bounded as h0 ≤ g(α(0)) = bTs = 1
n

∑n
i=1 maxy∈Yi

Li(y) ≤ Lmax. Thus, if Lmax ≤ 4R2

λn ,

then we have C⊗f + h0 ≤ 8R2

λn , which proves the first part of the theorem.

In the case Lmax >
4R2

λn , then the predefined step-size variant will require an additional 2nh0

ε ≤ 2nLmax
ε steps as

we couldn’t use the fact that h0 ≤ C⊗f . For the line-search variant, on the other hand, we can use the improved

convergence Theorem C.4, which shows that the algorithm require at most k0 ≤ n log(h0/C
⊗
f ) steps to reach the

condition h0 ≤ C⊗f ; once this condition is satisfied, we can simply re-use Theorem 2 with k redefined as k−k0 to

get the final convergence rates. We also point out that the statement of Theorem C.4 stays valid by replacing C⊗f

with any C⊗f
′ ≥ C⊗f in it. So plugging in C⊗f

′ = R2

λn and the bound h0 ≤ Lmax in the k0 quantity gives back the
number of additional steps mentioned in the second part of the theorem statement an ε-approximate solution.
A similar argument can be made for the expected duality gap by using the improved convergence Theorem C.5,
which simply adds the requirement K ≥ 5k0.

We note that the condition Lmax ≤ 4R2

λn is not necessarily too restrictive in the case of the structural SVM setup.
In particular, the typical range of λ which is needed for a problem is around O(1/n) – and so the condition
becomes Lmax ≤ 4R2 which is typically satisfied when the loss function is normalized.

B.4. Implementation

We comment on three practical implementation aspects of Algorithm 4 on large structural SVM problems:

Memory. For each datapoint i, our Algorithm 4 stores an additional vector wi ∈ Rd holding the contribution
of its corresponding dual variables α(i) to the primal vector w = Aα, i.e. wi = Aα[i], where α[i] is α(i) padded
with zeros so that α[i] ∈ Rm and α =

∑
iα[i]. This means the algorithm needs more memory than the direct

(or batch) Frank-Wolfe structural SVM Algorithm 2, but the additional memory can sometimes be bounded by
a constant times the size of the input data itself. In particular, in the case that the feature vectors ψi(y) are
sparse, we can sometimes get the same improvement in memory requirements for wi, since for fixed i, all vectors
ψi(y) usually have the same sparsity pattern. On the other hand, if the feature vectors are not sparse, it might
be more efficient to only work with the dual variables instead of the primal variables (see the kernelized version
in Appendix B.5 for more details).

Duality Gap as a Stopping Criterion. Analogous as in the ‘classical Frank-Wolfe’ structural SVM Algo-
rithm 2 explained in Section 4, we would again like to use the duality gap g(α(k)) ≤ ε as the stopping criterion
for the faster Algorithm 4. Unfortunately, since now in every step we only update a single one of the many
blocks, such a single direction s(i) will only determine the partial gap g(i)(α(k)) in the i-th block, but not the

full information needed to know the total gap g(α(k)). Instead, to compute the total gap, a single complete
(batch) pass through all datapoints as in Algorithm 2 is necessary, to obtain a full linear minimizer s ∈M. For
efficiency reason, we could therefore compute the duality gap every say Nn iterations for some constant N > 1.
Then stopping as soon as g(α(k)) = g(w(k), `(k),ws, `s) ≤ ε will not affect our convergence results.

Line-Search. To compute the line-search step-size for Frank-Wolfe on the structural SVM, we recall that

the analytic formula was given by γopt := 〈α−s,∇f(α)〉
λ‖A(α−s)‖2 , and finally taking γLS := max {0,min {1, γopt}}. This

is valid for any s ∈ M. For the block-coordinate Frank-Wolfe Algorithm 4, s is equal to α for all blocks,
except for the i-th block – this means that α − s = α[i] − s[i], i.e. is zero everywhere except on the i-th
block. By recalling that wi = Aα[i] is the individual contribution to w from α(i) which is stored during

the algorithm, we see that the denominator thus becomes λ ‖A(α− s)‖2 = λ ‖wi − ws‖2. The numerator is
〈α− s,∇f(α)〉 = (α− s)T (λATAα− b) = λ(wi − ws)Tw − `i + `s, where as before `i = bTα[i] is maintained
during Algorithm 4 and so the line-search step-size can be computed efficiently. We mention in passing that
when s(i) is the exact minimizer of the linear subproblem on M(i), then the numerator is actually a duality
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gap component g(i)(α) as defined in (16) – the total duality gap then is g(α) =
∑
i g

(i)(α) which can only be
computed if we do a batch pass over all the datapoints, as explained in the previous paragraph.

B.5. More details on the Kernelized Algorithm

Both Algorithms 2 and 4 can be used with kernels by explicitly maintaining the sparse dual variables α(k) instead
of the primal variables w(k). In this case, the classifier is only given implicitly as a sparse combination of the
corresponding kernel functions, i.e. w = Aα, where ψi(y) = k(xi,yi; ·, ·) − k(xi,y; ·, ·) for a structured kernel
k : (X × Y)× (X × Y)→ R. Note that the number of non-zero dual variables is upper-bounded by the number
of iterations, and so the time to take dot products grows quadratically in the number of iterations.

Algorithm B.1 Kernelized Dual Block-Coordinate Frank-Wolfe for Structural SVM

Let α(0) := (ey1 , . . . , eyn) ∈M = ∆|Y1| × . . .×∆|Yn| and ᾱ(0) = α(0)

for k = 0 . . .K do
Pick i uniformly at random in {1, . . . , n}
Solve y∗i := argmax

y∈Yi

Hi(y;Aα(k)) (solve the loss-augmented decoding problem (2))

s(i) := ey
∗
i ∈M(i) (having only a single non-zero entry)

Let γ := 2n
k+2n , or optimize γ by line-search

Update α
(k+1)
(i) := (1− γ)α

(k)
(i) + γs(i)

(Optionally: Update ᾱ(k+1) := k
k+2

ᾱ(k) + 2
k+2

α(k+1)) (maintain a weighted average of the iterates)

To compute the line-search step-size, we simply re-use the same formula as in Algorithm 4, but reconstructing
(implicitly) on the fly the missing quantities such as `i = bTα[i], wi = Aα[i] and w(k) = Aα(k), and re-

interpreting dot products such as wT
i w

(k) as the suitable sum of kernel evaluations (which has O(k2/n) terms,
where k is the number of iterations since the beginning).

C. Analysis of the Block-Coordinate Frank-Wolfe Algorithm 3

This section gives a self-contained presentation and analysis of the new block-coordinate Frank-Wolfe optimiza-
tion Algorithm 3. The main goal is to prove the convergence Theorem 2, which here is split into two parts, the
primal convergence rate in Theorem C.1, and the primal-dual convergence rate in Theorem C.3. Finally, we will
present a faster convergence result for the line-search variant in Theorem C.4 and Theorem C.5, which we have
used in the convergence for the structural SVM case as presented above in Theorem 3.

Coordinate Descent Methods. Despite their simplicity and very early appearance in the literature, surpris-
ingly few results were known on the convergence (and convergence rates in particular) of coordinate descent type
methods. Recently, the interest in these methods has grown again due to their good scalability to very large
scale problems as e.g. in machine learning, and also sparked new theoretical results such as (Nesterov, 2012).

Constrained Convex Optimization over Product Domains. We consider the general constrained convex
optimization problem

min
x∈M

f(x) (10)

over a Cartesian product domain M =M(1) × . . .×M(n) ⊆ Rm, where each factor M(i) ⊆ Rmi is convex and
compact, and

∑n
i=1mi = m. We will write x(i) ∈ Rmi for the i-th block of coordinates of a vector x ∈ Rm, and

x[i] for the padding of x(i) with zeros so that x[i] ∈ Rm.

Nesterov’s ‘Huge Scale’ Coordinate Descent. If the objective function f is strongly smooth (i.e. has
Lipschitz continuous partial gradients ∇(i)f(x) ∈ Rmi), then the following algorithm converges5 at a rate of 1

k ,

5 By additionally assuming strong convexity of f w.r.t. the `1-norm (global onM, not only on the individual factors),
one can even get linear convergence rates, see again (Nesterov, 2012) and the follow-up paper (Richtárik & Takáč, 2011).
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or more precisely n
k+n , as shown in (Nesterov, 2012, Section 4):

Algorithm C.1 Uniform Coordinate Descent Method, (Nesterov, 2012, Section 4)

Let x(0) ∈M
for k = 0 . . .∞ do

Pick i uniformly at random in {1, . . . , n}
Compute s(i) := argmin

s(i)∈M(i)

〈
s(i),∇(i)f(x(k))

〉
+ Li

2

∥∥s(i) − x(i)

∥∥2

Update x
(k+1)
(i) := x

(k)
(i) +

(
s(i) − x(k)

(i)

)
(only affecting the i-th coordinate block)

Using Simpler Update Steps: Frank-Wolfe / Conditional Gradient Methods. In some large-scale
applications, the above computation of the update direction s(i) can be problematic, e.g. if the Lipschitz

constants Li are unknown, or —more importantly— if the domainsM(i) are such that the quadratic term makes
the subproblem for s(i) hard to solve.

The structural SVM is a nice example where this makes a big difference. Here, each domain block M(i) is a
simplex of exponentially many variables, but nevertheless the linear subproblem over one such factor (also known
as loss-augmented decoding) is often relatively easy to solve.

We would therefore like to replace the above computation of s(i) by a simpler one, as proposed in the following
algorithm variant:

Algorithm C.2 Cheaper Coordinate Descent: Block-Coordinate Frank-Wolfe Algorithm

Let x(0) ∈M and x̄
(0)
w = x(0)

for k = 0 . . .∞ do
Pick i uniformly at random in {1, . . . , n}
Compute s(i) := argmin

s(i)∈M(i)

〈
s(i),∇(i)f(x(k))

〉

(or alternatively, find s(i) that solves this linear problem approximately,

either up to an additive error (11) or up to a multiplicative error (12))

Let γ := 2n
k+2n , or perform line-search for the step-size: γ := argmin

γ∈[0,1]
f
(
x(k) + γ

(
s[i] − x(k)

[i]

))
Update x

(k+1)
(i) := x

(k)
(i) + γ

(
s(i) − x(k)

(i)

)
(only affecting the i-th coordinate block)

(Optionally: Update x̄
(k+1)
w := k

k+2
x̄

(k)
w + 2

k+2
x(k+1)) (maintain a weighted average of the iterates)

This natural coordinate descent type optimization method picks a single one of the n blocks uniformly at random,
and in each step leaves all other blocks unchanged.

If there is only one factor (n = 1), then Algorithm C.2 becomes the standard Frank-Wolfe (or conditional
gradient) algorithm, which is known to converge at a rate of O(1/k) (Frank & Wolfe, 1956; Dunn & Harshbarger,
1978; Clarkson, 2010; Jaggi, 2013).

Using Approximate Linear Minimizers. If approximate linear minimizers are used internally in Algo-
rithm C.2, then the necessary approximation quality for the candidate directions s(i) is determined as follows
(in either additive or multiplicative quality):

In the additive case, we choose a fixed additive error parameter δ ≥ 0 such that the candidate direction s(i)

satisfies 〈
s(i),∇(i)f(x)

〉
≤ min

s′
(i)
∈M(i)

〈
s′(i),∇(i)f(x)

〉
+ 1

2δ γ̃k C
(i)
f , (11)

where γ̃k := 2n
k+2n comes from the default step-size and is used for the convergence results to come. Note that if

line-search is used to determine a different step-size, the candidate direction is still defined with respect to the
default γ̃k.
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In the multiplicative case, we choose a fixed multiplicative error parameter 0 < ν ≤ 1 such that the candidate
directions s(i) attain the current ‘duality gap’ on the i-th factor up to a multiplicative approximation error of ν,
i.e. 〈

x− s(i),∇(i)f(x)
〉
≥ ν · max

s′
(i)
∈M(i)

〈
x− s′(i),∇(i)f(x)

〉
. (12)

If a multiplicative approximate internal oracle is used together with the predefined step-size instead of doing
line-search, then the step-size in Algorithm C.2 needs to be increased to γk := 2n

νk+2n instead of the original 2n
k+2n .

Both types of errors can be combined together with the following property for the candidate direction s(i):

〈
x− s(i),∇(i)f(x)

〉
≥ ν · max

s′
(i)
∈M(i)

〈
x− s′(i),∇(i)f(x)

〉
− 1

2δ γ̃k C
(i)
f , (13)

where γ̃k := 2n
νk+2n .

Averaging the Iterates. In the above Algorithm C.2 we have also added an optional last line which maintains

the following weighted average x̄
(k)
w which is defined for k ≥ 1 as

x̄(k)
w :=

2

k(k + 1)

k∑

t=1

tx(t) , (14)

and by convention we also define x̄
(0)
w := x(0). As our convergence analysis will show, the weighted average of

the iterates can yield more robust duality gap convergence guarantees when the duality gap function g is convex
in x (see Theorem C.3) – this is for example the case for quadratic functions such as in the structural SVM
objective (4). We will also consider in our proofs a scheme which averages the last (1−µ)-fraction of the iterates
for some fixed 0 < µ < 1:

x̄(k)
µ :=

1

k − dµke+ 1

k∑

t=dµke

x(t) . (15)

This is what Rakhlin et al. (2012) calls (1 − µ)-suffix averaging and it appeared in the context of getting
a stochastic subgradient method with O(1/k) convergence rate for strongly convex functions instead of the
standard O((log k)/k) rate that one can prove for the individual iterates x(k). The problem with (1− µ)-suffix
averaging is that to implement it for a fixed µ (say µ = 0.5) without storing a fraction of all the iterates, one needs
to know when they will stop the algorithm. An alternative mentioned in Rakhlin et al. (2012) is to maintain a
uniform average over rounds of exponentially increasing size (the so-called ‘doubling trick’). This can give very
good performance towards the end of the rounds as we will see in our additional experiments in Appendix F,
but the performance varies widely towards the beginning of the rounds. This motivates the simpler and more
robust weighted averaging scheme (14), which in the case of the stochastic subgradient method, was also recently
proven to have O(1/k) convergence rate by Lacoste-Julien et al. (2012)6 and independently by Shamir & Zhang
(2013), who called such schemes ‘polynomial-decay averaging’.

Related Work. In contrast to the randomized choice of coordinate which we use here, the analysis of cyclic
coordinate descent algorithms (going through the blocks sequentially) seems to be notoriously difficult, such that
until today, no analysis proving a global convergence rate has been obtained as far as we know. Luo & Tseng
(1992) has proven a local linear convergence rate for the strongly convex case.

For product domains, such a cyclic analogue of our Algorithm C.2 has already been proposed in Patriksson
(1998), using a generalization of Frank-Wolfe iterations under the name ‘cost approximation’. The analysis
of Patriksson (1998) shows asymptotic convergence, but since the method goes through the blocks sequentially,
no convergence rates could be proven so far.

6In this paper, they considered a (k + 1)-weight instead of our k-weight, but similar rates can be proven for shifted

versions. We motivate skipping the first iterate x(0) in our weighted averaging scheme as sometimes bounds can be proven
on the quality of x(1) irrespective of x(0) for Frank-Wolfe (see the paragraph after the proof of Theorem C.1 for example,
looking at the n = 1 case).
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C.1. Setup for Convergence Analysis

We review below the important concepts needed for analyzing the convergence of the block-coordinate Frank-
Wolfe Algorithm C.2.

Decomposition of the Duality Gap. The product structure of our domain has a crucial effect on the duality
gap, namely that it decomposes into a sum over the n components of the domain. The ‘linearization’ duality
gap as defined in (5) (see also Jaggi (2013)) for any constrained convex problem of the above form (10), for a
fixed feasible point x ∈M, is given by

g(x) := max
s∈M

〈x− s,∇f(x)〉

=

n∑

i=1

max
s(i)∈M(i)

〈
x(i) − s(i),∇(i)f(x)

〉

=:

n∑

i=1

g(i)(x) .

(16)

Curvature. Also, the curvature can now be defined on the individual factors,

C
(i)
f := sup

x∈M, s(i)∈M(i),

γ∈[0,1],
y=x+γ(s[i]−x[i])

2
γ2

(
f(y)− f(x)− 〈y(i) − x(i),∇(i)f(x)〉

)
. (17)

We recall that the notation x[i] and x(i) is defined just below (10). We define the global product curvature as
the sum of these curvatures for each block, i.e.

C⊗f :=

n∑

i=1

C
(i)
f . (18)

C.2. Primal Convergence on Product Domains

The following main theorem shows that after O
(

1
ε

)
many iterations, Algorithm C.2 obtains an ε-approximate

solution.

Theorem C.1 (Primal Convergence). For each k ≥ 0, the iterate x(k) of the exact variant of Algorithm C.2
satisfies

E[f(x(k))]− f(x∗) ≤ 2n

k + 2n

(
C⊗f + f(x(0))− f(x∗)

)
,

For the approximate variant of Algorithm C.2 with additive approximation quality (11) for δ ≥ 0, it holds that

E[f(x(k))]− f(x∗) ≤ 2n

k + 2n

(
C⊗f (1 + δ) + f(x(0))− f(x∗)

)
.

For the approximate variant of Algorithm C.2, with multiplicative approximation quality (12) for 0 < ν ≤ 1, it
holds that

E[f(x(k))]− f(x∗) ≤ 2n

νk + 2n

(1

ν
C⊗f + f(x(0))− f(x∗)

)
.

All convergence bounds hold both if the predefined step-sizes, or line-search is used in the algorithm. Here x∗ ∈M
is an optimal solution to problem (10), and the expectation is with respect to the random choice of blocks during
the algorithm. (In other words all three algorithm variants deliver a solution of (expected) primal error at most ε
after O( 1

ε ) many iterations.)

The proof of the above theorem on the convergence rate of the primal error crucially depends on the following
Lemma C.2 on the improvement in each iteration.



Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

Lemma C.2. Let γ ∈ [0, 1] be an arbitrary fixed step-size. Moving only within the i-th block of the domain,

we consider two variants of steps towards a direction s(i) ∈ M(i): Let x
(k+1)
γ := x(γ) be the point obtained by

moving towards s(i) using step-size γ, and let x
(k+1)
LS := x(γLS) be the corresponding point obtained by line-search,

i.e. γLS := argmin
γ̄∈[0,1]

f (x(γ̄)). Here for convenience we have used the notation x(γ̄) := x(k) + γ̄
(
s[i] − x(k)

[i]

)
for

γ̄ ∈ [0, 1].

If for each i the candidate direction s(i) satisfies the additive approximation quality (11) for δ ≥ 0 and some

fixed γ̃k, then in expectation over the random choice of the block i and conditioned on x(k), it holds that

E
[
f(x

(k+1)
LS ) |x(k)

]
≤ E

[
f(x(k+1)

γ ) |x(k)
]
≤ f(x(k))− γ

n
g(x(k)) +

1

2n
(γ2 + δγ̃kγ)C⊗f .

On the other hand, if s(i) attains the duality gap g(i)(x) on the i-th block up to a multiplicative approximation
quality (12) for 0 < ν ≤ 1, then

E
[
f(x

(k+1)
LS ) |x(k)

]
≤ E

[
f(x(k+1)

γ ) |x(k)
]
≤ f(x(k))− γ

n
ν g(x(k)) +

γ2

2n
C⊗f .

All expectations are taken over the random choice of the block i and conditioned on x(k).

Proof. We write x := x(k), y := x
(k+1)
γ = x + γ(s[i] − x[i]), with x[i] and s[i] being zero everywhere except in

their i-th block. We also write dx := ∇(i)f(x) to simplify the notation. From the definition (17) of the curvature

constant C
(i)
f of our convex function f over the factor M(i), we have

f(y) = f(x+ γ(s[i] − x[i]))

≤ f(x) + γ〈s(i) − x(i), dx〉+ γ2

2 C
(i)
f .

Now we use that by (11), the choice of s(i) with
〈
s(i),∇(i)f(x)

〉
≤ min
s′
(i)
∈M(i)

〈
s′(i),∇(i)f(x)

〉
+ 1

2δγ̃kC
(i)
f is a good

descent direction for the linear approximation to f at x, on the i-th factor M(i), giving

〈s(i) − x(i), dx〉 ≤ −g(i)(x) + δγ̃k
2 C

(i)
f , (19)

by the definition (16) of the duality gap. Altogether, we have obtained

f(y) ≤ f(x) + γ(−g(i)(x) + δγ̃k
2 C

(i)
f ) + γ2

2 C
(i)
f

= f(x)− γg(i)(x) + 1
2 (γ2 + δγ̃kγ)C

(i)
f .

Using that the line-search by definition must lead to an objective value at least as good as the one at the fixed γ,
we therefore have shown the inequality

f(x
(k+1)
LS ) ≤ f(x

(k+1)
γ ) ≤ f(x(k))− γg(i)(x(k)) + 1

2 (γ2 + δγ̃kγ)C
(i)
f .

Finally the claimed bound on the expected improvement directly follows by taking the expectation: With respect
to the (uniformly) random choice of the block i, the expected value of the gap g(i)(x(k)) corresponding to the
picked i is exactly 1

ng(x(k)). Also, the expected curvature of the i-th factor is 1
nC
⊗
f .

The proof for the case of multiplicative approximation follows completely analogously, using 〈s(i) − x(i), dx〉 ≤
−ν g(i)(x), which then gives a step improvement of f(y) ≤ f(x)− γνg(i)(x) + γ2

2 C
(i)
f .

Having Lemma C.2 at hand, we will now prove our above primal convergence Theorem C.1 using similar ideas
as for general domains, such as in Jaggi (2013).

Proof of Theorem C.1. We first prove the theorem for the approximate variant of Algorithm C.2 with multi-
plicative approximation quality (12) of 0 < ν ≤ 1 – the exact variant of the algorithm is simply the special case
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ν = 1. From the above Lemma C.2, we know that for every inner step of Algorithm C.2 and conditioned on x(k),

we have that E[f(x
(k+1)
γ ) |x(k)] ≤ f(x(k))− γν

n g(x(k)) + γ2

2nC
⊗
f , where the expectation is over the random choice

of the block i (this bound holds independently whether line-search is used or not). Writing h(x) := f(x)−f(x∗)
for the (unknown) primal error at any point x, this reads as

E[h(x
(k+1)
γ ) |x(k)] ≤ h(x(k))− γν

n g(x(k)) + γ2

2nC
⊗
f

≤ h(x(k))− γν
n h(x(k)) + γ2

2nC
⊗
f

= (1− γν
n )h(x(k)) + γ2

2nC
⊗
f ,

(20)

where in the second line, we have used weak duality h(x) ≤ g(x) (which follows directly from the definition of
the duality gap, together with convexity of f). The inequality (20) is conditioned on x(k), which is a random
quantity given the previous random choices of blocks to update. We get a deterministic inequality by taking the
expectation of both sides with respect to the random choice of previous blocks, yielding:

E[h(x
(k+1)
γ )] ≤ (1− γν

n ) E[h(x(k))] + γ2

2nC
⊗
f . (21)

We observe that the resulting inequality (21) with ν = 1 is of the same form as the one appearing in the standard
Frank-Wolfe primal convergence proof such as in Jaggi (2013), though with a crucial difference of the 1/n factor
(and that we are now working with the expected values E[h(x(k))] instead of the original h(x(k))). We will thus
follow a similar induction argument over k, but we will see that the 1/n factor will yield a slightly different
induction base case (which for n = 1 can be analyzed separately to obtain a better bound). To simplify the
notation, let hk := E[h(x(k))].

By induction, we are now going to prove that

hk ≤
2nC

νk + 2n
for k ≥ 0 .

for the choice of constant C := 1
νC
⊗
f + h0.

The base-case k = 0 follows immediately from the definition of C, given that C ≥ h0.

Now we consider the induction step for k ≥ 0. Here the bound (21) for the particular choice of step-size
γk := 2n

νk+2n ∈ [0, 1] given by Algorithm C.2 gives us (the same bound also holds for the line-search variant, given

that the corresponding objective value f(x
(k+1)
Line-Search) ≤ f(x

(k+1)
γ ) only improves):

hk+1 ≤ (1− γkν
n )hk + (γk)2Cν

2n

= (1− 2ν
νk+2n )hk + ( 2n

νk+2n )2Cν
2n

≤ (1− 2ν
νk+2n ) 2nC

νk+2n + ( 1
νk+2n )22nCν ,

where in the first line we have used that C⊗f ≤ Cν, and in the last inequality we have plugged in the induction
hypothesis for hk. Simply rearranging the terms gives

hk+1 ≤ 2nC
νk+2n

(
1− 2ν

νk+2n + ν
νk+2n

)

= 2nC
νk+2n

νk+2n−ν
νk+2n

≤ 2nC
νk+2n

νk+2n
νk+2n+ν

= 2nC
ν(k+1)+2n ,

which is our claimed bound for k ≥ 0.

The analogous claim for Algorithm C.2 using the approximate linear primitive with additive approximation
quality (11) with γ̃k = 2n

νk+2n follows from exactly the same argument, by replacing every occurrence of C⊗f in

the proof here by C⊗f (1 + δ) instead (compare to Lemma C.2 also – note that γ = γ̃k here). Note moreover
that one can combine easily both a multiplicative approximation with an additive one as in (13), and modify the
convergence statement accordingly.
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Domains Without Product Structure: n = 1. Our above convergence result also holds for the case of the
standard Frank-Wolfe algorithm, when no product structure on the domain is assumed, i.e. for the case n = 1.
In this case, the constant in the convergence can even be improved for the variant of the algorithm without a
multiplicative approximation (ν = 1), since the additive term given by h0, i.e. the error at the starting point,
can be removed. This is because already after the first step, we obtain a bound for h1 which is independent of
h0. More precisely, plugging γ0 := 1 and ν = 1 in the bound (21) when n = 1 gives h1 ≤ 0 + C⊗f (1 + δ) ≤ C.
Using k = 1 as the base case for the same induction proof as above, we obtain that for n = 1:

hk ≤
2

k + 2
C⊗f (1 + δ) for all k ≥ 1 ,

which matches the convergence rate given in Jaggi (2013). Note that in the traditional Frank-Wolfe setting, i.e.
n = 1, our defined curvature constant becomes C⊗f = Cf .

Dependence on h0. We note that the only use of including h0 in the constant C = ν−1C⊗f +h0 was to satisfy
the base case in the induction proof, at k = 0. If from the structure of the problem we can get a guarantee
that h0 ≤ ν−1C⊗f , then the smaller constant C ′ = ν−1C⊗f will satisfy the base case and the whole proof will go
through with it, without needing the extra h0 factor. See also Theorem C.4 for a better convergence result with
a weaker dependence on h0 in the case where the line-search is used.

C.3. Obtaining Small Duality Gap

The following theorem shows that after O
(

1
ε

)
many iterations, Algorithm C.2 will have visited a solution with

ε-small duality gap in expectation. Because the block-coordinate Frank-Wolfe algorithm is only looking at one
block at a time, it doesn’t know what is its current true duality gap without doing a full (batch) pass over
all blocks. Without monitoring this quantity, the algorithm could miss which iterate had a low duality gap.
This is why, if one is interested in having a good duality gap (such as in the structural SVM application), then
the averaging schemes considered in (14) and (15) become interesting: the following theorem also says that the
bound hold for each of the averaged iterates, if the duality gap function g is convex, which is the case for example
when f is a quadratic function.7

Theorem C.3 (Primal-Dual Convergence). For each K ≥ 0, the variants of Algorithm C.2 (either using the

predefined step-sizes, or using line-search) will yield at least one iterate x(k̂) with k̂ ≤ K with expected duality
gap bounded by

E
[
g(x(k̂))

]
≤ β 2n

ν(K + 1)
C ,

where β = 3 and C = ν−1C⊗f (1 + δ) + f(x(0)) − f(x∗). δ ≥ 0 and 0 < ν ≤ 1 are the approximation quality
parameters as defined in (13) – use δ = 0 and ν = 1 for the exact variant.

Moreover, if the duality gap g is a convex function of x, then the above bound also holds both for E
[
g(x̄

(K)
w )

]

and E
[
g(x̄

(K)
0.5 )

]
for each K ≥ 0, where x̄

(K)
w is the weighted average of the iterates as defined in (14) and x̄

(K)
0.5

is the 0.5-suffix average of the iterates as defined in (15) with µ = 0.5.

Proof. To simplify notation, we will again denote the expected primal error and expected duality gap for any
iteration k ≥ 0 in the algorithm by hk := E[h(x(k))] := E[f(x(k))− f(x∗)] and gk := E[g(x(k))] respectively.

The proof starts again by using the crucial improvement Lemma C.2 with γ = γk := 2n
νk+2n to cover both variants

of Algorithm C.2 at the same time. As in the beginning of the proof of Theorem C.1, we take the expectation
with respect to x(k) in Lemma C.2 and subtract f(x∗) to get that for each k ≥ 0 (for the general approximate
variant of the algorithm):

hk+1 ≤ hk − 1
nγkν gk + 1

2n (γk
2 + δγ̃kγk)C⊗f

= hk − 1
nγkν gk + 1

2nγk
2C⊗f (1 + δ) ,

7To see that g is convex when f is quadratic, we refer to the equivalence between the gap g(x) and the Fenchel duality
p(x)−d(∇f(x))) as shown in Appendix D. The dual function d(·) is concave, so if ∇f(x)) is an affine function of x (which
is the case for a quadratic function), then d will be a concave function of x, implying that g(x) = p(x) − d(∇f(x))) is
convex in x, since the primal function p is convex.
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since γ̃k ≤ γk. By isolating gk and using the fact that C ≥ ν−1C⊗f (1 + δ), we get the crucial inequality for the
expected duality gap:

gk ≤
n

νγk
(hk − hk+1) + γk

C

2
. (22)

The general proof idea to get an handle on gk is to take a convex combination over multiple k’s of the inequal-
ity (22), to obtain a new upper bound. Because a convex combination of numbers is upper bounded by its

maximum, we know that the new bound has to upper bound at least one of the gk’s (this gives the existence k̂
part of the theorem). Moreover, if g is convex, we can also obtain an upper bound for the expected duality gap
of the same convex combination of the iterates.

So let {wk}Kk=0 be a set of non-negative weights, and let ρk := wk/SK , where SK :=
∑K
k=0 wk. Taking the

convex combination of inequality (22) with coefficient ρk, we get

K∑

k=0

ρkgk ≤
n

ν

K∑

k=0

ρk

(
hk
γk
− hk+1

γk

)
+

K∑

k=0

ρkγk
C

2

=
n

ν

(
h0
ρ0

γ0
− hK+1

ρK
γK

)
+
n

ν

K−1∑

k=0

hk+1

(
ρk+1

γk+1
− ρk
γk

)
+

K∑

k=0

ρkγk
C

2

≤ n

ν
h0
ρ0

γ0
+
n

ν

K−1∑

k=0

hk+1

(
ρk+1

γk+1
− ρk
γk

)
+

K∑

k=0

ρkγk
C

2
, (23)

using hK+1 ≥ 0. Inequality (23) can be seen as a master inequality to derive various bounds on gk. In particular,

if we define x̄ :=
∑K
k=0 ρkx

(k) and we suppose that g is convex (which is the case for example when f is a

quadratic function), then we have E[g(x̄)] ≤∑K
k=0 ρkgk by convexity and linearity of the expectation.

Weighted-averaging case. We first consider the weights wk = k which appear in the definition of the weighted

average of the iterates x̄
(K)
w in (14) and suppose K ≥ 1. In this case, we have ρk = k/SK where SK = K(K+1)/2.

With the predefined step-size γk = 2n/(νk + 2n), we then have

ρk+1

γk+1
− ρk
γk

=
1

2nSK
((k + 1)(ν(k + 1) + 2n)− k(νk + 2n))

=
ν(2k + 1) + 2n

2nSK
.

Plugging this in the master inequality (23) as well as using the convergence rate hk ≤ 2nC
νk+2n from Theorem C.1,

we obtain

K∑

k=0

ρkgk ≤
n

νSK

[
0 +

K−1∑

k=0

2nC

ν(k + 1) + 2n

ν(2k + 1) + 2n

2n

]
+

K∑

k=0

2nk

νk + 2n

C

2SK

≤ nC

νSK

[
2

K−1∑

k=0

1 +

K∑

k=1

1

]

=
2nC

ν(K + 1)
· 3.

Hence we have proven the bound with β = 3 for K ≥ 1. For K = 0, the master inequality (23) becomes

g0 ≤
n

ν
h0 +

1

2
C ≤ nC

ν

(
1 +

1

2n

)

since h0 ≤ C and ν ≤ 1. Given that n ≥ 1, we see that the bound also holds for K = 0.

Suffix-averaging case. For the proof of convergence of the 0.5-suffix averaging of the iterates x̄
(K)
0.5 , we refer

the reader to the proof of Theorem C.5 which can be re-used for this case (see the last paragraph of the proof
to explain how).
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Domains Without Product Structure: n = 1. As we mentioned after the proof of the primal convergence
Theorem C.1, we note that if n = 1, then we can replace C in the statement of Theorem C.3 by C⊗f (1 + δ) for
K ≥ 1 when ν = 1, as then we can ensure that h1 ≤ C which is all what was needed for the primal convergence
induction. Again, C⊗f = Cf when n = 1.

C.4. An Improved Convergence Analysis for the Line-Search Case

C.4.1. Improved Primal Convergence for Line-Search

If line-search is used, we can improve the convergence results of Theorem C.1 by showing a weaker dependence
on the starting condition h0 thanks to faster progress in the starting phase of the first few iterations:

Theorem C.4 (Improved Primal Convergence for Line-Search). For each k ≥ k0, the iterate x(k) of the line-
search variant of Algorithm C.2 (where the linear subproblem is solved with a multiplicative approximation qual-
ity (12) of 0 < ν ≤ 1) satisfies

E
[
f(x(k))

]
− f(x∗) ≤ 1

ν

2nC⊗f
ν(k − k0) + 2n

(24)

where k0 := max
{

0,

⌈
log

(
2νh(x(0))

C⊗f

)/
(− log ξn)

⌉}
is the number of steps required to guarantee that

E
[
f(x(k))

]
− f(x∗) ≤ ν−1C⊗f , with x∗ ∈ M being an optimal solution to problem (10), and h(x(0)) :=

f(x(0)) − f(x∗) is the primal error at the starting point, and ξn := 1 − ν
n < 1 is the geometric decrease rate of

the primal error in the first phase while k < k0 — i.e. E
[
f(x(k))

]
− f(x∗) ≤ (ξn)k h(x(0)) +C⊗f /2ν for k < k0.

If the linear subproblem is solved with an additive approximation quality (11) of δ ≥ 0 instead, then replace all
appearances of C⊗f above with C⊗f (1 + δ).

Proof. For the line-search case, the expected improvement guaranteed by Lemma C.2 for the multiplicative
approximation variant of Algorithm C.2, in expectation as in (21), is valid for any choice of γ ∈ [0, 1]:

E
[
h(x

(k+1)
LS )

]
≤ (1− νγ

n ) E
[
h(x(k))

]
+ γ2

2nC
⊗
f . (25)

Because the bound (25) holds for any γ, we are free to choose the one which minimizes it subject to γ ∈ [0, 1],

that is γ∗ := min

{
1, νhk

C⊗f

}
, where we have again used the identification hk := E

[
h(x

(k)
LS)
]
. Now we distinguish

two cases:

If γ∗ = 1, then νhk ≥ C⊗f . By unrolling the inequality (25) recursively to the beginning and using γ = 1 at each
step, we get:

hk+1 ≤
(
1− ν

n

)
hk + 1

2nC
⊗
f

≤
(
1− ν

n

)k+1
h0 + 1

2nC
⊗
f

∑k
t=0

(
1− ν

n

)t

≤
(
1− ν

n

)k+1
h0 + 1

2nC
⊗
f

∑∞
t=0

(
1− ν

n

)t

=
(
1− ν

n

)k+1
h0 + 1

2nC
⊗
f

(
1

1−(1−ν/n)

)

=
(
1− ν

n

)k+1
h0 + 1

2νC
⊗
f .

We thus have a geometric decrease with rate ξn := 1 − ν
n in this phase. We then get hk ≤ ν−1C⊗f as soon as

(ξn)kh0 ≤ C⊗f /2ν, i.e. when k ≥ log1/ξn(2νh0/C
⊗
f ) = log(2νh0/C

⊗
f )/ − log(1 − ν

n ). We thus have obtained a
logarithmic bound on the number of steps that fall into the first regime case here, i.e. where hk is still ‘large’.
Here it is crucial to note that the primal error hk is always decreasing in each step, due to the line-search, so
once we leave this regime of hk ≥ ν−1C⊗f , then we will never enter it again in subsequent steps.

On the other hand, as soon as we reach a step k (e.g. when k = k0) such that γ∗ < 1 or equivalently hk < ν−1C⊗f ,

then we are always in the second phase where γ∗ = νhk

C⊗f
. Plugging this value of γ∗ in (25) yields the recurrence

bound:

hk+1 ≤ hk −
1

ζ
h2
k ∀k ≥ k0 (26)
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where ζ :=
2nC⊗f
ν2 , with the initial condition hk0 ≤

C⊗f
ν = νζ

2n . This is a standard recurrence inequality which
appeared for example in Joachims et al. (2009, Theorem 5, see their Equation (23)) or in the appendix of Teo et al.
(2007). We can solve the recurrence (26) by following the argument of Teo et al. (2007), where it was pointed
out that since hk is monotonically decreasing, we can upper bound hk by the solution to the corresponding
differential equations h′(t) = −h2(t)/ζ, with initial condition h(k0) = hk0 . Integrating both sides, we get the
solution h(t) = ζ

t−k0+ζ/hk0
. Plugging in the value for hk0 and since hk ≤ h(k), we thus get the bound:

hk ≤
1

ν

2nC⊗f
ν(k − k0) + 2n

∀k ≥ k0, (27)

which completes the proof for the multiplicative approximation variant.

For the additive approximation variant, the inequality (25) with γ = 1 in Lemma C.2 becomes:

hk+1 ≤
(
1− ν

n

)
hk + 1

2n (1 + δγ̃k)C⊗f
≤

(
1− ν

n

)
hk + 1

2n (1 + δ)C⊗f ,

since γ̃k ≤ 1. By unrolling this inequality as before, we get the geometric rate of decrease in the initial phase
by using γ = 1 until k = k0 where we can ensure that hk0 ≤ C⊗f (1 + δ)/ν. We then finish the proof by re-

using the induction proof from Theorem C.1, but with Equation (24) as the induction hypothesis, replacing C⊗f
with C⊗f (1 + δ). The base case at k = k0 is satisfied by the definition of k0. For the induction step, we use

γk = 2n
ν(k−k0)+2n (note that because we use line-search, we are free to use any γ we want in the inequality from

Lemma C.2), and use the crucial fact that γ̃k = 2n
νk+2n ≤ γk to get a similar argument as in Theorem C.1.

Number of Iterations. We now make some observations in the case of δ = 0 (for simplicity). Note that

since for n > 0.5 and − log
(
1− ν

n

)
> ν

n for the natural logarithm, we get that k0 ≤
⌈
n
ν log

(
2νh(x(0))

C⊗f

)⌉
and so

unless the structure of our problem can guarantee that h(x(0)) ≤ C⊗f /ν, we get a linear number of steps in n

required to reach the second phase, but the dependence is logarithmic in h(x(0)) – instead of linear in h(x(0))
as given by our previous convergence Theorem C.1 for the fixed step-size variant (in the fixed step-size variant,

we would need k0 =

⌈
2nh(x(0))

C⊗f

⌉
steps to guarantee hk0 ≤ C⊗f /ν). Therefore, for the line-search variant of our

Algorithm C.2, we have obtained guaranteed ε-small error after
⌈
n

ν
log

(
2νh(x(0))

C⊗f

)⌉
+

⌈
2nC⊗f
ν2 ε

⌉

iterations.

Effect of Line-Search. It is also interesting to point out that even though we were using the optimal step-
size in the second phase of the above proof (which yielded the recurrence (26)), the second phase bound is not
better than what we could have obtained by using a fixed step-size schedule of 2n

ν(k−k0)+2n and following the

same induction proof line as in the previous Theorem C.1 (using the base case hk0 ≤ C⊗f /ν and so we could

let C := ν−1C⊗f ). This thus means that the advantage of the line-search over the fixed step-size schedule only

appears in knowing when to switch from a step-size of 1 (in the first phase, when hk ≥ ν−1C⊗f ) to a step-size

of 2n
ν(k−k0)+2n (in the second phase), which unless we know the value of f(x∗), we cannot know in general. In

the standard Frank-Wolfe case where n = 1 and ν = 1, there is no difference in the rates for line-search or fixed
step-size schedule as in this case we know h1 ≤ C⊗f as explained at the end of the proof of Theorem C.1. This
also suggests that if k0 > n, it might be more worthwhile in theory to first do one batch Frank-Wolfe step to
ensure that h1 ≤ C⊗f , and then proceed with the block-coordinate Frank-Wolfe algorithm afterwards.

C.4.2. Improved Primal-Dual Convergence for Line-Search

Using the improved primal convergence theorem for line-search, we can also get a better rate for the expected
duality gap (getting rid of the dependence of h0 in the constant C):
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Theorem C.5 (Improved Primal-Dual Convergence for Line-Search). Let k0 be defined as in Theorem C.4. For

each K ≥ 5k0, the line-search variant of Algorithm C.2 will yield at least one iterate x(k̂) with k̂ ≤ K with
expected duality gap bounded by

E
[
g(x(k̂))

]
≤ β 2n

ν(K + 2)
C ,

where β = 3 and C = ν−1C⊗f (1 + δ). δ ≥ 0 and 0 < ν ≤ 1 are the approximation parameters as defined in (13)
– use δ = 0 and ν = 1 for the exact variant.

Moreover, if the duality gap g is a convex function of x, then the above bound also holds for E
[
g(x̄

(K)
0.5 )

]
for each

K ≥ 5k0, where x̄
(K)
0.5 is the 0.5-suffix average of the iterates as defined in (15) with µ = 0.5.

Proof. We follow a similar argument as in the proof of Theorem C.3, but making use of the better primal
convergence Theorem C.4 as well as using the 0.5-suffix average for the master inequality (23). Let K ≥ 5k0

be given. Let γk := 2n
ν(k−k0)+2n for k ≥ k0. Note then that γ̃k = 2n

νk+2n ≤ γk and so the gap inequality (22)

appearing in the proof of Theorem C.3 is valid for this γk (because we are considering the line-search variant of
Algorithm C.2, we are free to choose any γ ∈ [0, 1] in Lemma C.2). This means that the master inequality (23)
is also valid here with C = ν−1C⊗f (1 + δ).

We consider the weights which appear in the definition of the 0.5-suffix average of iterates x̄
(K)
0.5 given in (15),

i.e. the average of the iterates x(k) from k = Ks := d0.5Ke to k = K. We thus have ρk = 1/SK for Ks ≤ k ≤ K
and ρk = 0 otherwise, where SK = K − d0.5Ke+ 1. Notice that Ks ≥ k0 by assumption.

With these choices of ρk and γk, the master inequality (23) becomes

K∑

k=0

ρkgk ≤
n

νSK

[
hKs

γKs

+

K−1∑

k=Ks

hk+1

(
1

γk+1
− 1

γk

)]
+

K∑

k=Ks

γk
C

2SK

≤ n

νSK

[
C +

K−1∑

k=Ks

2nC

ν(k + 1− k0) + 2n
(
ν

2n
)

]
+

K∑

k=Ks

2n

ν(k − k0) + 2n

C

2SK

=
nC

νSK

[
1 +

K−1∑

k=Ks

1

k + 1− k0 + 2n/ν
+

K∑

k=Ks

1

k − k0 + 2n/ν

]

≤ nC

νSK

[
1 + 2

K∑

k=Ks

1

k − k0 + 2n/ν

]

≤ 2nC

ν(K + 2)

[
1 + 2

K∑

k=Ks

1

k − k0 + 2n/ν

]
, (28)

where in the second line we used the faster convergence rate hk ≤ 2nC
ν(k−k0)+2n from Theorem C.4, given that

Ks ≥ k0. In the last line, we used SK ≤ 0.5K + 1. The rest of the proof simply amounts to get an upper bound
of β = 3 on the term between brackets in (28), thus concluding that

∑K
k=0 ρkgk ≤ β 2nC

ν(K+2) . Then following

a similar argument as in Theorem C.3, this will imply that there exists some gk̂ similarly upper bounded (the

existence part of the theorem); and that if g is convex, we have that E
[
g(x̄

(K)
0.5 )

]
is also similarly upper bounded.

We can upper bound the summand term in (28) by using the fact that for any non-negative decreasing integrable

function f , we have
∑K
k=Ks

f(k) ≤
∫K
Ks−1

f(t)dt. Let an := k0 − 2n/ν. Using f(k) := 1
k−an , we have that

K∑

k=Ks

1

k − an
≤
∫ K

Ks−1

1

t− an
dt =

[
log(t− an)

]t=K
t=Ks−1

= log
K − an

Ks − 1− an
≤ log

K − an
0.5K − 1− an

=: b(K),
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where we used Ks ≥ 0.5K. We want to show that b(K) ≤ 1 for K ≥ 5k0 to conclude that β = 3 works as
a bound in (28) and thus completing the proof. By looking at the sign of the derivative of b(K), we can see
that it is an increasing function of K if an ≤ −2 i.e. if 2n/ν ≥ k0 + 2 (which is always the case if k0 = 0
as n ≥ 1), and a strictly decreasing function of K otherwise. In the case where b(K) is increasing, we have
b(K) ≤ limK 7→∞ b(K) = log(2) < 1. In the case where b(K) is decreasing, we upper bound it by letting
K take its minimal value from the theorem, namely K ≥ 5k0. From the definition of an, we then get that

b(5k0) = log 4k0+2n/ν
1.5k0−1+2n/ν , which is an increasing function of k0 as long as 2n/ν ≥ 2 (which is indeed always the

case). So letting k0 →∞, we get that b(5k0) ≤ log(4/1.5) ≈ 0.98 < 1, thus completing the proof.

We finally note that statement for E
[
g(x̄

(K)
0.5 )

]
in Theorem C.3 can be proven using the same argument as

above, but with k0 = 0 and C = ν−1C⊗f (1 + δ) + h0 and using the original primal convergence bound on hk in
Theorem C.1 instead. This will work for both predefined step-size or the line search variants — the only place
where we used the line-search in the above proof was to use the different primal convergence result as well as
shifted-by-k0 step-sizes γk (which reduce to the standard step-sizes when k0 = 0).

We note that we cannot fully get rid of the dependence on h0 for the convergence rate of the expected duality
gap of the weighted averaged scheme because we average over k < k0, a regime where the primal error depends
on h0. With a more refined analysis for the weighted average with line-search scheme though, we note that one
can replace the h0

n
K dependence in the bound with a h0( nK )2 one, i.e. a quadratic speed-up to forget the initial

conditions when line-search is used.

We also note that a bound of O(1/K) can be derived similarly for E
[
g(x̄

(K)
µ )

]
for 0 < µ < 1 — namely using the

C as in Theorem C.3 and β = βµ := (1− µ)−1(0.5− logµ) (notice that βµ =∞ if µ = 0 or µ = 1). This result
is similar as the one for the stochastic subgradient method and where the O(1/K) rate was derived by Rakhlin
et al. (2012) for the (1− µ)-suffix averaging scheme — this provided a motivation for the scheme as the authors
proved that the full averaging scheme has Ω((logK)/K) rate in the worst case. If we use µ = 0 (i.e. we average
from the beginning), then the sum in (28) becomes O(logK), yielding O((logK)/K) for the expected gap.

D. Equivalence of the ‘Linearization’-Duality Gap to a Special Case of Fenchel
Duality

For our used constrained optimization framework, the notion of the simple duality gap was crucial. Consider a
general constrained optimization problem

min
x∈M

f(x) , (29)

where the domain (or feasible set) M ⊆ X is an arbitrary compact subset of a Euclidean space X . We assume
that the objective function f is convex, but not necessarily differentiable.

In this case, the general ‘linearization’ duality gap (5) as proposed by (Jaggi, 2013) is given by

g(x; dx) = I∗M(−dx) + 〈x, dx〉 . (30)

Here dx is an arbitrary subgradient to f at the candidate position x, and I∗M(y) := sups∈M 〈s,y〉 is the support
function of the set M.

Convexity of f implies that the linearization f(x) +
〈
s−x, dx

〉
always lies below the graph of the function f , as

illustrated by the figure in Section 3. This immediately gives the crucial property of the duality gap (30), as being
a certificate for the current approximation quality, i.e. upper-bounding the (unknown) error g(x) ≥ f(x)−f(x∗),
where x∗ is some optimal solution.

Note that for differentiable functions f , the gradient is the unique subgradient at x, therefore the duality gap
equals g(x) := g(x;∇f(x)) as we defined in (5).

Fenchel Duality. Here we will additionally explain how the duality gap (30) can also be interpreted as a
special case of standard Fenchel convex duality.
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We consider the equivalent formulation of our constrained problem (29), given by

min
x∈X

f(x) + IM(x) .

Here the set indicator function IM of a subset M⊆ X is defined as IM(x) := 0 for x ∈ M and IM(x) := +∞
for x /∈M.

The Fenchel conjugate function f∗ of a function f is given by f∗(y) := supx∈X 〈x,y〉 − f(x).

For example, observe that the Fenchel conjugate of a set indicator function IM(.) is given by its support func-
tion I∗M(.).

From the above definition of the conjugate, the Fenchel-Young inequality f(x)+f∗(y) ≥ 〈x,y〉 ∀x,y ∈ X follows
directly.

Now we consider the Fenchel dual problem of minimizing p(x) := f(x) + IM(x), which is defined as to maximize
d(y) := −f∗(y)− I∗M(−y). By the Fenchel-Young inequality, and assuming that x ∈M, we have that ∀y ∈ X ,

p(x)− d(y) = f(x)− (−f∗(y)− I∗M(−y))

≥ 〈x,y〉+ I∗M(−y)

= g(x;y) .

Furthermore, this inequality becomes an equality if and only if y is chosen as a subgradient to f at x, that is
if y := −dx. The last fact follows from the known equivalent characterization of the subdifferential in terms of
the Fenchel conjugate: ∂f(x) := {y ∈ X | f(x) + f∗(y) = 〈x,y〉}. For a more detailed explanation of Fenchel
duality, we refer the reader to the standard literature, e.g. (Borwein & Lewis, 2006, Theorem 3.3.5).

To summarize, we have obtained that the simpler ‘linearization’ duality gap g(x; dx) as given in (30) is indeed
the difference of the current objective to the Fenchel dual problem, when being restricted to the particular choice
of the dual variable y being a subgradient at the current position x.

E. Derivation of the n-Slack Structural SVM Dual

Proof of the dual of the n-Slack-Formulation. See also Collins et al. (2008). For a self-contained explanation of
Lagrange duality we refer the reader to Boyd & Vandenberghe (2004, Section 5). The Lagrangian of (1) is

L(w, ξ,α) =
λ

2
〈w,w〉+

1

n

n∑

i=1

ξi +
∑

i∈[n],y∈Yi

1

n
αi(y) (−ξi + 〈w,−ψi(y)〉+ Li(y)) ,

where α = (α1, . . . ,αn) ∈ R|Y1| × · · · × R|Yn| = Rm are the corresponding (non-negative) Lagrange multipliers.
Here we have re-scaled the multipliers (dual variables) by a constant of 1

n , corresponding to multiplying the
corresponding original primal constraint by 1

n on both sides, which does not change the optimization problem.

Since the objective as well as the constraints are continuously differentiable with respect to (w, ξ), the Lagrangian
L will attain its finite minimum over α when ∇(w,ξ)L(w, ξ,α) = 0. Making this saddle-point condition explicit
results in a simplified Lagrange dual problem, which is also known as the Wolfe dual. In our case, this condition
from differentiating w.r.t. w is

λw =
∑

i∈[n],y∈Yi

1

n
αi(y)ψi(y) . (31)

And differentiating with respect to ξi and setting the derivatives to zero gives8

∑

y∈Yi

αi(y) = 1 ∀i ∈ [n] .

8Note that because the Lagrangian is linear in ξi, if this condition is not satisfied, the minimization of the Lagrangian
in ξi yield −∞ and so these points can be excluded.
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Plugging this condition and the expression (31) for w back into the Lagrangian, we obtain the Lagrange dual
problem

max
α

− λ

2

∥∥∥∥∥∥
∑

i∈[n],y∈Yi

αi(y)
ψi(y)

λn

∥∥∥∥∥∥

2

+
∑

i∈[n],y∈Yi

αi(y)
Li(y)

n

s.t.
∑

y∈Y
αi(y) = 1 ∀i ∈ [n],

and αi(y) ≥ 0 ∀i ∈ [n], ∀y ∈ Yi ,

which is exactly the negative of the quadratic program claimed in (4).

F. Additional Experiments

Complementing the results presented in Figure 1 in Section 6 of the main paper, here we provide additional
experimental results as well as give more information about the experimental setup used.

For the Frank-Wolfe methods, Figure 2 presents results on OCR comparing setting the step-size by line-search
against the simpler predefined step-size scheme of γk = 2n/(k + 2n). There, BCFW with predefined step-
sizes does similarly as SSG, indicating that most of the improvement of BCFW with line-search over SSG is
coming from the optimal step-size choice (and not from the Frank-Wolfe formulation on the dual). We also see
that BCFW with predefined step-sizes can even do worse than batch Frank-Wolfe with line-search in the early
iterations for small values of λ.

Figure 3 and Figure 4 show additional results of the stochastic solvers for several values of λ on the OCR and
CoNLL datasets. Here we also include the (uniformly) averaged stochastic subgradient method (SSG-avg), which
starts averaging at the beginning; as well as the 0.5-suffix averaging versions of both SSG and BCFW (SSG-tavg
and BCFW-tavg respectively), implemented using the ‘doubling trick’ as described just after Equation (15) in
Appendix C. The ‘doubling trick’ uniformly averages all iterates since the last iteration which was a power of 2,
and was described by Rakhlin et al. (2012), with experiments for SSG in Lacoste-Julien et al. (2012). In our
experiments, BCFW-tavg sometimes slightly outperforms the weighted average scheme BCFW-wavg, but its
performance fluctuates more widely, which is why we recommend the BCFW-wavg, as mentioned in the main
text. In our experiments, the objective value of SSG-avg is always worse than the other stochastic methods
(apart online-EG), which is why it was excluded from the main text. Online-EG performed substantially worse
than the other stochastic solvers for the OCR dataset, and is therefore not included in the comparison for the
other datasets.9

Finally, Figure 5 presents additional results for the matching application from Taskar et al. (2006).

9The worse performance of the online exponentiated gradient method could be explained by the fact that it uses a
log-parameterization of the dual variables and so its iterates are forced to be in the interior of the probability simplex,
whereas we know that the optimal solution for the structural SVM objective lies at the boundary of the domain and thus
these parameters need to go to infinity.
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(b) λ = 0.001.
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FW (predef. γ)
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(c) λ = 1/n = 0.00016.

Figure 2. Convergence of the Frank-Wolfe algorithms on the OCR dataset, depending on the choice of the step-size. We
compare the line-search variants as used in Algorithms 2 and 4, versus the simpler predefined step-sizes γ := 2

k+2
(and

γ := 2n
k+2n

in the block-coordinate case respectively). See also the original optimization Algorithms 1 and 3.

20 40 60 80 100 120 140
10−2

10−1

100

101

102

effective passes

p
ri

m
a
l

su
b

o
p

ti
m

a
li

ty
fo

r
p

ro
b

le
m

(1
)

BCFW

BCFW-tavg

BCFW-wavg

SSG

SSG-tavg

SSG-wavg

SSG-avg

online-EG

20 40 60 80 100 120 140
0.120

0.130

0.140

0.150

effective passes

te
st

er
ro

r

(a) λ = 0.01.
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(b) λ = 0.001.
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(c) λ = 1/n = 0.00016.

Figure 3. Convergence (top) and test error (bottom) of the stochastic solvers on the OCR dataset. While the block-
coordinate Frank-Wolfe algorithm generally achieves the best objective, the averaging versions of the stochastic algorithms
achieve a lower test error. While this interesting observation should be subject to further investigation, this could probably
be due to the fact that these methods implicitly perform model averaging, which seems to lead to improved generalization
performance. One can see some kind of ‘overfitting’ for example in the λ = 0.001 case, where BCFW-wavg reaches early
a low test error which then starts to increase (and after running it for thousands of iterations, it does seem to converge
to a parameter with higher test error than seen in the early iterations).
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(b) λ = 0.001.
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(c) λ = 1/n = 0.000112.

Figure 4. Convergence (top) and test error (bottom) of the stochastic solvers on the CoNLL dataset, using a logarithmic
x-axis to focus on the early iterations.
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(b) λ = 0.001.
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(c) λ = 1/n = 0.0002.

Figure 5. Convergence (top) and test error (bottom) of the stochastic solvers on the Matching dataset.
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More Information about Implementation. We note that since the value of the true optimum is unknown,
the primal suboptimality for each experiment was measured as the difference to the highest dual objective seen
for the corresponding regularization parameter (amongst all methods). Moreover, the lower envelope of the
obtained primal objective values was drawn in Figure 1 for the batch methods (cutting plane and Frank-Wolfe),
given that these methods can efficiently keep track of the best parameter seen so far.

The online-EG method used the same adaptive step-size scheme as described in Collins et al. (2008) and with the
parameters from their code egstra-0.2 available online.10 Each datapoint has their own step-size, initialized
at 0.5. Backtracking line-search is used, where the step-size is halved until the objective is decreased (or a
maximum number of halvings has been reached: 2 for the first pass through the data; 5 otherwise). After each
line-search, the step-size is multiplied by 1.05. We note that each evaluation of the objective requires a new call
to the (expectation) oracle, and we count these extra calls in the computation of the effective number of passes
appearing on the x-axis of the plots. Unlike all the other methods which initialize w(0) = 0, online-EG initially

sets the dual variables α
(0)
(i) to a uniform distribution, which yields a problem-dependent initialization w(0).

For SSG, we used the same step-size as in the ‘Pegasos’ version of Shalev-Shwartz et al. (2010a): γk := 1
λ(k+1) .

For the cutting plane method, we use the version 1.1 of the svm-struct-matlab MATLAB wrapper code
from Vedaldi (2011) with its default options.

The test error for the OCR and CoNLL tasks is the normalized Hamming distance on the sequences.

For the matching prediction task, we use the same setting from Taskar et al. (2006), with 5, 000 training examples
and 347 Gold test examples. During training, an asymmetric Hamming loss is used where the precision error
cost is 1 while the recall error cost is 3. For testing, error is the ‘alignment error rate’, as defined in Taskar et al.
(2006).
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